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Héctor W. Gómez
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Abstract:

• This paper considers an extension for the skew-elliptical Birnbaum–Saunders model by considering
the power-normal model. Some properties of this family are studied and it is shown, in particular,
that the range of asymmetry and kurtosis surpasses that of the ordinary skew-normal and power-
normal models. Estimation is dealt with by using the maximum likelihood approach. Observed
and expected information matrices are derived and it is shown to be nonsingular at the vicinity
of symmetry. The applications illustrate the better performance of the new distribution when
compared with other recently proposed alternative models.
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1. INTRODUCTION

Vilca-Labra and Leiva-Sánchez ([30]) extended the ordinary Birnbaum–Saunders (BS)
distribution by considering the generalized Birnbaum–Saunders skew-elliptical distribution
which is based on replacing the normal distribution by the elliptical family of distributions of
which the normal distribution is a special case. Such general family of distributions is very
successful in dealing with data sets with high degrees of asymmetry and kurtosis.

In this paper, we consider an extension of the generalized BS (GBS) model proposed in
Dı́az-Garćıa and Leiva-Sánchez ([9]) to the case of elliptical distributions. A comprehensive
review of the GBS model can be found in Sanhueza et al. ([29]). Another important feature
of this distribution is related to robustness with respect to parameter estimation which was
studied in Barros et al. ([4]). The generalized Birnbaum–Saunders skew-elliptical distribution
represents an important extension of the ordinary BS distribution to the case of symmetrical
and asymmetrical distributions, which can be appropriate for applications in life data and
material fatigue data.

The family of elliptical distributions has proved to be an important alternative to the
normal distribution. The distributions in this family are symmetric and include distributions
with greater and smaller kurtosis than the normal distribution. The normal distribution is
an important member of the family. The elliptical family of distributions has been studied
by many authors including Fang and Zang ([12]), Fang et al. ([11]), Gupta and Varga ([13]),
Arellano-Valle and Bolfarine ([2]), among others.

A random variable X is distributed according to the elliptical distribution with location
parameter ξ and scale parameter η if its pdf can be written as

f(x) =
c

η
g

((
x− ξ

η

)2
)

,(1.1)

for some nonnegative function g(u), u > 0, such that
∫∞
0 u−

1
2 g(u)du = 1/c, where c is a

normalizing constant. The function g(·) is known as the density generator function. If X

is elliptically distributed with location-scale parameters ξ and η and generator function g,

denoted X ∼ EC(ξ, η; g). If ξ = 0 and η = 1, then X has spherical distribution, denoted
as X ∼ EC(0, 1; g). Properties of this family can be studied in Kelker ([15]), Cambanis et

al. ([5]), Fang et al. ([11]), Arellano-Valle and Bolfarine ([2]) and Gupta and Varga ([13])
among others. Particular cases of the X ∼ EC(0, 1; g) distribution are the Pearson type
VII distribution, the type Kotz distribution, the Student-t (tν) distribution, the Cauchy
distribution and the normal distribution, among others.

Dı́az-Garćıa and Leiva-Sánchez ([9]) present the GBS distribution, by assuming that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ EC(0, 1; g).

where γ > 0 is the shape parameter and β > 0 is the scale parameter and the distribution
median. Then, from

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,
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the GBS distribution follows, which we denote by T ∼ GBS(γ, β; g). The pdf for the random
variable T is given by

fGBS(t) = cg

(
1
γ2

[
t

β
+

β

t
− 2
])

t−3/2(t + β)
2γβ1/2

, t > 0,(1.2)

where c is a normalizing constant and g is the generator function. Moreover, letting

at(γ, β) = at =
1
γ

(√
t

β
−
√

β

t

)
,(1.3)

it follows that

At(γ, β) =
d

dt
at(γ, β) =

t−3/2(t + β)
2γβ1/2

,

so that (1.2) can be written as

fGBS(t) = f(at(γ, β))At(γ, β),

where f is given in (1.1).

An extension of the elliptical model to the asymmetric case was given in Vilca-Labra and
Leiva-Sánchez ([30]), where it is defined the standard elliptical asymmetric or skew-elliptical
(SE) model as

fY (y;λ) = 2f(y)F (λy); y, λ ∈ R,

where f is given in (1.1), F is its respective cumulative distribution function (cdf) and λ is an
asymmetry parameter. We use the notation Y ∼ SE(0, 1; g, λ). The cumulative distribution
function for this model is given by

(1.4) FY (y) = 2
∫ y

−∞
f(t)F (λt)dt.

A particular case of model (1.4) is the skew-normal (SN) distribution (see Azzalini,
([3])) with f = φ and F = Φ with pdf and cdf given, respectively, by

(1.5) φSN (y) = 2φ(y)Φ(λy), y ∈ R,

ΦSN (y) = Φ(y)− 2T (y;λ), y ∈ R,

where φ(·) and Φ(·) are the pdf and cdf of N(0, 1) (the standard normal distribution), re-
spectively and T (·; ·) is Owen’s ([25]) function.

Extensions of the BS model to elliptical distributions were studied in Vilca-Labra and
Leiva-Sánchez ([30]), namely, skew-elliptical Birnbaum–Saunders (SEBS) distribution. Model
construction is based on the condition that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ SE(0, 1; g, λ).

We use the notation SEBS(γ, β; g, λ). The case of model SEBS based on SN distribu-
tion, we denote SNBS(γ, β, λ). Additional references on the BS distribution can be found in
the recent book by Leiva ([18]).
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An alternative asymmetric distribution is studied in Durrans ([10]), by introducing the
fractional order statistical model, with pdf given by

(1.6) ϕH(z;α) = αh(z){H(z)}α−1, z ∈ R,

where H is an absolutely continuous cumulative distribution function with pdf h and α > 0
is a parameter that controls the distributional shape. The case H = Φ is called the power-
normal (PN) distribution, with pdf given by

ϕΦ(z;α) = αφ(z){Φ(z)}α−1, z ∈ R,

denoted Z ∼ PN(α). This model is an alternative to adjust data with asymmetry and kurtosis
above (or below) the expected for the normal distribution.

In this paper we extend the SEBS model considered in Vilca-Labra and Leiva-Sánchez
([30]), using the fractionary order statistical model of Durrans ([10]). This generalization
leads to a more flexible model in what concerns asymmetry and kurtosis, that the SEBS
model, given that those models are special cases (hence also the ordinary BS model). It than
can used for fitting fatigue data as well as life data.

The paper is organized as follows. Section 2 is devoted to study extensions of the
GBS elliptical model by using the fractionary order statistical model in Durrans ([10]). Some
properties of this family are studied and it is shown, in particular, that the range of asymmetry
and kurtosis surpasses that of the ordinary skew-normal and power-normal models. Maximum
likelihood estimation for the model proposed is implemented in Section 3. Observed and
expected information matrices are derived and it is shown to be nonsingular at the vicinity
of symmetry. Results of three real data application is presented in Section 4. The main
conclusion is that the model proposed offers a viable alternative to others considered in the
literature.

2. POWER SKEW-ELLIPTICAL BIRNBAUM–SAUNDERS
DISTRIBUTIONS

We start by extending the model (1.6) assuming that the pdf h it is as follows

h(y;λ) = 2f(y)F (λy); y, λ ∈ R,(2.1)

where f is given in (1.1), F is its respective cumulative distribution function and λ is an
asymmetry parameter. We call it the power skew-elliptical(PSE) model with pdf given by

(2.2) ϕPSE(z;λ, α) = αh(z;λ){H(z;λ)}α−1, z ∈ R.

We use the notation Z ∼ PSE(0, 1; g, λ, α).

Moments of the random variable Z have no closed form, but under a variable change
the r-th moment of the random variable Z can be written as

E(Zr) = α

∫ 1

0
[H−1(z;λ)]rzα−1dx,
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where H−1 is the inverse of the function H.

If the pdf h follows model (1.5), then, we have the power skew-normal (PSN) model
with parameters λ and α introduced in Mart́ınez-Flórez et al. ([23]). This model we denote
by PSN(λ, α).

Special cases of model PSN occur with α = 1, so that the skew-normal model φSN (x),
follows. On the other hand, with λ = 0 the model with pdf ϕΦ(x), that is, Durrans generalized
normal model follows. The ordinary standard normal model is also a special case which follows
by taking α = 1 and λ = 0, that is, ϕPSN (x; 0, 1) = φ(x). Notice from Figure 1 (a) and (b)
below that α and λ affect both, distribution asymmetry and kurtosis and hence the model
proposed seems more flexible than the models by Azzalini ([3]) and Durrans ([10]).
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Figure 1: PSN model. (a) α = 1.5 and λ =-0.75 (dotted dashed line),
0 (dotted line), 1 (dashed line) and 1.75 (solid line), (b) λ =
0.70 and α = 0.50 (dotted-dashed line), 1.0 (dotted line), 2.0
(dashed line) and 5.0 (solid line).

For some values of λ and α ∈ [0.1, 100], asymmetry and kurtosis coefficients namely√
β1 and β2, for Z ∼ PSN(λ, α), are in the intervals [-1.4676,0.9953) and [1.4672,5.4386] re-

spectively, see Mart́ınez-Flórez et al. ([23]). Such intervals contain the corresponding intervals
for the skew-normal distribution, given by (-0.9953,0.9953) and [3,3.8692) respectively, and
for the PN model, given by [-0.6115,0.9007] and [1.7170,4.3556], respectively, see Pewsey et

al. ([26]). This illustrates the fact that the exponentiated skew-normal family contains mod-
els with greater (and smaller) asymmetry than both skew-normal (Azzalini, ([3])) and the
power-normal (generalized normal) model (Durrans, ([10])). It then encompasses a family of
distributions with more of both, platykurtic and leptokurtic, distributions. This illustrates
the fact that the PSE model can be more flexible, respective to asymmetry and kurtosis, than
the models characterized by density functions fY and ϕH .

We consider now an extension of the BS model to the case of exponentiated skew
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elliptical distributions. Assuming that

Z =
1
γ

(√
T

β
−
√

β

T

)
∼ PSE(0, 1; g, λ, α),

it follow that Z is distributed according to model (2.2). Therefore, trough a simple variable
change, it can be shown that the random variable

T =
β

4

[
γZ +

√
γ2Z2 + 4

]2
,(2.3)

is distributed according to the power skew-elliptical Birnbaum–Saunders (PSEBS) distribu-
tion, denoted by T ∼ PSEBS(γ, β; g, λ, α).

The pdf for random variable (2.3) is given by

(2.4) ϕPSEBS(t; γ, β, λ, α) = αh(at(γ, β);λ){H(at(γ, β);λ)}α−1At(γ, β), t ∈ R+.

This model provides then a generalization for the model introduced by Dı́az-Garćıa
and Leiva-Sánchez ([9]) and Vilca-Labra and Leiva-Sánchez ([30]). Notice that for α = 1, the
SEBS model (Vilca-Labra and Leiva-Sánchez ([30])) is obtained and for λ = 0 and α = 1 we
obtain the GBS model (Dı́az-Garćıa and Leiva-Sánchez ([9])). The case λ = 0 constitutes
an extension for the BS model since it contains the ordinary BS model. This model has
been studied in Mart́ınez-Flórez et al. ([22]), supposing that Z ∼ PN(α) and is called the
power normal Birnbaum–Saunders (PNBS) model, denoted PNBS(γ, β, α) for the case of the
normal distribution. Some properties and moments of the PSEBS distribution represented
by the random variable T in (2.3) are presented next. Properties are similar to the ones
derived for the SEBS distribution by Vilca-Labra and Leiva-Sánchez ([30]), for T with Z ∼
SE(0, 1; g, λ).

Theorem 2.1. Let T ∼ PSEBS(γ, β; g, λ, α). Then,

1. bT ∼ PSEBS(γ, bβ; g, λ, α), b > 0 and

2. T−1 ∼ PSEBS(γ, β−1; g,−λ, α).

Proof: 1. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = bT for b > 0 so that T = Y
b , where

the Jacobian is J = 1
b . Moreover, since at(γ, β) = ay/b(γ, β) = ay(γ, bβ) and |J | d

dtat(γ, β) =
|J | d

dtay/b(γ, β) = d
dyay(γ, bβ) = Ay(γ, bβ), so that, from the above transformations we have

fY (y) = αh(ay/b(γ, β);λ)
{
H(ay/b(γ, β);λ)

}α−1 d

dt
ay/b(γ, β)|J |

= αh(ay(γ, bβ);λ) {H(ay(γ, bβ);λ)}α−1 Ay(γ, bβ),

so that Y = bT ∼ PSEBS(γ, bβ; g, λ, α).

2. Let T ∼ PSEBS(γ, β; g, λ, α) and Y = T−1 then T = Y −1 the jacobian of the trans-
formation is J = Y −2. Moreover, at(γ, β) = ay−1(γ, β) = −ay(γ, β−1) and |J | d

dtat(γ, β) =
|J | d

dtay−1(γ, β) = d
dyay(γ, β−1) = Ay(γ, β−1).
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Then, h(at(γ, β);λ) = h(ay−1(γ, β);λ) = h(ay(γ, β);−λ) and

H(at(γ, β);λ) = H(−ay(γ, β−1);λ)

=
∫ −ay(γ,β−1)

−∞
2cg(x2)F (λx)dx

=
∫ y

0
2cg(ax(γ, β−1)2)F (−λax(γ, β−1))

d

dx
ax(γ, β−1)dx

=
∫ ay(γ,β−1)

−∞
h(x;−λ)dx

= H(ay(γ, β−1);−λ).

Using the above transformations, we have that

fY (y) = αh(ay−1(γ, β);λ)
{
H(ay−1(γ, β);λ)

}α−1 d

dt
ay−1(γ, β)|J |

= αh(ay(γ, β−1);−λ)
{
H(ay(γ, β−1);−λ)

}α−1
Ay(γ, β−1)

then we conclude that Y = T−1 ∼ PSEBS(γ, β−1; g,−λ, α).

Theorem 2.2. Let T ∼ PSEBS(γ, β; g, λ, α), HT its cumulative distribution func-

tion and H the distribution function of Z ∼ PSE(0, 1; g, λ, α). Then,

HT (t, γ, β; g, λ, α) = {H(at(γ, β);λ)}α.

Proof: Let ax(λ, β), as defined above, so that

HT (t, γ, β; gλ, α) =
∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1 Ax(γ, β)dx

=
∫ t

0
αh(ax(γ, β);λ) {H(ax(γ, β);λ)}α−1 d

dx
ax(γ, β)dx

=
∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

= FZ(at(γ, β);λ, α).

Furthermore,

FZ(at(γ, β);λ, α) =
∫ at(γ,β)

−∞
αh(x;λ) {H(x;λ)}α−1 dx

=
∫ at(γ,β)

−∞

d

dx
{H(x;λ)}α dx

= {H(at(γ, β);λ)}α,

concluding the proof.

Theorem 2.3. The p-th percentile of the PSEBS(γ, β; g, λ, α), tp = H−1(p, γ, β; gλ, α),
is given by:

tp = β

λ

2
zp +

√(
λ

2
zp

)2

+ 1

2

,

where zp is the p-th percentile of the distribution of PSE(0,1;g,λ,α), given by zp =H−1(p1/α;λ).
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Proof: For p ∈ (0, 1) as in Theorem 2.2, it follows that p = {H(at(γ, β);λ)}α so that
aT (γ, β) = Zp = H−1(p1/α;λ) ∼ PSE(0, 1 : g, λ, α) where H−1 is the inverse of H. Therefore,
result follows from (2.3).

Theorem 2.4. The survivor function, cumulative risk function, risk and inverted risk

functions for model PSEBS are given, respectively, by:

S(t) = 1− {H(at(γ, β);λ)}α, M(t) = − log[S(t)],

r(t) = αrSEBS(t)
{H(at(γ, β);λ)}α−1 − {H(at(γ, β);λ)}α

1− {H(at(γ, β);λ)}α
and R(t) = αRSEBS(t),

where rSEBS(t) and RSEBS(t) denote the risk and inverted risk for the skew-elliptical BS

model.

Proof: Result follows directly from the definitions of survival function risk and inverse
risk using the result in Theorem 2.2.

From Theorem 2.4 we can conclude that the inverse risk rate is proportional to the risk
rate for the SEBS distribution. Hence, the intervals where R(t) is decreasing or increasing,
are the same as the intervals where RSEBS(t) is decreasing or increasing.

The following two Theorem discuss the existence and the r-th moment of a random
variable T ∼ PSEBS(γ, β; g, λ, α).

Theorem 2.5. Let T ∼PSEBS(γ, β; g, λ, α) and Z ∼PSE(0, 1; g, λ, α). Hence, E(T r)
exists if and only if,

E

[(
γZ

2

)k+l ((γZ

2

)
+ 1
) k−l

2

]
(2.5)

exists k = 1, 2, ..., r with l = 0, 1, ..., k.

Proof: Taking Z ∼ PSE(0, 1; g, λ, α) it follows that

E
{[

T

β

]n}
= E


[

γ

2
Z +

√(γ

2
Z
)2

+ 1

]2


n

= E

{[
1 +

{
γ2

2
Z2 + γZ

√(γ

2
Z
)2

+ 1

}]n}
.

Therefore, using the binomial expansion, we have

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

)
E


[

γ2

2
Z2 + γZ

√(γ

2
Z
)2

+ 1

]k

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and doing another binomial expansion, we obtain

E
{[

T

β

]n}
=

n∑
k=0

(
n

k

) k∑
l=0

(
k

l

)
2kE

{[(γ

2
Z
)k+l

[(γ

2
Z
)2

+ 1
] k−l

2

]}
,

so that E
{[

T
β

]n}
exists if, and only if, E

{[(γ
2Z
)k+l

[(γ
2Z
)2 + 1

] k−l
2

]}
exists, for k =

0, 1, ..., n and l = 0, 1, ..., k.

Theorem 2.6. Let T ∼ PSEBS(γ, β; g, λ, α) and Z ∼ PSE(0, 1; g, λ, α). If E[Zr]
exists for r = 1, 2, ..., then

µr = E(T r) = βr
∑

[0≤k≤r/2]

(
r

2k

)(
1
2

)2k 2k∑
j=0

(
2k

j

)
E[(γZ)4k−j(γ2Z2 + 4)j/2]

+ βr
∑

[0≤k<r/2]

(
r

2k + 1

)(
1
2

)2k+1 2k+1∑
j=0

(
2k + 1

j

)
E[(γZ)4k+2−j(γ2Z2 + 4)j/2]

where [·] corresponds to the sum of the integer part of the subscripts.

Corollary 2.1. For r = 1, 2 we have that

E(T ) =
β

2
[2 + γ2ν2 + γκ1] and E(T 2) =

β2

2
[2 + 4γ2ν2 + γ4ν4 + 2γκ1 + γ3κ3],

where νk = E[Zk] and κk = E
[
Zk
(
γ2Z2 + 4

)1/2
]
. Then, the variance is given by

V ar(T ) = E(T 2)− E2(T ) =
γ2β2

4
[4ν2 − κ2

1 + 2γκ3 − 2γν2κ1 − γ2ν2
2 + 2γ2ν4].

The central moments, µ́r = E(T − E(T ))r, for r = 2, 3, 4 can be obtained using µ́2 =
µ2 − µ2

1, µ́3 = µ3 − 3µ2µ1 + 2µ3
1 and µ́4 = µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1. Hence, variation coef-
ficient, asymmetry and kurtosis can be obtained by using:

CV =

√
σ2

T

µ1
,

√
β1 =

µ́3

[µ́2]3/2
and β2 =

µ́4

[µ́2]2
.

2.1. Power skew-normal Birnbaum–Saunders distribution

The power skew-normal Birnbaum–Saunders distribution is obtained by taking H =
ΦSN (and h = φSN ) in (2.4) and is denoted by PSNBS. It follows then that the density
function is given by

ϕPSNBS(t; γ, β;φ, λ, α) = αφSN (at(γ, β)){ΦSN (at(γ, β))}α−1At(γ, β),

with at given in (1.3). Notice that the ordinary BS is a special case which follows by taking
F = Φ, λ = 0 and α = 1. If α = 1, the asymmetric BS model studied in Vilca-Labra and
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Leiva-Sánchez ([30]) is derived and for λ = 0, we obtain the power-normal BS model studied
in Mart́ınez-Flórez et al. ([22]). Moreover, some properties of the BS distribution holds for
the PSNBS distribution.

The cumulative distribution function for this model is given by

HPSNBS(t, γ, β;λ, α) = {Φ(at(γ, β))− 2T (at(γ, β);λ)}α , t > 0,

Figures 2 and 3 depicts the behavior of the PSNBS distribution for those values of α

and λ.
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Figure 2: Plots for density function ϕT (t; γ, β, λ, α). (a)
(γ, β, λ, α) = (0.75,1,-1,1.75) (dashed and dotted lines),
(γ, β, λ, α) = (0.75,1,-0.25,1.75) (dotted line), (γ, β, λ, α) =
(0.75,1,0.25,1.75) (dashed line) and (γ, β, λ, α) =
(0.75,1,1,1.75) (solid line). (b)(γ, β, λ, α) = (1.25,1,-1,1.75)
(dashed and dotted lines), (γ, β, λ, α) = (1.25,1,-0.25,1.75)
(dotted line), (γ, β, λ, α) = (1.25,1,0.25,1.75) (dashed line)
and (γ, β, λ, α) = (1.25,1,1,1.75) (solid line).

From Theorem 2.4, the survivor function, risk and inverted risk functions for model
PSNBS are given, respectively, by

(2.6) S(t) = 1− {ΦSN (at(γ, β))}α, M(t) = − log[S(t)],

r(t) = αrSNBS(t)
{ΦSN (at(γ, β))}α−1 − {ΦSN (at(γ, β))}α

1− {ΦSN (at(γ, β))}α
and R(t) = αRSNBS(t),

where rSNBS(t) and RSNBS(t) respectively denote the risk and inverted risk of the skew-
normal Birnbaum–Saunders.

The following Theorem shows that for t →∞ the limit of the risk function of the
PSNBS model coincides with the limit to infinity for the risk function of the SNBS model,
result found by Leiva et al. ([20]).
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Figure 3: Plots for density function ϕT (t; γ, β, λ, α). a)
(γ, β, λ, α) = (0.75,1,1,0.75) (dashed and dot-
ted lines), (γ, β, λ, α) =(0.75,1,1,1.5) (dotted line),
(γ, β, λ, α) =(0.75,1,1,2.25) (dashed line) and
(γ, β, λ, α) =(0.75,1,1,3) (solid line). b)(γ, β, λ, α) =
(1.25,1,1,0.75) (dashed and dotted lines), (γ, β, λ, α) =
(1.25,1,1,1.5) (dotted line), (γ, β, λ, α) = (1.25,1,1,2.25)
(dashed line) and (γ, β, λ, α) = (1.25,1,1,3) (solid line).

Theorem 2.7.
lim
t→∞

r(t) = (1 + λ2)(2γ2β)−1.

Proof: Rewritting the risk function in the form

r(t) = αrSNBS(t){ΦSN (at(γ, β))}α−1 1− ΦSN (at(γ, β))
1− {ΦSN (at(γ, β))}α

,

and using L’Hôpital rule, we obtain

lim
t→∞

1− ΦSN (at(γ, β))
1− {ΦSN (at(γ, β))}α

= lim
t→∞

−φSN (at(γ, β))At(γ, β)
−α{ΦSN (at(γ, β))}α−1φSN (at(γ, β))At(γ, β)

=
1
α

,

where At(γ, β) = d
dtat(γ, β).

Therefore,

lim
t→∞

r(t) = α lim
t→∞

rSNBS(t)
1
α

= lim
t→∞

rSNBS(t) = (1 + λ2)(2γ2β)−1

where
lim
t→∞

rSNBS(t) = (1 + λ2)(2γ2β)−1,

as shown in Leiva et al. ([20]).

Figures 4 and 5 reveals the fact that the risk function is a non decreasing (and unimodal)
function of t, but an increasing function of parameter α. Moreover, r(t) is a non decreasing
function for parameter γ.
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Figure 4: Function r(t), for (a) γ = 0.25, β = 1.0, λ = 2 and α = 0.75
(dashed and dotted line), α =1 (dotted line), α =2 (dashed
line) and α =5 (solid line). (b)γ = 0.5, β = 1.0, λ = 2 and
α = 0.75 (dashed and dotted line), α =1 (dotted line), α =2
(dashed line) and α =5 (solid line).
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Figure 5: Function r(t), for (a) γ = 0.25, β = 1.0, α = 1.75 and λ =-
1.5 (dashed and dotted lines), λ =-0.75 (dotted line), λ =0.75
(dashed line) and λ =1.5 (solid line). (b)γ = 0.5, β = 1.0, α =
1.75 and λ = -1.5 (dashed and dotted lines), λ =-0.75 (dotted
line), λ =0.75 (dashed line) and λ =1.5 (solid line).
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2.2. Inference for the PSNBS model

We present in this section the score functions and the observed and expected in-
formation matrices for the parameter θ = (γ, β, λ, α). Given a random sample of size n,
t = (t1, ..., tn)′, from the distribution PSNBS(γ, β, λ, α), the log-likelihood function for
θ = (γ, β, λ, α)′ can be written as

`(θ; t) = n

[
log(α)− log(γ)− 1

2
log(β)

]
+

n∑
i=1

log(ti + β)− 3
2

n∑
i=1

log(ti)

− 1
2γ2

n∑
i=1

[
ti
β

+
β

ti
− 2
]

+
n∑

i=1

log(Φ(λati)) + (α− 1)
n∑

i=1

log(ΦSN (ati)).(2.7)

The maximum likelihood (ML) estimators are obtained by maximizing the log-likelihood
function given in (2.7). The score function, defined as the derivative of the likelihood function
with respect to model parameters is denoted by U(θ) = (U(γ), U(β), U(λ), U(α))′ so that the
score equations follow by equating the scores to zero, leading to the following equations

U(γ) = −1
γ

n∑
i=1

[
1− a2

ti + ati [λwi + (α− 1)w1i]
]

= 0,

U(β) = − n

2β
+

n∑
i=1

1
β + ti

− 1
2γ2

n∑
i=1

[
1
ti
− ti

β2

]
− 1

2γβ
3
2

n∑
i=1

ti + β

t
1
2
i

[λwi + (α− 1)w1i] = 0,

U(λ) =
n∑

i=1

ati

φ(λati)
Φ(λati)

−
√

2
π

(α− 1)
1 + λ2

n∑
i=1

w2i = 0, U(α) =
n

α
+

n∑
i=1

ui = 0,

where ui = log{ΦSN (ati)},

wi =
φ(λati)
Φ(λati)

, w1i =
φSN (ati)
ΦSN (ati)

,

and

w2i =
φ
(√

1 + λ2ati

)
ΦSN (ati)

, i = 1, ..., n.

Numerical approaches are required for solving the above system of equations.

The elements of the observed information matrix are the negative of the second partial
derivatives of the likelihood function with respect to the model parameters evaluated at the
ML estimators. We use the notation jγγ , jβγ , jλγ , jαγ , ..., jαλ, jαα so that, after extensive
algebraic manipulations,

jγγ = − n

γ2
+

3
γ2

n∑
i=1

a2
ti +

λ

γ2

n∑
i=1

a2
tiwi

[
λ2ati + λwi − 2

]
−
√

2
π

λ(α− 1)
γ2

n∑
i=1

a2
tiw2i

− (α− 1)
γ2

n∑
i=1

atiw1i

[
2 + a2

ti − atiw1i

]
.
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jβγ =
1
γ3

n∑
i=1

[
ti
β2

− 1
ti

]
− λ

2γ2β3/2

n∑
i=1

ti + β√
ti

wi [1− λati(λati + wi)]

− α− 1
2γ2β3/2

n∑
i=1

ti + β√
ti

[√
2
π

λatiw2i + w1i(1 + a2
ti − atiw1i)

]
,

jλγ =
1
γ

n∑
i=1

atiwi [1− λatiwi(λati + wi)] +

√
2
π

α− 1
γ

n∑
i=1

atiw2i

[
ati +

1
1 + λ2

w1i

]
,

jββ = − n

2β2
+

n∑
i=1

1
(ti + β)2

+
1

γ2β3

n∑
i=1

ti −
1

2γβ5/2

n∑
i=1

3ti + β√
ti

[λwi + (α− 1)w1i]

+
1

4γ2β3

n∑
i=1

(ti + β)2

ti

[
λ2wi

(
λ(ti − β)

γβ1/2t
1/2
i

+ wi

)

+ (α− 1)

(
ti − β

γβ1/2t
1/2
i

w1i + w2
1i −

√
2
π

λw2i

)]
,

jλβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti

wi [1− λatiwi(λati + wi)]

+

√
2
π

α− 1
2γβ3/2

n∑
i=1

ti + β√
ti

w2i

[
ati +

1
1 + λ2

w1i

]
,

jαγ =
1
γ

n∑
i=1

atiw1i, jαβ =
1

2γβ3/2

n∑
i=1

ti + β√
ti

w1i,

jλλ =
n∑

i=1

a2
tiwi(λati + wi)−

√
2
π

2λ(α− 1)
(1 + λ2)2

n∑
i=1

w2i

+

√
2
π

α− 1
1 + λ2

n∑
i=1

w2i

[
−λa2

ti +

√
2
π

1
1 + λ2

w2i

]
,

jαλ =

√
2
π

1
1 + λ2

n∑
i=1

w2i, jαα =
n

α2
.

The elements of the Fisher information matrix are n−1 times the expected values of the
elements of the matrix of second derivatives of the log-likelihood function.

Considering now λ = 0 and α = 1 and using the approximation in Cribari-Neto and
Branco ([8]), we can write the expected Fisher information matrix as

IF (θ) =


1
γ2 0 0 1

4γ
π2

√
8+π2

0
√

2π+γp(γ)√
2πγ2β2 A1(γ, β) A2(γ, β)

0 A1(γ, β) 2
π

√
1
2

1
4γ

π2
√

8+π2 A2(γ, β)
√

1
2 1

 ,
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where p(γ) = γ
√

2
π −

π exp( 2
γ2 )

2 erfc( 2
γ ), with erfc(x) = 2√

π

∫∞
x exp(−t2)dt being the error func-

tion (see Prudnikov et al. ([27])), A1(γ, β) =
√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(at)dt and A2(γ, β) =√

2
π

1
4γ2β2

∫∞
0

(
1 + β

t

)
φ(2

√
2at/π)Φ(−at)dt.

The 2x2 superior submatrix of I(θ) is the Fisher information matrix for the ordinary
BS distribution, as can be seen in Lemonte et al. ([21]). It can be verified that the columns
(lines) of the matrix IF (θ) are linearly independent and hence, it is invertible. Hence, for
large samples, the MLE θ̂ of θ is asymptotically normal, that is,

θ̂
A→ N4(θ, IF (θ)−1),

resulting that the asymptotic variance of the ML estimators θ̂ is the inverse of IF (θ), which
we denote by Σθ̂ = IF (θ)−1.

Approximation N4(θ, Σθ̂) can be used to construct confidence intervals for θr, which

are given by θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r), where σ̂(·) corresponds to the r-th diagonal element of the

matrix Σθ̂ and z1−ρ/2 denotes 100(1− ρ/2)-quantile of the standard normal distribution.
On the other hand, in presence of right-censoring we can adopt the following scheme. Assum-
ing that for each individual the failure time is independent of the censoring time (say, Yi and
Ci for i = 1, ..., n respectively). The observed times are given by Ti = min(Yi, Ci) and the
failure indicator is denoted as δi = I(Yi ≤ Ci). Given a sample of observed times and failure
indicators (t1, δ1), (t2, δ2), ..., (tn, δn) and under the additional assumption of non-informative
censoring, i.e., the distribution of failure times (Yi) don’t provide information about the cen-
soring times (Ci) and viceversa (see Lagakos ([16])), the log-likelihood function for θ is given

(2.8) l(θ; t) =
n∑

i=1

[δi log ϕPSNBS(ti; γ, β;φ, λ, α) + (1− δi) log S((ti; γ, β;φ, λ, α))] .

For δi = 1, i = 1, ..., n, equation (2.8) is reduced to (2.7). Finally, inference based on (2.8)
can be performed in a similar manner as was done in the uncensored case, as described above.

3. RELATIONSHIP AMONG DISTRIBUTIONS OF THE FAMILY PSEBS

The pdf for the PSEBS model with tν distribution (denoted PSTBS) is given by:

(3.1) ϕPSTBS(t; ξ) =
αΓ(ν+1

2 )
(νπ)1/2Γ(ν

2 )

[
1 +

a2
t

ν

]− ν+1
2

Fst(λat){Hst(at;λ)}α−1At(γ, β),

where ξ = (γ, β;λ, α, ν) and ν representing degrees of freedom and Fst is the cdf of the tν
distribution (see Johnson et al. ([14])) and Hst is the cdf of the skew-tν distribution. The
power skew-Cauchy Birnbaum–Saunders (PSCBS) model follows from pdf (3.1) by taking
ν = 1. Note that in the particular case that λ = 0 and α = 1, the PSTBS coincides with the
Birnbaum–Saunders-tν (BST) distribution studied in Dı́az-Garćıa and Leiva-Sánchez ([9]) and
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for λ = 0 is obtained the Power Birnbaum–Saunders Student-t distribution studied in ([24]).
Moreover, for α = 1, we obtain the skew-tν-Birnbaum–Saunders (STBS) model, studied in
Vilca-Labra and Leiva-Sánchez ([30]). The relationships among some of those models are
presented in Figure 6.
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Figure 6: Relationship among distributions of the family PSEBS.

The density generator of the normal, Cauchy, tν , generalized tν , type I logistic, type II
logistic and power exponential are, respectively, given by g(u) = (2π)−1/2 exp(−u/2), g(u) =
{π(1 + u)}−1, g(u) = νν/2B(1/2, ν/2)−1(ν + u)−(ν+1)/2, where ν > 0 and B(·, ·) is the beta
function, g(u) = sr/2B(1/2, r/2)−1(s+u)−(r+1)/2 (s, r > 0), g(u) = c exp(−u)(1+exp(−u))−2,
where c ≈ 1.484300029 is the normalizing constant obtained from

∫∞
0 u−1/2g(u)du = 1, g(u) =

exp(−
√

u)(1 + exp(−
√

u))−2 and g(u) = c(k) exp(−1
2u1/(1+k)), −1 < k ≤ 1, where c(k) =

Γ(1 + (k + 1)/2)21+(1+k)/2.

4. APPLICATIONS

In this section, it is shown that the model discussed in the previous sections can give
good feedback to understand relations between variables in applied problems. The first
application considers the remission times (in months) of the bladder cancer patients. The
second application presented is based on certain features of the trees in a forestry area, and
the last applications is a censured data.
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4.1. Application I

We consider an uncensored data set corresponding to remission times (in months) of a
random sample of 128 bladder cancer patients. These data were previously studied by Lee
and Wang ([17]). Bladder cancer is a disease in which abnormal cells multiply without control
in the bladder. The most common type of bladder cancer recapitulates the normal histology
of the urothelium and is known as transitional cell carcinoma.

Descriptive statistics results are summarized in Table 1, where
√

b1 and b2 are sample
asymmetry and sample kurtosis coefficients, respectively. There is indication of high kurtosis
in this data set, which suggest that PSNBS model can be more appropriate than BS model.
ML estimators were computed by maximizing log-likelihood using function“optim” in R Core
Team ([28]). Table 2 shows the fitting of the BS, SNBS, PNBS and PSNBS models (standard
error are in parenthesis). To compare the fitting of these models, we use Akaike ([1]) criterion,
namely

AIC = −2`(·; t) + 2k,

we consider also the AICC (corrected Akaike information criterion), namely

AICC = AIC +
2k(k + 1)

n− (k + 1)
,

where k is the number of parameters in the model. According to this criterion the model
that best fits the data is the one with the lowest AIC or AICC. We also apply the formal
goodness-of-fit tests in order to verify which distribution fits better to these data. We consider
the Cramér-von Mises (W ∗), Anderson-Darling (A∗) statistics, Kolmolgorov- Smirnov(K-S)
test statistics and p-value. The statistics W ∗ and A∗ are described in detail in Chen and
Balakrishnan ([6]). In general, the smaller the values of the statistics W ∗ and A∗, the better
the fit to the data.

Table 1: Descriptive statistics for the data
set.

n t s2
√

b1 b2

128 4.1293 9.3660 3.2480 15.1950

Table 2: ML estimates for BS, PNBS, SNBS and PSNBS models.

Parameters γ β α λ

BS 1.3740(0.0862) 4.5711(0.4461) − −
PNBS 3.2915(0.2856) 0.4227(0.6321) 5.1830(0.2051) −
SNBS 2.3350(0.4131) 1.3566(0.3849) − 1.9050(1.1294)

PSNBS 5.3315(3.0351) 0.1764(0.2060) 2.3024(0.4235) 2.5762(3.7211)



654 G. Mart́ınez-Flórez, H. Bolfarine, Y.M. Gómez and H.W. Gómez

The values of these statistics for all models are given in Table 3. As expected, the
values of AIC, AICC, W ∗, A∗, K-S and p-value indicates better fit for the PSNBS model over
the SNBS, PNBS and BS models. Figure 7 shows graphs for PSNBS model (a) empirical
cdf (b) histogram and Figure 8 (a) and (b) shows the qq-plot for the models with better fit.

Table 3: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times of
bladder cancer data for BS, PNBS, SNBS and PSNBS models.

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 430.0420 864.0836 864.1898 0.4136 2.5615 0.1689 0.0013
PNBS 413.0645 832.1290 832.3433 0.1196 0.7219 0.0694 0.5680
SNBS 418.8570 843.7140 843.9283 0.1667 1.0930 0.1214 0.0459

PSNBS 411.8310 831.6620 832.0224 0.0829 0.5073 0.0623 0.7037
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Figure 7: Graphs for PSNBS model (a) empirical cdf (b) histogram.
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Figure 8: (a) qq-plot PNBS and (b) qq-plot PSNBS.
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Note that the PSNBS model provides better fit to the data set analyzed. Therefore, the
PSNBS model fits better than the other models, although it has one more parameter.

4.2. Application II

A major problem with forest areas is tree mortality due to various factors that can be
seen as caused by stress through a phenomenon similar to material fatigue. In this context,
two problems of great interest are tree mortality and the distribution of the diameter at the
breast height (DBH). It has been observed that the BS distribution has a failure rate that
can capture such features. As seen above, the ordinary BS is a particular case of the PSEBS
distribution, so that the PSEBS is more flexible to explain skewness and kurtosis excess.
Thus, we apply this distribution to explain the behavior of the variable DHB (in cm) in
explaining forest mortality of Gray Birch (Betula populifolia Marshall) of a perennial with an
average height of ten meters. The data basis consists of 160 trees and are available in Leiva
et al. ([19]). Descriptive statistics results are summarized in Table 4. There is indication of
high kurtosis in this data set, that suggest a more flexible model than the BS model, such as
the PSTBS model. For this reason we implement the BS, BST, STBS and PSTBS models.

Table 4: Descriptive statistics for the data set.

n t s2
√

b1 b2

160 14.5387 13.0510 2.8893 13.9716

Table 5 reports the estimates of the degrees of freedom, ν, for each model based on
the tν distribution, which are obtained by maximizing the profile log-likelihood function. ML
estimates (standard errors in parenthesis) are presented in Table 6.

Table 5: Estimation of ν for the BST, STBS and PSTBS models by
maximizing the log-likelihood function.

Log-likelihood Log-likelihood Log-likelihood

ν BST STBS PSTBS

1 -406.4265 -402.8126 -390.2868
2 -392.7834 -387.5216 -383.0684
3 -389.9824 -383.4061 -381.0513
4 −389.4381 -381.8612 -380.0609
5 -389.5679 -381.1933 -379.6883
6 -389.9238 -380.8925 -379.4448
7 -390.3497 -380.8505 -379.4001
8 -390.7852 −380.7285 -379.0779
9 -391.2060 -381.0066 −378.8113
10 -391.6025 -383.8818 -379.3470
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Table 6: ML estimates for BS, BST (ν = 4), STBS (ν = 8) and PSTBS
(ν = 9) models.

γ β α λ

BS 0.2083(0.0116) 14.2302(0.2331) − −
BST 0.151(0.074) 13.818(0.014) − −
STBS 0.2653(0.103) 11.346(0.025) − 3.325(1.174)

PSTBS 0.2796(0.1135) 9.8844(0.1244) 2.3178(0.9654) 7.7185(11.4417)

According to the AIC and AICC criteria, W ∗, A∗, K-S and p-value indicates better fit
for the PSNBS model over the other models. See Table 7.

Table 7: AIC, AICC, W ∗, A∗, K-S and p-value for the remission times
of Gray birch data for BS, BST4, STBS8 and PSTBS9 models.

`(θ) AIC AICC W ∗ A∗ K-S P-value

BS 399.7764 803.5528 803.6590 0.4396 2.7084 0.1066 0.0526
BST 389.4381 782.8762 782.9526 0.16602 1.1472 0.0707 0.4004
STBS 380.7285 767.4569 767.6108 0.04515 0.3166 0.0535 0.7506

PSTBS 378.8113 764.355 764.6131 0.040 0.2966 0.047 0.8614

Figure 9 shows graphs for PSTBS9 model (a) empirical cdf (b) histogram and Figure 10
(a) and (b) shows the qq-plot for the models with better fit.
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Figure 9: Graphs for PSTBS9 model (a) empirical cdf and (b) histogram.
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Figure 10: (a) qq-plot STBS8 and (b) qq-plot PSTBS9.

4.3. Application III (censored data)

The World Health Organization recommends breastfeeding exclusive for babies until 4
and 6 months. For this reason, an study from Universidade Federal de Minas Gerais UFMG
main breastfeeding practice, as well as the possible factors of risk for an early weaning. The
study consists of 150 mothers with children under 2 years of age. The response variable was
the maximum time of breastfeeding, i.e., the time counted from birth to the weaning. More
details on this data set can be found in Colosimo and Giolo ([7]). The values of the ML
estimates for the BS, SNBS and PSNBS statistics for all models are given in Table 8. As
expected, the values of AIC better fit for the PSNBS over other models, and the Figure 11
we can see that most babies stop having exclusive breastfeeding after 7 or 8 months.

Table 8: ML estimates for BS, SNBS and PSNBS models and AIC criteria.

γ β α λ `(θ) AIC

BS 2.362 (0.268) 6.696(1.372) − − -243.545 491.090
SNBS 5.380(1.538) 0.591(0.277) − 4.015 (1.712) -230.047 466.094

PSNBS 6.441(2.794) 0.252(0.227) 1.489(0.299) 3.761(2.287) -228.357 464.715
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Figure 11: Estimated survival function for weaning study data under PSNBS model.

5. FINAL COMMENTS

This Paper proposes a flexible asymmetric BS distribution which contains previous
ones as special cases and is able to surpass traditional models in terms of wider ranges of
asymmetry and kurtosis. It is also shown that it is able to perform well in real applications,
outperforming potential rival models. Maximum likelihood estimation is implemented and
Fisher and observed information matrices are derived. It is shown that both are nonsingular.
Some more features of this family of distributions are:

• The PSEBS model contains, as special cases, the SEBS model proposed by Vilca-
Labra and Leiva-Sánchez ([30]) and the PEBS model proposed by Mart́ınez-Flórez
et al. ([22]).

• The proposed model it has a closed expression and presents more flexible asymmetry
and kurtosis coefficients than PEBS and SEBS models.

• Some properties of the BS distribution were extended for the PSEBS model.

• The moments of the PSEBS family are finite.

• In the three applications it is shown that the PSEBS model fit better than the other
models. This is confirmed by the different criteria used.
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The research of H.W. Gómez was supported by SEMILLERO UA-2020 (Chile). The
research of H. Bolfarine was supported by CNPq and Fapesp (Brasil). We also acknowledge
the valuable suggestions from the referees.

REFERENCES

[1] Akaike, H. (1974). A new look at statistical model identification, IEEE Transaction on
Automatic Control, 19, 716–723.

[2] Arellano-Valle, R.B. and Bolfarine, H. (1995). On some characterizations of the
t-distribution, Statistics & Probability Letters, 25, 79–85.

[3] Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian
Journal of Statistics, 12, 171–178.

[4] Barros, M.; Paula, G.A. and Leiva, V. (2008). A new class of survival regression models
with heavy-tailed errors: robustness and diagnostics, Lifetime Data Analysis, 14, 316–332.

[5] Cambanis, S.; Huang, S. and Simons, G. (1981). On the theory of elliptically contoured
distributions, J. Multivar. Anal., 11, 365–385.

[6] Chen, G. and Balakrishnan, N. (1995). A general purpose approximate goodness-of-fit
test, Journal of Quality Technology, 27, 154–161.

[7] Colosimo, E. and Giolo, S. (2006). Análise de sobrevivencia aplicada, ABE-Projeto Fisher.

[8] Cribari-Neto, E. and Branco, M. (2003). Bayesian reference analysis for binomial cali-
bration problem, RT MAE 2003-12: IME-USP.
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