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Abstract:

• Nunes et al. ([54]) provide an overview of mathematical models used to analyse epidemics and
techniques for conducting studies to obtain parameter estimates for such models. They discuss
the SEIR model which has been used in much coronavirus disease 2019 (COVID-19) analysis. Our
discussion presents a modelling framework based in time series analysis developed for the analysis
of infectious disease surveillance data, as well as our use of the framework in analysing COVID-19.
We believe many of the purposes of modelling infectious disease outlined by Nunes et al. ([54])
as well as the benefits of mathematical modelling highlighted can also be found in the statistical
modelling techniques we use in our work.

1. ENDEMIC-EPIDEMIC MODELLING FRAMEWORK

Multiple epidemic data sources provide valuable information on different aspects of
an infectious disease outbreak ([19]). Indeed, a recent simulation study by Colón-González
et al. [18] indicates that use of multiple data streams arising from such surveillance activi-
ties can be a useful approach to disease detection. However, it is pertinent that appropriate
statistical techniques be used in analysing such data sources to incorporate the associated
uncertainties to avoid introducing bias and artificial precision in estimates of disease out-
comes, impacts of disease control interventions, and real-time predictions ([9]). One such
statistical technique is the endemic-epidemic (EE) modelling framework. The EE framework
is a multivariate time series model created for analysis of infectious disease surveillance data
([30]). The simplest EE model is a spatio-temporal multivariate time-series model of disease
incidence from surveillance data. The model additively decomposes incidence into endemic
and epidemic components. The endemic component covers exogenous factors such as season-
ality, sociodemography, and population while the epidemic component is autoregressive and
is driven by previous case counts (“infectiousness”), i.e. the force of infection. We will discuss
this modelling approach and its applicability to the current COVID-19 setting.
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1.1. Applications

The EE framework has been applied to a multitude of infectious diseases classified
as various types, e.g. diseases with other reservoirs than just humans, vaccine-preventable
diseases, and vector-borne diseases, showcasing its versatility. See Table 1 for an overview
of diseases analysed using the method. COVID-19 and SFTS are both currently consid-
ered emerging infectious diseases, showcasing the EE framework’s flexibility and ability to
consider both novel and established diseases. Since its introduction, the EE framework has
been extended to cover many different aspects of disease modelling and statistical analysis
([58, 57, 33, 47, 32, 48, 62]). Recent extensions include the possibility to estimate the
serial interval distribution ([13]) and methodology to adjust for underreporting ([12]).

Table 1: Applications of the EE framework.

Disease Reference(s)

Endemic porcine diseases [3]

Leishmaniasis [1, 52]

Dengue [16, 75]

Invasive pneumococcal disease [17]

Campylobacteriosis [69]

Hand, foot and mouth disease [6]

Measles [30, 34, 50, 56]

Influenza [58, 46, 47, 62]

Norovirus [32, 31, 13]

Rotavirus [13, 12]

Pertussis [51]

Tuberculosis [76]

Meningococcal disease [58]

Severe fever with [71]
thrombocytopenia syndrome (SFTS)

Coronavirus disease 2019 (COVID-19) see next section

NB: A regularly updated table of use cases is maintained by Sebastian Meyer at

https://github.com/rforge/surveillance/blob/master/www/applications_EE.csv .

The EE framework is considered state-of-the-art and is often used used as a benchmark
model for comparison in infectious disease modelling and probabilistic forecasting ([7, 61, 64]).
In model construction using the EE framework, it is possible to incorporate dependencies such
as the spatial movements of a population under study; the effects of human movement can
be examined statistically using gravity models ([14]). Gravity models examine the flow from
one subpopulation to another taking into account locations on mobility networks rather than
geographical distance. Such models have been used to examine measles epidemics ([72, 38])
and influenza pandemics ([68]). This is but one example of where the EE framework works
well with other available modelling options. Finally, the EE framework is implemented in a
readily available software package ([50]), and its extensions are included in a wider ecosystem
of packages within the same software ([11, 49, 10]).

https://github.com/rforge/surveillance/blob/master/www/applications_EE.csv
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1.2. Comparison with mathematical modelling approaches

To provide further synergy with established methods, the EE framework can be mo-
tivated from the discrete-time SIR compartmental model ([36, 6, 67]) and can be adjusted
to include natural depletion of susceptibles ([66]) as well as to incorporate potential future
pharmaceutical countermeasures and vaccines ([34]). Co-occurrences and co-infections as well
as the existence of multi-strain pathogens provide added levels of complexity to disease trans-
mission. Specifically for multiple strains of a disease, Wakefield et al. [67] outline models that
can be used for outbreak detection in settings — including the EE framework. Additionally,
bivariate analysis of different diseases can be conducted, see e.g. the example of influenza
and meningococcal disease by Paul et al. [58]. For this reason we believe the EE framework
should conceivably be able to include 2020 influenza season in the northern hemisphere in
a model for COVID-19. This is a co-occurrence and co-infection scenario being raised by
policy makers as we enter the final months of 2020. We conceptualise one situation where full
synergy between mathematical and statistical modelling may not be possible: consider the
Anderson–May equation for calculating the basic reproductive rate of sexually transmitted
infections. Mathematically it might make sense to consider the interplay between the five or
so parameters but once we examine case count data, we may only really be able to estimate
one parameter in place of the five. If the effects are not inseparable, additional data may be
required to estimate them.

2. COVID-19 CASE STUDIES

We feel the EE framework is particularly well-suited to being adapted to examine
COVID-19. The EE framework was developed in surveillance situations of weekly case counts
of established diseases, both in terms of biology as well as available information capturing
infrastructure of their associated surveillance systems, meaning no new data gathering ap-
proaches were required. The EE framework offers increased flexibility and robustness com-
pared to more standard epidemic models which may need to be constructed on a disease-
by-disease basis. The framework allows us to incorporate available evidence at various levels
of detail and examine intervention measures and other explanatory variables, e.g. meteoro-
logical ([6]) with all unknown parameters being estimated with likelihood techniques from
the available data. Spatio-temporal spread can be captured by suitably parametrised power
laws ([47]) and gravity models ([72]), and long term predictions can be produced ([32]).
Importantly, the spatio-temporal formulation of the EE model can be extended to include
age-dependent contact information ([48]), which is often considered a proxy of transmission
events for respiratory disease such as COVID-19. The EE model has also been extended
to include higher order lags in the epidemic component, allowing for the inclusion of in-
fectiousness from the entire serial interval in the analysis of daily COVID-19 counts ([13]).
This allows us to consider data at a finer temporal resolution than weekly, and analyse the
near-real-time daily COVID-19 case information. We are aware that the EE framework has
been used in the epidemiologic and economic studies of COVID-19 listed in Table 2.
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Table 2: EE models focusing on COVID-19.

Author Area of focus

Dickson et al. [20] Italy

Giuliani et al. [28] Italy

Alipour et al. [4] Germany

Berlamann and Haustein [8] Germany

Fritz and Kauermann [23] Germany

Fronterre et al. [24] England

Ssentongo et al. [63] African continent

SUSPend Switzerland and surrounding

2.1. Introduction of the SUSPend project

We have been using EE modelling approaches in the SUSPend: Impact of Social dis-

tancing policies and Underreporting on the SPatio-temporal spread of COVID-19 project.
This project is funded by the Swiss national science foundation’s emergency support for
research into coronaviruses as project number 196247. A description of the project can
be found at https://data.snf.ch/covid-19/snsf/196247. Within the SUSPend project we
are working on two subprojects, both concern the introduction of time-varying transmission
weights in the model. The first subproject incorporates a contact matrix which changes
over time. In particular, we are considering a synthetic contact matrix for Switzerland
([25]). The benefit to using the synthetic contact matrix for Switzerland rather than the
single empirical one which exists ([35]) is that the sampling approach for the synthetic
matrix is well-designed and the sample size is sufficiently large. The Swiss contact ma-
trix considers contacts in various settings and we have adjusted these to reflect social dis-
tancing measures put in place, similar to other approaches seen in COVID-19 modelling
([70, 60, 55, 21]). The obvious alternative to adjusting contact matrices would be to consider
instead contact surveys conducted during the COVID-19 outbreak as part of the EpiPose
project (https://cordis.europa.eu/project/id/101003688), whose contact survey work has
recently expanded to cover additional countries, including Switzerland [personal communica-
tion]. Such information has mainly been gathered in the United Kingdom, an island nation in
northern Europe, which may be very different to landlocked Switzerland. Additional contact
surveys conducted during the 2020 COVID-19 outbreak have been done by Feehan and Mah-
mud [22] in a north American setting and Latsuzbaia et al. [45] in a central European setting,
indicating there is an increasing awareness that understanding the evolution of contacts es-
tablished during an ongoing outbreak is useful for informing future outbreak modelling efforts.

The second subproject we are working on uses time-varying adjacency matrices and
focuses on spatial spread of COVID-19. We create time-varying adjacency matrices for the
seven Swiss NUTS-2 regions and their immediate neighbouring regions. These matrices are
adjusted from baseline adjacencies based on mobility data gathered from smartphone users
available at subregional level. Such mobility data has been used in studies of COVID-19 in
multiple countries, including: China ([63, 44, 42, 27, 2]), Taiwan ([15]), Japan ([43]), Italy

https://data.snf.ch/covid-19/snsf/196247
https://cordis.europa.eu/project/id/101003688
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([59, 26]), France ([26]), the United Kingdom ([39, 5, 26]), the United States of America
([65, 40, 37, 74, 41]), and Brazil, Chile, Bolivia, Colombia, and Peru ([74]). Our first project
concerns the first half of 2020 while the timescale considered in the second project is longer.
The EE framework is suitably flexible to allow us to incorporate additional information as it
is found to be important. Thus, considerations nested in both policy making and biological
can be included in the model as they are identified.

An issue common to the COVID-19 pandemic, and thus both of our subprojects, is the
presence of underreporting and reporting delays in case data ([53]). Simple multiplication
factors can be applied to address the former. However, such multiplication factors need to be
time-dependent to incorporate increased testing capacities and changes in testing strategies
observed in some countries. Multiplication factors may also vary across age groups, which is
particularly relevant for the subproject with time-varying contact matrices as this has an age
focus. The usefulness of incorporating delays in disease surveillance models has been shown
([12]). Nowcasting allows us to predict the true number of case counts based on available data
and can be used to address reporting delays. Within compartmental modelling, nowcasting
is often referred to as “real-time modelling”. Nowcasting requires information both on test
and reporting date on an individual basis. Unfortunately such information is rarely available
in surveillance systems.
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[18] Colón-González, F.J.; Lake, I.R.; Morbey, R.A.; Elliot, A.J.; Pebody, R. and
Smith, G.E. (2018). A methodological framework for the evaluation of syndromic surveillance
systems: a case study of England, BMC Public Health, 18, 544.

[19] De Angelis, D. and Presanis, A.M. (2020). Analysing multiple epidemic data sources.
In “Handbook of Infectious Disease Data Analysis” (L. Held, N. Hens, P.D. O’Neill, and
J.Wallinga, Eds.), Chapman & Hall/CRC Handbooks of Modern Statistical Methods, 477–508.

[20] Dickson, M.M.; Espa, G.; Giuliani, D.; Santi, F. and Savadori, L. (2020). Assessing
the effect of containment measures on the spatio-temporal dynamic of COVID-19 in Italy,
Nonlinear Dyn., https://doi.org/10.1007/s11071-020-05853-7 .

https://hal.archives-ouvertes.fr/hal-02899654
https://www.cesifo.org/DocDL/cesifo1_wp8446.pdf
https://github.com/jbracher/hhh4underreporting
https://github.com/jbracher/hhh4addon
https://doi.org/10.1111/biom.13371
https://doi.org/10.1016/j.ijforecast.2020.07.002
https://doi.org/10.1101/2020.04.07.20053439
https://doi.org/10.1007/s11071-020-05853-7


Endemic-Epidemic Framework Used in COVID-19 Modelling 571

[21] Di Domenico, L.; Pullano, G.; Sabbatini, C.E.; Boëlle, P.-Y. and Colizza, V.
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