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Abstract:

• The simultaneous equation models (SEMs) are one of the standard statistical tools for analyzing
multivariate regression when the errors are correlated with some covariates. A particular version
of the SEMs is the Seemingly Unrelated Regression (SUR) models which consist of several re-
gression equations with errors being correlated across the equations. There are many occasions
in which the normality assumption for the error term might not hold in these models. Although
transforming the error to comply with the normal density is a solution, the interpretation of the esti-
mators for the parameters and the associated model might not be straightforward. However, taking
into account the skew-normal distribution for the error might, sometimes, be a good alternative.
In this paper such scenario is considered as well as a Bayesian framework to estimate the param-
eters, with a brief review of frequentist methodology. The full conditional posterior densities are
derived and relevant statistical inferences are provided. A simulation study is conducted to eval-
uate the performance of the proposed method. Also, the utilized model is applied to fit relevant
equations on Iran gross and income data collected in the year 2009.
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1. INTRODUCTION

There are many examples in which a single equation can represent a causal relationship
among variables. However, there is a case in which individual expression may not cover the
desired effect or produce estimates with weak statistical properties. There are examples from
many scientific fields such as econometrics where single equations are not enough. In such
cases, Simultaneous Equations Models (SEMs) can appropriately represent a joint relationship
among variables. The interested readers can, for example, consult [19] for more details on
this topic.

Regarding the assumptions of the general structure of any linear model, the predictors
are not only fixed but also independent of the error term in the model. However, there are
numerous real-life examples in which some of the covariates in a model are correlated with
the error term. According to [30] and [11], such variables are called endogenous.

One of the particular cases of SEMs is SUR models, first proposed by [31]. He also
explained the procedures to estimate the parameters of these models using the generalized
least square method. Amazingly, the literature on treating such models from the frequentist
point of view is scarce. For instance, the well known maximum likelihood method of esti-
mation for the parameters of the SUR was only tackled by [13]. However, the popularity of
Bayesian approach was more than expected. To name some, we can refer to [28], [21], [29]
and [12]. Historically, Bayesian statistical inference on the SUR model was first proposed by
[32]. Also, Bayesian moment and direct Monte Carlo method were followed by [33]. Most
literature shows that popular MCMC sampling technique was the central theme of study to
treat the SUR model . The references include [24], [10], and [27]. Also, [35] proposed the
implementation of hierarchical Bayes approach in this model using direct Monte Carlo and
importance sampling techniques. Recently, [26] studied the topic of variable selection in the
SUR models.

Another important aspect of the SUR models refers to a way one considers a distribution
for the error term. It is quite common to choose it as normal. But, there are numerous
examples in which the empirical density of response is often asymmetric in practice. One
of the procedures to overcome this problem is to utilize some transformations. It might
induce relatively normal distribution for the transformed response. However, this strategy
has some drawbacks. First, the estimators are usually bias. Secondly, there is lack of proper
interpretation for the estimators of the parameters based on the transformed response. Using
some asymmetric distributions, which not only possess the same properties as the normal
distribution but also can overcome the deficiencies mentioned above, has recently received
considerable attention in the literature. The skew-normal density, initially proposed by [3],
is one of the well-known distributions to tackle the asymmetric feature of the data. [5] have
also discovered the properties of the multivariate skew normal distribution. Later on, [4]
studied further features of this density. [7], [17], [18] and [2], among others, provided several
generalizations of this distribution. Recently, [6] investigated some other properties of the
skew-symmetric distribution.

Most of the research conducted to estimate parameters of a SUR is focused on the case
in which the distribution of the variable under investigation is normal. Instead, in this paper
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we consider the skew-normal distribution for the errors in the SUR and propose procedures
to estimate the parameters using the Bayesian methodology. We also conduct some intensive
simulation studies to evaluate the methods suggested in this article. Moreover, we show an
application of the model in this paper on real-life data.

To present our results, we organized the paper as follows. First, a brief review of the
Seemingly Unrelated Regression (SUR) and a Bayesian approach to treating the SUR model
with normal distribution for the errors are presented in Section 2. Then, a Bayesian approach
to treating the SUR model with skew-normal distribution for the errors is given in Section 3.
The simulation study for evaluating the proposed models and the analyses of real-life data,
related to the gross and income in the year 2009 in Iran, for illustration purpose, are presented
in Sections 4 and 5. General conclusions are provided at the end. The proofs for some
theoretical results are sketched in Appendix.

2. BAYESIAN INFERENCE ON PARAMETERS OF A SUR MODEL WITH
ERROR DISTRIBUTED AS NORMAL

Econometric analysis of the linear models are usually classified into two scenarios which
identify based on the numbers of the equations used to express the relationship among the
variables. In the single equation methodology, a dependent variable is typically modeled as a
function of one or more covariates. In many situations, such single equation may not cover the
desired effect or may even produce estimates with poor statistical properties. The methods
of SUR model have been proposed to eliminate the shortcomings obstacles involved in the
former methodology. Statistical inference based on the normal response in this model is the
object of the current section.

Let assume we aim to estimate the parameters of a SUR model. This objective can
commonly be achieved via many parametric and nonparametric estimating procedures based
on the frequentist inference including OLS1, IOLS2, FGLS3, IGLS4 and ML5. See, for ex-
ample, [28] for more details on this topic. However, there are some problems to implement
the ML method of estimation in a SUR model. First, there are not usually some explicit
expressions for the estimators of the parameters. This fact leads, in turn, to a high cost of
analytical computations to solve corresponding normal equations. Secondly, if there is any
initial subjective information about the parameters it cannot be directly utilized in the fre-
quentist inference methodology. To overcome these two problems, one can follow a Bayesian
approach instead. This section describes the procedure to perform such inference along with
general notations used throughout the current paper.

Suppose there are g equations with g endogenous variables associating with y1, y2, ..., yg.
Specifically, for i = 1, 2, ..., g, suppose X(i) is an n× ki matrix of explanatory variables and
β(i) is a ki-vector of parameters. Then, the i-th equation of a linear simultaneous system can

1Ordinary Least Square
2Iterative Ordinary Least Square
3Feasible Generalized Least Squares
4Iterative Generalized Least Squares
5Maximum Likelihood
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be written as

yti =
ki∑

l=1

x
(i)
tl β

(i)
l + uti = X

(i)
t• β

(i)
t• + uti, t = 1, 2, ..., n,(2.1)

where

X
(i)
t• = (xt1, xt2, ..., xtki

),

β
(i)
t• = (β(i)

1 , β
(i)
2 , ..., β

(i)
ki

)T,

and

E(uti) = 0, Var(uti) = σii,

Cov(uti, utj) = σij , i, j = 1, 2, ..., g, t = 1, 2, ..., n.(2.2)

Let us define, for fixed t, the g-vectors yt• and ut• consist of the yti’s and the uti’s, respectively,
for i = 1, ..., g. Accordingly, the k-vector β• is formed by stacking the β

(i)
t• vertically. The

matrix of Xt• is of dimension g× k and is defined to be a block-diagonal matrix with diagonal
blocks X

(i)
t• also for fixed t, k =

∑g
i=1 ki. Precisely, our new notations can be summarized as

follows:

yt• =


yt1

yt2
...

ytg


g×1

, ut• =


ut1

ut2
...

utg


g×1

, β• =


β

(1)
t•

β
(2)
t•
...

β
(g)
t•


k×1

,

Xt• =


X

(1)
t• 0 ... 0
0 X

(2)
t• ... 0

...
...

. . .
...

0 0 ... X
(g)
t•


g×k

.(2.3)

Hence, the linear simultaneous system (2.1) is rewritten as follows

yt• = Xt•β• + ut•, t = 1, 2, ..., n.(2.4)

Based on the assumption for the first two moments of u’s, let us consider the normal distri-
bution for them. Then, following the new notations, ut• ∼ N(0g,Σ) where

Σ =


σ11 σ12 ... σ1g

σ21 σ22 ... σ2g
...

...
. . .

...
σg1 σg2 ... σgg

 .(2.5)

Now, recalling the expression (2.4) and distribution ut•, the likelihood function for the pa-
rameters (β•,Σ), provide the data including those available in y• and X•, represented by D,

leads to

L
(
(β•,Σ)|D

)
=

1
(2π)ng/2|Σ|n/2

exp
{
− 1

2
tr

(
V Σ−1

)}
,(2.6)

where ‘tr’ denotes the trace of matrix and V is a g × g matrix given by

V =
n∑

t=1

(yt• −Xt•β•)(yt• −Xt•β•)T.
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Now, suppose one prefers to follow a Bayesian methodology to estimate the parameters of
the SUR model (2.4). As is common, one first should determine priors for the parameters.
Both the noninformative and informative priors can be used here. Let us assume a uniform
prior for β• and Jeffreys prior for Σ, independent of each other [20]. Then, we have our joint
prior, say π1 ( . ), as

π1(β•,Σ) = π(β•)π(Σ) ∝ |Σ|−
g+1
2 .(2.7)

The joint posterior density function is then given by Bayes’ theorem, i.e.

π(β•,Σ|D) ∝ |Σ|−(n+g+1)/2 exp
[
− 1

2
tr{V Σ−1}

]
.(2.8)

Now, it is straightforward to compute the full conditional posterior distribution π(β•|Σ, D)
and π(Σ|β•, D). They are given by

β•|(Σ, D) ∼ N(β̂•, Σ̂β•)

Σ|(β•, D) ∼ IW (V, n),(2.9)

where

β̂• = Σ̂β•

( n∑
t=1

XT
t•Σ

−1yt•
)
,

Σ̂β• =
[ n∑

t=1

XT
t•Σ

−1Xt•
]−1

,(2.10)

and IW (·, ·) denotes the inverse Wishart distribution. As seen, both full conditional posterior
distributions have closed forms. Hence, the standard SUR model is also amenable to a 2-block
Gibbs sampling formulation. See, for example, [34], for more details.

In some circumstances, one might prefer an informative prior for the parameters β•. In
such case, it is common to consider the normal density. Precisely, let assume β• ∼ N(β◦, A−1

β•
).

Further, suppose the same prior as before has been considered for Σ, i.e. π
(
Σ

)
∝

∣∣Σ∣∣− g+1
2 ,

independently from β•. Then, the joint posterior distribution has a closed form in this case
as well. However, the conditional posterior distributions have relatively different structures.
In particular, it can be shown that

β•|(Σ, D) ∼ N(β•,Σβ•),

Σ|(β•, D) ∼ IW (V, n),(2.11)

where

β• = Σβ•

[( n∑
t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
]
,

Σβ• =
[( n∑

t=1

XT
t•Σ

−1yt•
)

+ Aβ•

]−1
.(2.12)

So far, the full conditional posterior distributions were derived using the assumption of the
normal distribution of the errors. In the next section, we assume that the error term fol-
lows the skew-normal distribution and compute the posterior density and full conditional
distributions.
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It worths to mention here that one of the possible procedure to draw samples from
the posterior density of the parameters is to follow an MCMC algorithm. Particularly, if
the full conditional distributions of relevant parameters are available in closed forms a Gibbs
sampling algorithm could be employed to draw samples from corresponding densities. The
literature shows that such view to the SUR models [32], [25], [8], [29] and [24] has already
investigated this topic.

3. BAYESIAN INFERENCE ON SUR MODELS USING THE SKEW-
NORMAL DENSITY FOR ERROR

To consider a normal density for the distribution of the error while utilizing a SUR
model is a standard procedure to make statistical inference. However, this assumption might
not hold in some real-life example and so corresponding statistical inferences might not lead
to feasible results. Instead, to use skew-normal distribution for the density of error is an
alternative option. Having said that, to recall ML method of estimation is then one of the
conventional parametric statistical inference methods to consider. However, similar to the
situation mentioned in the case of considering the normal distribution for error (see initial
discussions in Section 2), there are some problems to implement this method as well. Hence,
we outline the Bayesian statistical inference on the parameters of a SUR model with the error
comes from skew-normal in this section. Moreover, some important statistical features of this
strategy are also highlighted.

To start, let us first briefly review the properties of a SUR model under assumption of
an skew-normal density for the error in the model (2.4). Specifically, let write

ut• =
(
ut1, ..., utg

)T ∼ SN
(
0g, Σ, λ

)
, t = 1, ..., n.(3.1)

Following [3], the distribution of ut•, for t = 1, ..., n, is given by

fUt•

(
ut•

)
= 2φg

(
ut•; 0g, Σ

)
Φg

(
λTω−1ut•

)
,(3.2)

where φg(ut•; 0,Σ) is the g-dimensional normal density with zero mean vector and covariance
matrix Σ, Φg(·) is the cumulative distribution function of the standard normal density, and λ

is a g-dimensional vector with constant values. Here, ω is a diagonal matrix whose components
are the square root of the corresponding covariance matrix Σ. Now, we can write down either
the likelihood function of the parameters or its logarithm. We prefer the later one, denoted
here by l(λ, β•,Σ), which is given by

l(λ, β•,Σ) = n log 2− ng

2
log(2π)− n

2
log |Σ|

− 1
2

n∑
t=1

[
(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)

]
+

n∑
t=1

log Φ1

(
λTω−1ut•

)
.(3.3)

If one is going to estimate the parameters directly using (3.3), there exist some problems.
The main drawbacks are lack of convergence in employing any likelihood-based numerical
algorithm such pseudo-Newton and the high cost of computations. To circumvent these issues,
we propose to follow the Bayesian methodology instead.
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Here, an integral part of specifying a Bayesian paradigm is the selection of some prior
distributions for all unknown parameters, i.e., θ = (β•,Σ, λ). In the absence of prior infor-
mation and to guarantee to have feasible properties for the posterior, we adopt proper but
diffuse priors. Suppose elements of θ are independent a priori, and the following priors have
been considered

β• ∼ N
(
β◦,Σβ◦

)
, π(Σ) ∝ |Σ|−

g+1
2 ,

λ ∼ N
(
λ0,Λ0

)
, z0 ∼ N

(
0g, Ig

)
.(3.4)

Then, the join posterior of all parameters is given by

π(β•,Σ, λ|y) ∝ φk

(
β•;β◦,Σβ◦

)
× φg

(
λ;λ0,Λ0

)
× |Σ|−

g+1
2

× 2n
n∏

t=1

φg

(
yt•;Xt•β•,Σ

)
Φ1(λTω−1(yt• −Xt•β•)).(3.5)

As seen, this expression doesn’t have a closed form, so we can not compute the join posterior
analytically. To turn around this problem, we use the stochastic representation of the skew-
normal distribution (see [1]), i.e. yt• = λ� |z0|+ z1 where � denotes Hadamard product,
z0 ∼ N

(
0g, Ig

)
, z1 ∼ N

(
X•tβ•,Σ

)
. Moreover, it is assumed that z0 and z1 are independent.

Then, it is expected that we could drive the full conditional distributions for each parameters.
Below, we provide them in turn. More details on computing those expressions are given in
Appendix. Note that we write the full conditional distribution in an deliberator order. The
reason to do so is when one is going to update samples from corresponding densities for each
parameter in an MCMC sampling algorithm the same order should be followed.

First, we have
β•|

(
Σ, λ, |z0|, D

)
∼ N

(
β̃•, Σ̃β•

)
,

where β̃• = Σ̃β•

(∑n
t=1 XT

t•Σ
−1yt• +Σ−1

β◦
β◦−

∑n
t=1 XT

t•Σ
−1Λ|z0|

)
and Σ̃β• =

(∑n
t=1 XT

t•Σ
−1Xt•

+ Σ−1
β◦

)−1
.

Secondly, we have

Σ|
(
β•, λ, |z0|, D

)
∼ IW (R,n),(3.6)

where R =
∑n

t=1

(
yt• − [λ� |z0|+ Xt•β•]

)(
yt• − [λ� |z0|+ Xt•β•]

)T.

Next, the full conditional distributions of λ is given by

λ|
(
β•,Σ, |z0|, D

)
∼ N

(
λ̃, Λ̃

)
,(3.7)

where Λ̃ =
(
nZ∗

0Σ−1Z∗
0 +Λ−1

0

)−1, λ̃ = Λ̃(
∑n

t=1 Z∗
0Σ−1yt•−

∑n
t=1 Z∗

0Σ−1Xt•β• +Λ−1
0 λ0), and

Z∗
0 is an g × g diagonal matrix whose components are filled with elements of vector |z0|.

Finally, at the last step, the density of |z0| should be derived. It is straightforward to
show that

|z0|
∣∣∣(β•,Σ, λ,D

)
∼ TN

(
z̃0,Ψz0 , (0,+∞)

)
,(3.8)
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where TN
(
µ,Σ, (a, b)

)
stands for the multivariate truncated normal distribution N(µ,Σ)

lying within the interval (a, b),−∞ ≤ a < b ≤ +∞. Also Ψz0 =
(
Ig + n∆Σ−1∆

)−1 and z̃0 =
Ψz0

( ∑n
t=1 ∆Σ−1[yt• −XT

t•β•]
)

where ∆ = diag(λ1, ..., λg).

Now, we are at a position to conduct some simulation studies to evaluate the proposed
models.

4. SIMULATION STUDIES

Here, we outline our simulation studies to evaluate the procedure in estimating the
parameters of the SUR models given in Sections 2 and 3. Suppose the following simultaneous
model is given: {

y1 = β0 + β1z1 + β2x1 + u1,

y2 = γ0 + γ1z1 + γ2x2 + u2.
(4.1)

The assumptions imposed for this model are the same as those proposed in Sections 2 and 3.
Moreover, u = (u1, u2)T ∼ N(0,Σ) where y1 and y2 are endogenous variables. In addition,
we assume variables z1, x1 and x2 are exogenous. When we switch to the scenario in which
the error terms follow the asymmetric distribution, we assume u = (u1, u2)T ∼ SN(02,Σ, λ)
where λ is shape parameter vector.

To generate data from the model with equations in (4.1), we do need to fix the param-
eters. We are writing them all together either in regression equations or explicit expressions.
They are given as follows:

y1 = 4− 3z1 − 4x1 + u1,

y2 = 7 + 3z1 − 2x2 + u2,(4.2)

u =
(

u1

u2

)
∼ SN(02,Σ, λ),

Σ =
(

3 −1
−1 4

)
, λ =

(
4
7

)
.

The sample size for each equation is fixed at 1000 cases. Consequently, due to having two
equations in (4.1), the total number of available data is 2000. The Bayesian inference is
conducted using the proper priors given in (3.4) with the hyperparameters fixed on some
specific values. Particularly, we consider

β• ∼ N(02, 100I2), λ ∼ N(02, 100I2),

Σ ∝
∣∣∣ 0.01 0

0 0.01

∣∣∣− 1
2
.

As mentioned earlier, one can follow the Gibbs sampling algorithm to draw samples and
then estimate the parameters of the models while employing an MCMC algorithm. To do this,
we fixed the simulated sample size at 100,000 iterations for each chain. Convergence of the
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MCMC algorithm was confirmed by the Gelman and Rubin convergence measure [16], but not
reported here. To get independent samples, the burn-in was set on 25,000 iterations for each
chain and the last 75,000 iterations were used to make statistical inference on parameters.
Then, with taking each 50-th observation, we were ultimately left with 1,500 samples. The
summarized results are presented in Table 1.

As can be seen, the Table 1 includes two parts. The results using the normal and
skew-normal distributions assumption for the errors are shown in the left and right panels,
respectively. The regression coefficients and covariance elements are also estimated. As the
values in the left panel of the table show, both intercepts for each equation of the model
(4.1) are overestimated. This phenomenon is also the case for the elements of the covariance
matrix. The other coefficients are estimated relatively as good as expected.

Table 1: The estimate of parameters and other measures after fitting
the SUR model (4.1) under the assumptions of the skew-normal
(right panel) and normal (left panel) distributions for the errors.

Parameter
N-MCMC SN-MCMC

Mean Sd 2.5% 97.5% ES Mean Sd 2.5% 97.5% ES

β0 9.38 0.334 8.722 10.01 5.38 3.875 0.326 3.284 4.521 0.125
β1 −3.009 0.017 −3.043 −2.973 0.009 −2.986 0.015 −3.027 −2.97 0.014
β2 −3.981 0.024 −4.026 −3.936 0.009 −3.983 0.021 −4.029 −3.948 0.017
γ0 16.79 0.562 15.7 17.86 9.79 7.510 0.391 5.619 7.139 0.510
γ1 3.05 0.033 2.981 3.111 0.05 3.006 0.020 2.987 3.065 0.006
γ2 −1.934 0.039 −2.009 −1.856 0.066 −2.000 0.025 −2.027 −1.927 0.000
σ11 20.25 0.883 18.52 22.01 17.25 3.504 0.572 2.522 4.798 0.504
σ12 1.123 1.215 −1.307 3.549 2.123 −1.298 0.643 −2.436 0.056 0.298
σ22 74.53 3.334 68.23 81.09 70.53 3.211 0.769 1.839 4.887 0.789
λ1 — — — — — 6.498 0.250 6.303 7.451 2.498
λ2 — — — — — 12.136 0.371 12.01 12.43 5.136

The results using the skew-normal Bayesian approach is given on the right panel of
Table 1. As seen, relatively small values of effect size (ES), defined as absolute bias, indicate
that all parameters are well estimated. To consider all measures, a general result is that
taking into account the skew-normal distribution instead of normal for the errors does better
a job of fitting the model (4.1) while employing a Bayesian approach to making statistical
inference.

To evaluate performance of the method in more details, we iterated the procedure of
generating the data from model (4.1) with the sample size of n = 1000 for the numbers of
50 times and then computed the Mean Squared Error (MSE) criterion, i.e.

MSE
(
α̂
)

=
1
50

50∑
i=1

(α̂i − αTrue)2.(4.3)

The results (not shown here) have confirmed that the MSE criterion in estimating the pa-
rameters using the skew-normal Bayesian approach is very close to zero, but this was not the
case for the normal distribution assumption for the error in the model (4.1). It means that
the estimators derived from the skew-normal case are relatively more accurate and precise
than the normal assumption.



540 Omid Akhgari and Mousa Golalizadeh

5. REAL APPLICATION

We are interested in applying the proposed models in this paper on real-life data.
To do this, we used the cost and income data collected on year 2009 in Iran. There are about
13,345 families from 32 provinces. Here, the main goal is on survey effects of some variables
on gross cost (GH) and income (D). In this study, both of these quantities are considered as
endogenous variables and other covariates are set as exogenous. A general description of the
considered variables are reported in Table 2. Also, Figures 1, 2 and 3 (upper panel) provide
some geometric displays of some exogenous and two endogenous variables, i.e. GH, D.

Table 2: A general description of variables utilized in real application.

Variable names Abbreviation signs Variable Type Codes

Gross cost GH Quantitative —

Income D Quantitative —

Family size C1 Quantitative —

Number of literate C2 Quantitative —

Number of employees C3 Quantitative —

Number of people with income C4 Quantitative —

Age A Quantitative —

Location Area B1 Quantitative —

Private car B2 Qualitative 1: Use, 0: Nonuse

Internet B3 Qualitative 1: Use, 0: Nonuse

Gas B4 Qualitative 1: Use, 0: Nonuse

Mobile B5 Qualitative 1: Use, 0: Nonuse

Incomes of agricultural free businesses D1 Quantitative —

Incomes of nonfarm free businesses D2 Quantitative —

Other Incomes D3 Quantitative —

Other Non-monetary Incomes D4 Quantitative —

To initiate a statistical analysis based upon a common linear regression model, we are
concerned about the accuracy of considering the normality assumption for the response vari-
ables, i.e. GH, and D, here. We used the Kolmogorov- Smirnov (KS) test for this purpose.
Based on this test, normality assumption has not been confirmed for both endogenous vari-
ables with the p-value < 0.05. Further, to have visual tools, the quantile-quantile plots for
each of the income and gross cost were also drawn. They appeared on the lower panel of
Figure 3. As seen, both plots are confirming a lack of the normal distributions fitting for each
variable. Moreover, the contour plot based on these endogenous variables, which is appeared
on the upper panel Figure 3, also shows a departure from the bivariate normal distribution
assumption. It might be argued here that a logarithm transformation of the endogenous vari-
ables might solely lead to a better fit of normality assumption for these variables. However,
based on our investigation (not reported here), we did not reach to such conclusion. Hence,
we preferred to invoke some asymmetric densities, particularly skew-normal distribution, to
proceed our analysis. However, we also utilized the normal distribution for the endogenous
variables to make a comparison, similar to our simulation studies.
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Figure 1: The pairs plot of quantitative variables described in Table 2.

Figure 2: The pairs plot for several types of incomes described in Table 2.
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Figure 3: The contour plot of gross cost (GH) against income (D) (upper panel)
along with the quantile-quantile plot (lower panel) for each of them.
Lack of normal distribution fitting, either jointly or marginally, using
endogenous variables are apparent from both plots.

Based upon a general view of the data and also after consulting the subjects with some
econometrics experts in Statistical Center of Iran, the following SUR model was utilized to
express the inter-relationship between endogenous and exogenous variables:

GH = β0 +
4∑

i=1

βCiCi +
5∑

i=1

βBiBi + βAA + ε1,

D = γ0 +
4∑

i=1

γDiDi + ε2.(5.1)
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This model has been fitted through both frequentist and Bayesian approaches as well as
under the assumption of the normal (N) and skew-normal (SN) distributions for the errors.
Table 3 shows the estimates along with standard errors of the estimates. As seen, the table is
divided in three parts. The first row panel represents the quantities mentioned above for the
parameters of the first equation in (5.1). Similarly, those for the second equation appear in
the second row panel. Finally, the last row panel constitutes the estimates and their standard
errors for the components of the covariance matrix of the errors in (5.1) as well as those values
for the skewness parameters, if they are required. The important point to emphasize is that
we have only reported those estimates which were significant at %5 level. Hence, one does
not see some of the coefficients from the SUR model (5.1) in Table 3.

Table 3: The estimates along with standard errors of the estimates for the parameters of
the SUR model fitted through both frequentist and Bayesian approaches as well
as under assumption of the normal (N) and skew-normal (SN) distributions for
the errors in (5.1) for the Iranian cost and income data collected in year 2009.

Bayesian Frequentist

Parameter Estimation Standard error Estimation Standard error

N SN N SN N SN N SN

β0 −1.338 −1.581 0.030 0.017 −1.50 −1.34 0.047 0.006
βC1 0.048 0.026 0.006 0.003 0.036 0.040 0.009 0.001
βC2 0.056 0.045 0.006 0.004 0.082 0.046 0.010 0.002
βC3 0.070 0.047 0.007 0.004 0.106 0.059 0.011 0.004
βC4 −0.015 0.014 0.009 0.005 0.061 −0.024 0.014 0.004
βB1 0.006 0.001 0.001 0.001 0.003 0.003 0.0006 0.0001
βB2 0.004 0.002 0.001 0.001 0.004 0.002 0.0002 0.0005
βB3 0.531 0.304 0.016 0.009 0.649 0.531 0.024 0.013
βB4 0.509 0.281 0.032 0.018 0.689 0.490 0.051 0.032
βB5 0.011 0.049 0.012 0.007 0.064 0.031 0.018 0.0085
βA 0.236 0.180 0.016 0.009 0.276 0.137 0.025 0.0064

γ0 0 −0.514 0.004 0.0001 0 −0.103 0.025 0.0038
γD1 0.500 0.562 0.004 0.001 0.544 0.499 0.013 0.0039
γD2 0.467 0.498 0.004 0.002 0.503 0.487 0.013 0.0039
γD3 0.352 0.375 0.004 0.001 0.412 0.352 0.013 0.0039
γD4 0.030 0.030 0.004 0.002 0.033 0.030 0.013 0.0038

σ11 0.671 0.018 0.007 0.009 0.656 0.051 - -
σ21 0.129 0.001 0.004 0.002 0.084 0.009 - -
σ22 0.317 0.003 0.003 0.001 0.315 0.018 - -
λ1 - 1.194 - 0.007 - 1.181 - -
λ2 - 0.764 - 0.003 - 0.869 - -

Based upon results given at first row panel in Table 3, the number of literate, employees
and family size have a direct effect on total family gross cost. The usage of facilities, including
Private car, internet, gas and mobile, also has the positive impact on family gross cost. In other
words, the utilization of these services leads to an increase in family gross cost. However, if the
families are not using these items still there is an increment on cost too. The rationale behind
this surprising result comes from the SUR model in which those families would then pay for
other luxuries items. Finally, the age of the people who are in charge of the family cost and
also the area where the families live both leada to the positive effect on the gross cost.
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Now, let us analyze the result at the second row panel in Table 3. As seen, the incomes
from the agricultural and non-farm free businesses, other incomes and non-monetary gains
have direct effect on the family incomes. Furthermore, other non-monetary earning incomes
have less effect on the family incomes subject to other variables. Also, the effect of the
incomes from agricultural free businesses on the family incomes are high.

Some interesting results appear in the second row panel of Table 3. First, it is related
to the estimate of the intercept (γ0). Unlike the case for the skew-normal distribution, its
estimation is zero when assuming a normal density for the errors in the SUR model (5.1).
Second, as seen, the estimates for the components of the covariance matrix based on normality
assumption are somewhat bigger than those in the skew-normal case. Albeit, this needs more
considerations.

So far, the reader probably discovered a proper strategy to fit the SUR model (5.1) based
on the presented results. However, we are interested in selecting one of two methodologies and
distributional assumption for the errors through utilizing a sensible statistical measure. There
are several methods to choose the appropriate model among two possible candidates while
employing either Bayesian or frequentist statistical inferences methodologies. It is usually
accepted among statisticians that the Bayes factor criterion is a proper measure to compare
the performance of different candidate models while implementing a Bayesian methodology.
However, in utilizing the frequentist methodology, the researchers consider the log likelihood
and AIC criteria. To compare two candidate models L1 and L2 the Bayes factor is represented
by a quantity which is simply a ratio (see [22]). Precisely, suppose π(L1) and π(L2) are priors
for two models. Then, given the data D, the Bayes factor of model L1 w.r.t L2 is written as

B12 =
Pr(D|L1)
Pr(D|L2)

=
π(L1|D)
π(L2|D)

π(L1)
π(L2)

,(5.2)

where Pr(D|L) =
∫

f(D|L, θ)π(θ|D)dθ and θ = (β, γ, Σ, λ). However, because we are not
able to compute the joint posterior analytically this criteria cannot be employed here. [23]
proposed a method when there is no closed form for the posterior density. Following them,
if {θ}m

i=1 are samples from the posterior distribution of π(θ|D,L), we can write:

f (j+1)(D|L) =
km
1−k +

∑m
j=1

f(D|θ(j),L)

kf (j)(D|L)+(1−k)f(D|θ(j),L)

km
(1−k)f (j)(D|L)

+
∑m

j=1
1

kf (j)(D|L)+(1−k)f(D|θ(j),L)

,(5.3)

where k is a small value being in the interval (0, 1). To derive this quantity, we repeated our
analysis till achieving a reasonable convergence. In some small-scale numerical experiments,
we have discovered that the quantity (5.3) performed well for k as small as 0.01.

The logarithm of pseudo-marginal likelihood (LPML) is another criterion to select be-
tween two candidate models (see [14]). It is derived from predictive considerations, particu-
larly Conditional Predictive Ordinate (CPO), and leads to pseudo-Bayes factors for choosing
an optimal model. It is popular mainly due in part to its relative ease of computation making
the LPML a stable estimate base on the samples derived from any MCMC algorithm. Follow-
ing the [15] and assuming availability of the samples θ(1), ..., θ(s), obtained from corresponding
posterior, the i-th CPOi and LPML are, respectively, estimated as

1
CPOi

=
1
s

s∑
k=1

1
fi(yi|θ(k),M)

,(5.4)
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and

LPML =
n∑

i=1

log(CPOi).(5.5)

The LPML and BF quantities for both cases (N and SN) are reported in Table 4. As seen,
the value of LPML for SN is greater than that for N . Moreover, the ratio of BF for SN in
compare with the N model is relatively bigger and so indicating the superiority of SN again.
Although there are some debates on using these criteria under the frequentist view, we also
reported the estimates of the parameters for both N and SN cases just to have a basis for
seeing difference on utilizing two methodologies.

Following the results gained in analyzing this example, our recommendation is to con-
sider a skew-normal rather than the normal density for the error while using a SUR model
to analyze the Iran gross and income data collected in year 2009.

Table 4: The performance criteria of the SUR model (5.1) fitted using the
skew-normal distribution on the Iranian cost and income data
collected in year 2009.

Model
Bayesian Frequentist

BF LPML AIC Log likelihood

N 0.917 −59274.01 80925.15 −40443.57
SN 1.091 −34585.61 −124982.3 62512.15

6. CONCLUSION

When dealing with simultaneous relationship among variables, the SUR model is a
particular case of SEM. The frequentist inference utilized for the SUR model under the
skew-normal assumption or the error is very time consuming and also challenging to tackle.
Hence, a Bayesian inference implemented in the SUR model under skew-normal distribution
assumption for errors is developed in this paper. Regarding the model selection, the BF and
LPML criteria had some superiorities in choosing better model using our real data set as well
as in our simulation studies. Based on the results in this paper we can stat when data are
not symmetric, the SUR model accompanied with considering a skew-normal distribution for
the error performs well on fitting the data at least in comparison with invoking the normal
density.

In future study, we aim to investigate how the endogenous variables can improve the
estimation of the parameters in the SEMs while the errors follow the skew-normal distribu-
tions. Moreover, to plug in these structures into multilevel models is the way we are going to
extend our current research.
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A. APPENDIX

According to formula (2.8), full conditional posterior is given by

g(β•|Σ, D) ∝ L(D|β•,Σ)π1(β•) ∝ exp
{
− 1/2 tr(V Σ−1)

}
∝ exp

{
− 1/2

n∑
t=1

(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)
}

∝ exp
{
− 1/2

n∑
t=1

[
− βT

•XT
t•Σ

−1 + βT
•XT

t•Σ
−1Xt•β• − yT

t•Σ
−1Xt•β•

]}
∝ exp

{
− 1/2

[
β• −

( n∑
t=1

XT
t•Σ

−1Xt•
)−1(

n∑
t=1

XT
t•Σ

−1yt•)
]T[ n∑

t=1

XT
t•Σ

−1Xt•
]

[
β• −

( n∑
t=1

XT
t•Σ

−1Xt•
)−1(

n∑
t=1

XT
t•Σ

−1yt•)
]}

.

(A.1)

So β• is multivariate normal with mean
( ∑n

t=1 XT
t•Σ

−1Xt•
)−1(

∑n
t=1 XT

t•Σ
−1yt•) and

covariance matrix
( ∑n

t=1 XT
t•Σ

−1Xt•
)−1. The full conditional posterior is derived as follows:

g(Σ|β•, D) ∝ L(D|β•,Σ)π1(Σ) ∝ |Σ|−(n+g+1)/2 exp
[
− 1/2 tr{V Σ−1}

]
.(A.2)

It is straightforward to check that this expression is proportional to an inverse Wishart
distribution with degrees of freedom n and scale covariance V .

Based on the prior density β• ∼ N(β◦, A−1
β◦

) and π(Σ) ∝ |Σ|−
g+1
2 , the posterior distri-

bution can easily be computed. However, it doesn’t have a closed form. Instead, the full
conditional posterior can be obtained using the expressions

g(β•|Σ, D) ∝ L(D|β•,Σ)π2(β•)

∝ |Σ|−
n
2 exp

{
− 1/2

[ n∑
t=1

(yt• −Xt•β•)TΣ−1(yt• −Xt•β•)

+ (β• − β◦)TAβ•(β• − β◦)
]}

∝ exp
{
− 1/2

[
βT
•
{( n∑

t=1

XT
t•Σ

−1Xt•
)

+ Aβ•

}
β•

− 2βT
•
{( n∑

t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
}]}

∝ exp
{
− 1/2 (β• − β•)

TΣ−1
β• (β• − β•)

}
.(A.3)

Consequently β• given (Σ, D) is multivariate normal with mean

β• = Σβ•

[( n∑
t=1

XT
t•Σ

−1yt•
)

+ Aβ•β◦
]



On Bayesian Analysis of SUR Model 547

and covariance matrix

Σβ• =
[( n∑

t=1

XT
t•Σ

−1Xt•
)

+ Aβ•

]−1
.

Similarity, the full conditional posterior Σ|(β•, D) is given by

π(Σ|β•, D) ∝ L(D|β•,Σ)π2(Σ) ∝ |Σ|−(n+g+1)/2 exp
[
− 1/2 tr{V Σ−1}

]
.(A.4)

Seeing similarity of this expression to (A.2), the full conditional distribution Σ|(β•, D)
is inverse Wishart with degrees of freedom n and scale covariance V .

Recall: The probability density function for the random matrix X (n× p) that follows
the matrix normal distribution MNn×p

(
M,U, V

)
has the form

p
(
X|M,U, V

)
=

exp
(
− 1

2 tr
[
V −1(X −MT)U−1(X −M)

])
(2π)np/2|V |n/2|U |p/2

,(A.5)

where M is n× p, U is n× n and V is p× p matrices. Note that the matrix normal is linked
to the multivariate normal distribution in the following way:

X ∼ MNn×p

(
M,U, V

)
(A.6)

if and only if

Vec(X) ∼ N
(
Vec(M)np, V ⊗ U

)
,(A.7)

where Vec(M) denotes the vectorization of M .

Suppose that yt• ∼ SN
(
Xt•β•

)
. According to stochastic representations of multivariate

skew-normal distribution (see [1]), we have

yt• = λ� |z0|+ z1,(A.8)

where � denotes Hadamard product, z0 ∼ N
(
0g, Ig

)
, z1 ∼ N

(
X•tβ•,Σ

)
and also z0 and z1

are independent. Thus, (
z0

z1

)
∼ N

( (
0

Xt•β•

)
,

(
Ig 0
0 Σ

) )
.(A.9)

Thus, the conditional distribution yt• given z0 leads to

yt•|z0 ∼ N
(
λ� |z0|+ Xt•β•,Σ

)
.(A.10)

The full conditional posterior distribution of all parameters are determined based on
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(A.10). So, for β•|
(
Σ, λ, z0, D

)
, we have

π
(
β•|Σ, λ, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(β•)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Σβ◦ |−

1
2 exp

{
(β• − β◦)TΣ−1

β◦
(β• − β◦)

}
∝ exp

{
− 1

2
[
βT
• (

n∑
t=1

XT
•Σ−1XT

• + Σ−1
β◦

)β•

− 2βT
• (

n∑
t=1

XT
•Σ−1y• −

n∑
t=1

XT
•Σ−1λ� |z0|+ Σ−1

β◦
β◦)

]}
∝ exp

{
− 1

2
(β• − β̃•)TΣ̃−1

β•
(β• − β̃•)

}
.(A.11)

Consequently, β•|
(
Σ, λ, z0, D

)
is multivariate normal with mean

β̃• = Σ̃β•(
n∑

t=1

XT
•Σ−1y• −

n∑
t=1

XT
•Σ−1λ� |z0|+ Σ−1

β◦
β◦)

and covariance

Σ̃β• = (
n∑

t=1

XT
•Σ−1XT

• + Σ−1
β◦

)−1.

Similarly, the full conditional posterior distribution Σ|
(
β•, λ, z0, D

)
is computed: i.e.

π
(
Σ|β•, λ, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(Σ)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Σ|−

g+1
2

∝ |Σ|−
n+g+1

2 exp
{
− 1

2
tr(RΣ−1)

}
,(A.12)

where R =
∑n

t=1

(
yt• − [λ� |z0|+ Xt•β•]

)(
yt• − [λ� |z0|+ Xt•β•]

)T. So

Σ|
(
β•, λ, z0, D

)
∼ IW (R,n),

where IW (·, ·) denotes the inverse Wishart distribution.

Suppose

Z∗
0 =


|Z01 | 0 ... 0

0 |Z02 | ... 0
...

...
. . .

...
0 0 ... |Z0g |


g×g

.
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Now, we can write λT � |z0|T = λTZ∗
0 . Then, the full conditional λ|

(
β•,Σ, z0, D

)
is given by

π
(
λ|Σ, β•, z0, D

)
∝ L(yt•|z0,Σ, λ, β•)π(λ)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [λ� |z0|+ Xt•β•]

)TΣ−1

(
yt• − [λ� |z0|+ Xt•β•]

)}
× |Λ0|−

1
2 exp

{
(λ− λ0)TΛ−1

0 (λ− λ0)
}

∝ exp
{
− 1

2
[
λT(nZ∗

0Σ−1Z∗
0 + Λ−1

0 )λ

− 2λT(
n∑

t=1

Z∗
0Σ−1yt• −

n∑
t=1

Z∗
0Σ−1Xt•β• + Λ−1

0 λ0)
]}

∝ exp
{
− 1

2
(λ− λ̃)TΛ̃−1(λ− λ̃)

}
.(A.13)

As a result, the full conditional distribution λ|
(
β•,Σ, z0, D

)
is multivariate normal with

mean

λ̃ = Λ̃(
n∑

t=1

Z∗
0Σ−1yt• −

n∑
t=1

Z∗
0Σ−1Xt•β• + Λ−1

0 λ0)

and covariance

Λ̃ = (nZ∗
0Σ−1Z∗

0 + Λ−1
0 )−1.

Suppose ∆ = diag(λ1, ..., λg), such that λ� |z0| = ∆|z0|. Then, the full conditional
distribution |z0| given

(
β•,Σ, λ,D

)
is determined as

π
(
|z0|

∣∣∣Σ, β•, λ,D
)
∝ L(yt•|z0,Σ, λ, β•)π(|z0|)

∝ |Σ|−
n
2 exp

{
− 1

2

n∑
t=1

(
yt• − [∆|z0|+ Xt•β•]

)TΣ−1

(
yt• − [∆|z0|+ Xt•β•]

)}
× exp

{
− n

2
|z0|TIg|z0|

}
∝ exp

{
− 1

2
[
|z0|T(n∆Σ−1∆ + Ig)|z0|

− 2|z0|T(
n∑

t=1

∆Σ−1yt• −
n∑

t=1

∆Σ−1Xt•β•)
]}

∝ exp
{
− 1

2
(|z0| − z̃0)TΨ−1

z (|z0| − z̃0)
}
.(A.14)

Consequently the full conditional posterior distribution is TN(z̃0,Ψz, (0,+∞)) where

z̃0 = Ψz(
n∑

t=1

∆Σ−1yt• −
n∑

t=1

∆Σ−1Xt•β•)

and

Ψz = (n∆Σ−1∆ + Ig).
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Here, TN
(
µ,Σ; (a, b)

)
stands for the multivariate truncated normal distribution N(µ,Σ) lying

within the interval (a, b),−∞ ≤ a < b ≤ +∞.

Hadmard Product:

For two matrices, A, B, of the same dimension, m× n the Hadamard product, A�B,
is a matrix, of the same dimension as the operands, with elements given by (A�B)i,j =
(A)i,j · (B)i,j , writing as [9](

a11 a12

a21 a22

)
�

(
b11 b12

b21 b22

)
=

(
a11b11 a12b12

a21b21 a22b22

)
.(A.15)
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