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Abstract:

• We present a new dependence condition for time series and extend the extremal types
theorem.

The dependence structure of a stationary sequence is described by a sequence of
extremal functions. Under a stability condition for the sequence of extremal functions,
we obtain the asymptotic distribution of the sample maximum.

As a corollary, we derive a surprisingly simple method for computing the extremal
index through a limit of a sequence of extremal coefficients.

The results may be used to determine the asymptotic distribution of extreme values
from stationary time series based on copulas. We illustrate it with the study of
the extremal behaviour of d th-order stationary Markov chains in discrete time with
continuous state space. For such sequences we present a way to compute the extremal
index from the upper extreme value limit for its joint distribution of d+1 consecutive
variables.
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1. INTRODUCTION

Let X = {Xn}n≥1 be a stationary sequence with common distribution func-
tion F in the domain of attraction of an extreme value distribution G. Therefore
there exist real sequences a = {an > 0}n≥1 and b = {bn}n≥1 such that

Fn
(

un(x)
)

−−−→
n→∞

G(x) , x ∈ R ,

where un(x) = anx + bn.

Let {εX
n (.)}n≥1 be the sequence of functions satisfying

P
(

X1≤ y, ..., Xn≤ y
)

= F εXn (y)(y) , y ∈ (αF , ωF ), n ≥ 1 ,

where αF and ωF denote the left and right end points of F .

This sequence of extremal functions {εX
n (.)}n≥1 associated to X is inspired

by the extremal coefficients considered in Buishand (1984), Tiago de Oliveira
(1989) and Smith (1990), among others, to model the dependence of marginals
of a multivariate extreme value distribution.

Here we will consider a stability condition for this sequence of extremal
functions in order to obtain limiting results for the distribution of maxima
Mn = max{X1, ..., Xn} and the existence of the extremal index of X.

We first point out some properties of εX
n (.) coming directly from the defi-

nition.

The Fréchet bounds for Fn(y) = P (X1≤ y, ..., Xn≤ y), given by the
inequalities max

{

0, nF (y)−(n−1)
}

≤ Fn(y) ≤ F (y), enables the conclusion
that εX

n (y) ≥ 1, y ∈ R.

In particular, if X has a positive dependence structure (Joe (1997)) then

F εXn (y)(y) ≥ Fn(y) ,

and it would follow that εX
n (y) ≤ n, y ∈ R.

Finally, if (X1, ..., Xn) has a multivariate extreme value distribution then
the stability equation for its dependence function DFn

(Deheuvels (1978), Hsing
(1989)),

Dt
Fn

(y1, ..., yn) = DFn
(yt

1, ..., y
t
n) ,

t > 0, y1, ..., yn ∈ [0, 1], leads to εX
n (y) = εX

n , y ∈ R. Moreover, this constant
εX
n ∈ [1, n] takes the extreme values 1 or n if and only if Fn has perfect posi-

tive dependence or independent marginals, respectively.
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In this paper we will only assume that the sequences
{

εX
n (un(x))

}

n≥1
, x∈R,

satisfy a stability condition introduced in section 2. Such condition is sufficient
to conclude that if Fn(un(x)) converges to a non degenerate distribution G∗ then
G∗ is in the class of max-stable distributions.

Moreover, we recall the definition of extremal index θ and prove that it
can be computed from the limit of εX

n (uτ0
n )/n, for some τ0 > 0, where {uτ

n}n≥1

denotes a real sequence such that n(1−F (uτ
n)) −−−→

n→∞
τ > 0.

In section 3 we apply the results to Markov chains in discrete time with con-
tinuous state space. After the calculation of the extremal index of a Markov chain
of order 1 based on a given bivariate dependence (copula) function, we demon-
strate a sufficient condition for the existence of extremal index of a d th-order
Markov chain and compute its value. For such sequences, when the distribution
of d+1 consecutive variables is in the domain of attraction of a (d+1)-multivariate
extreme distribution Hd+1, it holds

θ = − lnDHd+1
(e−1, ..., e−1) + lnDHd

(e−1, ..., e−1) ,

where DHd+1
, DHd

denote the dependence functions of the multivariate distribu-
tion functions Hd+1, Hd, respectively, and

Hd(y1, ..., yd) = Hd+1(y1, ..., yd, +∞) .

The notation introduced in this paragraph will be used throughout the
paper.

2. STABLE EXTREMAL FUNCTIONS

We now introduce a stability condition for the sequence {εX
n (.)}n≥1 under

which we can, asymptotically, relate the dependence measure εX
n (.) for (X1, ..., Xn)

to the analogous measure εX

[n/k](.) for
(

X(i−1)[n/k]+1, ..., Xi[n/k]

)

, 1 ≤ i ≤ k.

Definition. The sequence {εX
n (.)}n≥1 is stable over the real sequence

{un}n≥1 if, for each k ≥ 1, it holds

∣

∣

∣
εX

n (un) − k εX

[n/k](un)
∣

∣

∣
−−−→
n→∞

εk ≥ 0 .(2.1)

We shall pursue the direction of this dependence condition and extend
the extremal types theorem (Leadbetter et al. (1983)). Although the dependence
between Xi and Xj does not necessarly fall off when |i− j| increases, as occurs in
the condition D(un) of Leadbetter (1974), the condition (2.1) is still appropriate
for the argument of extremes.



A New Dependence Condition for Time Series 147

Proposition 2.1. Let X = {Xn}n≥1 be a stationary sequence with com-

mon distribution function F and a = {an > 0}n≥1, b = {bn}n≥1 real sequences

such that Fn(un(x)) −−−→
n→∞

G(x), x ∈ R, where un(x) = anx + bn and G is a non

degenerate distribution function.

If Fn(un(x)) −−−→
n→∞

G∗(x), x ∈ R, for some non degenerate distribution G∗

and {εX
n (.)}n≥1 is stable over the real sequence {un(x)}n≥1, for all x ∈ R, then

G∗ is of extreme value type.

Proof: Since every max-stable distribution is of extreme value type, it is
sufficient to prove that there are real sequences {αn > 0}n≥1 and {βn}n≥1 such
that

Gn
∗ (αnx + βn) = G∗(x) , n ≥ 1 .(2.2)

We follow essentially the proof of Theorem 1.3.1 of Leadbetter et al. (1983):

if Fn(unk(x)) −−−→
n→∞

G
1/k
∗ (x), x ∈ R, k ≥ 1, then (2.2) holds. To obtain this last

convergence we note that Fnk(unk(x)) −−−→
n→∞

G∗(x) and

∣

∣

∣
Fnk

(

unk(x)
)

− F k
n

(

unk(x)
)

∣

∣

∣
=

=
∣

∣

∣
F εX

nk
(unk(x))

(

unk(x)
)

− F kεXn (unk(x))
(

unk(x)
)

∣

∣

∣

= F εX
nk

(unk(x))
(

unk(x)
)

∣

∣

∣
1 − F kεXn (unk(x))−εX

nk
(unk(x))

(

unk(x)
)

∣

∣

∣
= o(1) ,

by applying (2.1).

The proof points out that the convergence in (2.1) can be weakned. The
result holds for bounded sequences

∣

∣εX
n (un(x)) − k εX

[n/k](un(x))
∣

∣, x ∈ R, k ≥ 1.

As a corollary we provide a relation between the sequence of extremal
coefficients {εX

n (uτ
n)}n≥1 and the extremal index θ of X.

Specifically, X has extremal index θ (Leadbetter et al. (1983)) if, for each
τ >0, there exists {uτ

n}n≥1 such that lim
n→+∞

n(1−F (uτ
n))=τ and lim

n→+∞
Fn(uτ

n)=e−θτ.

If θ exists then is given by

θ =
ln lim

n→+∞
Fn(uτ

n)

ln lim
n→+∞

Fn(uτ
n)

.

Proposition 2.2. Let X be a stationary sequence with common distri-

bution function F such that, for each τ > 0, there exists {uτ
n}n≥1 satisfying

n(1−F (uτ
n)) −−−→

n→∞
τ > 0. If, for each τ > 0, {εX

n (.)}n≥1 is stable over {uτ
n}n≥1

then:

(i) there are constants θ′ and θ′′ satisfying lim infn→+∞ Fn(uτ
n) = e−θ′τ and

lim supn→+∞ Fn(uτ
n) = e−θ′′τ , for all τ > 0;
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(ii) the convergence of {Fn(uτ0
n )}n≥1, for some τ0 > 0, implies θ′ = θ′′ and

limn→+∞ Fn(uτ
n) = e−θτ , for all τ > 0.

We omit the proof since it follows the same discussion used in Theorem 3.7.1
of Leadbetter et al. (1983) from the result

∣

∣

∣
Fn(uτ

n) − F k
[n/k](u

τ
n)

∣

∣

∣
= o(1) .

Since limn→+∞ Fn(uτ
n) = limn→+∞ F εXn (uτ

n)(uτ
n) and limn→+∞ Fn(uτ

n) = e−τ

the second statement of the above result can be rewritten as follows.

Corollary 2.1. Let X be a stationary sequence with common distribu-

tion function F such that, for each τ > 0, there exists {uτ
n}n≥1 satisfying

n(1−F (uτ
n)) −−−→

n→∞
τ > 0.

If, for each τ > 0, {εX
n (.)}n≥1 is stable over {uτ

n}n≥1 then X has extremal

index θ if and only if θ = limn→+∞
εXn (u

τ0
n )

n , for some τ0 > 0.

This surprisingly simple result presents a new method for computing the
extremal index, through a limit of a sequence of extremal coefficients, and relates
the extremal index with the dependence structure of X.

3. CALCULATING THE EXTREMAL INDEX OF MARKOV

CHAINS

The stationary Markov chains are important both from the applied and
theoretical points of view and a sizeable literature on its extremal behaviour is
available. There are stationary Markov sequences for which the condition D(uτ

n)
fails and, in general, it is not easy to show directly from the functional form of its
distributions that D(uτ

n) holds for each τ > 0. O’Brien (1987) and Rootzen (1988)
propose instead a general method by considering X as a measurable function of
a Harris chain.

Since
εX
n (uτ

n)

n
=

lnDFn

(

F (uτ
n), ..., F (uτ

n)
)

lnFn(uτ
n)

,

the above corollary seems to be suitable for the computation of θ in stationary
sequences constructed from a given dependence function and a univariate margin.

We will apply the previous results to Markov models which can be defined
from families of dependence functions. We start by illustrating the results with
a Markov chain of order 1.
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Example 3.1. Let X = {Xn}n≥1 be a stationary Markov chain of order 1
with common distribution function F such that, for each τ > 0, there exists
{uτ

n}n≥1 satisfying n(1−F (uτ
n)) −−−→

n→∞
τ > 0.

Suppose that the dependence function DF2
of (X1, X2) is defined (Kimeldorf

and Sampson (1975)) by

DF2
(u, v) = u + v − 1 +

(

(1−u)−1 + (1−v)−1 − 1
)−1

, u, v ∈ [0, 1] .

We get, for each τ > 0,

εX

n (uτ
n) =

lnDn−1
F2

(

F (uτ
n), F (uτ

n)
)

− lnFn−2(uτ
n)

lnF (uτ
n)

=
lnFn(uτ

n) − ln
(

1+F (uτ
n)

2

)n−1

lnF (uτ
n)

and, for each k ≥ 1,

lim
n→+∞

∣

∣

∣
εX

nk(u
τ
nk) − k εX

n (uτ
nk)

∣

∣

∣
= lim

n→+∞

(k−1) ln
(

1+F (uτ

nk
)

2

)

lnF (uτ
nk)

=
k − 1

2
.

Therefore, for each τ > 0, {εX
n (.)}n≥1 is stable over {uτ

n}n≥1 and

θ = lim
n→+∞

lnFn(uτ
n) − ln

(

1+F (uτ
n)

2

)n−1

lnFn(uτ
n)

=
1

2
.

The following result is a contribution to compute θ for the special cases
where the dependence struture of X is given. Smith (1992) and Perfekt (1994),
among others, present a technique for calculating the extremal index of Markov
chains under the assumption that a multivariate extreme limit distribution exists
for the joint distribution of sucessive variables and suitable conditions on the
transition probabilities.

We also assume here that the joint distribution of d+1 consecutive variables
is in the domain of attraction of some multivariate extreme value distribution
Hd+1 and prove that this is sufficient for the stability condition to hold and
compute θ from Hd+1.

Proposition 3.1. Let X be a d th order stationary Markov chain with the

joint distribution Fd+1 of d+1 sucessive variables in the domain of attraction of

a (d+1)-multivariate extreme value distribution Hd+1. Then:

(i) {εX
n (.)}n≥1 is stable over {uτ

n}n≥1, for each τ > 0;

(ii) X has extremal index θ = − lnDHd+1
(e−1, ..., e−1) + lnDHd

(e−1, ..., e−1).
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Proof: We first note that if Fd+1 is in the domain of attraction of an
extreme value distribution then the same holds for the common distribution F
of variables in X and for each τ >0 there exists {uτ

n}n≥1 satisfying n(1−F (uτ
n))

−−−→
n→∞

τ > 0.

It follows from the Markov property (Joe, 1997) that

lim
n→+∞

∣

∣

∣
εX

nk(u
τ
nk) − k εX

n (uτ
nk)

∣

∣

∣
=

= lim
n→+∞

∣

∣

∣

∣

∣

∣

lnD
(k−1)d
Fd+1

(

F (uτ
nk), ..., F (uτ

nk)
)

− lnD
(k−1)(d+1)
Fd

(

F (uτ
nk), ..., F (uτ

nk)
)

lnF (uτ
nk)

∣

∣

∣

∣

∣

∣

= lim
n→+∞

(k−1)

∣

∣

∣

∣

∣

d lnDnk
Fd+1

(

F (uτ
nk), ..., F (uτ

nk)
)

− (d+1) lnDnk
Fd

(

F (uτ
nk), ..., F (uτ

nk)
)

−τ

∣

∣

∣

∣

∣

.

Since
Dnk

Fd+1

(

F (uτ
nk), ..., F (uτ

nk)
)

= DF nk

d+1

(

Fnk(uτ
nk), ..., F

nk(uτ
nk)

)

converges to DHd+1
(e−τ , ..., e−τ ), we find

εk = (k−1)

∣

∣

∣

∣

d lnDHd+1
(e−τ , ..., e−τ ) − (d+1) lnDHd

(e−τ , ..., e−τ )

−τ

∣

∣

∣

∣

= (k−1)
(

−d lnDHd+1
(e−1, ..., e−1)

)

+ (d+1) lnDHd
(e−1, ..., e−1) .

Then, by applying the corollary 2.1, we get

θ = lim
n→+∞

lnDn−d
Fd+1

(

F (uτ
n), ..., F (uτ

n)
)

− lnDn−d−1
Fd

(

F (uτ
n), ..., F (uτ

n)
)

lnFn(uτ
n)

= lim
n→+∞

lnDF n

d+1

(

Fn(uτ
n), ..., Fn(uτ

n)
)

− lnDF n

d

(

Fn(uτ
n), ..., Fn(uτ

n)
)

−τ

= − lnDHd+1
(e−1, ..., e−1) + lnDHd

(e−1, ..., e−1) .

One can easily construct examples to illustrate the result. We note instead
that F2 in the previous example defined by

F2(x, y) = DF2

(

F (x), F (y)
)

= F (x) + F (y) − 1 +
(

(

1−F (x)
)−1

+
(

1−F (y)
)−1

− 1
)−1

,

x, y ∈ R, is in the domain of attraction of

H2(x, y) = DH2

(

G(x), G(y)
)

= G(x)G(y) exp
(

(

− lnG(x)
)−1

+
(

− lnG(y)
)−1

)−1
,

where G(x) = H2(x,+∞) = H2(+∞, x) (Joe (1997)).

Therefore, we can apply directly (ii) above and find θ=− lnDH2
(e−1, e−1)−1

= 3
2 − 1 = 1

2 .
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