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Abstract:

• The paper first introduces a new two-parameter continuous probability distribution with bounded
support from the extended exponential-geometric distribution. Closed-form expressions are given
for the moments, moments of the order statistics and quantile function of the new law; it is also
shown that the members of this family of distributions can be ordered in terms of the likelihood
ratio order. The parameter estimation is carried out by the method of maximum likelihood and a
closed-form expression is given for the Fisher information matrix, which is helpful for asymptotic
inferences. Then, a new regression model is introduced by considering the proposed distribution,
which is adequate for situations where the response variable is restricted to a bounded interval,
as an alternative to the well-known beta regression model, among others. It relates the median
response to a linear predictor through a link function. Extensions for other quantiles can be
similarly performed. The suitability of this regression model is exemplified by means of a real data
application.
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1. INTRODUCTION

The development of new parametric probability distributions attracts a great deal of
attention with the aim of providing useful models in many different areas. Some recent con-
tributions can be found in Bakoban and Abu-Zinadah [7], Gómez-Déniz et al. [18] and Jodrá
et al. [24], among others. With respect to models with bounded support, considerable effort
has been focussed on providing alternatives to the beta distribution. A prominent alterna-
tive is the two-parameter Kumaraswamy distribution introduced by Kumaraswamy [28] and
thoroughly studied by Jones [25]. Other less known two-parameter models are the trans-
formed Leipnik distribution (see Jorgensen [26, pp. 196–197]) and the recently introduced
Log–Lindley law (see Gómez-Déniz et al. [17] and Jodrá and Jiménez-Gamero [23]). There
are more proposals such as the four-parameter Kumaraswamy Weibull distribution (Cordeiro
et al. [10]) and the five-parameter Kumaraswamy generalized gamma distribution (Pascoa
et al. [35]), that present the drawback of having a high number of parameters and in these
cases the parameter estimation often presents some difficulties.

This paper introduces a new two-parameter probability distribution with bounded sup-
port derived from the extended exponential-geometric (EEG) distribution. The EEG law is
a continuous probability distribution studied by Adamidis et al. [2] to model lifetime data.
More precisely, a random variable Y is said to have an EEG distribution if the probability
density function (pdf) is given by

fY (y;α, β) =
α(1 + β)e−α y

(1 + β e−α y)2
, y > 0, α > 0, β > −1,

where α and β are the model parameters. In particular, the case α > 0 and β ∈ (−1, 0)
corresponds to the exponential-geometric distribution proposed by Adamidis and Loukas
[3]. A generalization of the EEG law is the three-parameter Weibull-geometric distribution
introduced by Barreto-Souza et al. [8].

From the EEG distribution, we define a new random variable X with support in the
standard unit interval (0, 1) by means of the transformation X = exp (−Y ). It is easy to
check that X has the following pdf and cumulative distribution function (cdf),

(1.1) f(x;α, β) =
α(1 + β)xα−1

(1 + β xα)2
, 0 < x < 1, α > 0, β > −1,

and

F (x;α, β) =
(1 + β)xα

1 + β xα
, 0 < x < 1, α > 0, β > −1,

respectively. In the sequel, the random variable defined by (1.1) will be referred to as the
Log-extended exponential-geometric (LEEG) distribution. The LEEG distribution presents
an advantage with respect to the beta distribution since it does not include special functions
in its formulation. Figure 1 represents the pdf of X for several values of the parameters. It is
interesting to note that the special case β = 0 corresponds to the power function distribution,
which includes the uniform distribution for α = 1.
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Figure 1: f(x;α, β) for different values of α and β.

Clearly, the LEEG distribution can be used to model real data taking values in the
unit interval. Furthermore, as a linear transformation (b− a)X + a moves a random variable
X defined on (0, 1) to any other bounded support (a, b), with a < b, the LEEG law can be
extended to any bounded domain in a straightforward manner, so there is no need to explain
such an extension.

On the basis of the proposed distribution, we introduce a new regression model which
assumes that the response variable takes values in the standard unit interval, as an alternative
to the well-known beta regression model (see Ferrari and Cribari-Neto [15]). Other regression
models for bounded responses can be found in [33, 34, 36]. Regression models usually express
a location measure of a distribution as a function of covariates. The location measure is
commonly taken the mean (which is the case of classical regression models) or some quantile
(which is the case of quantile regression, see, for example, the book by Koenker [27]). With
this aim, it is noted that the LEEG distribution can be easily reparametrized in terms of
any of its quantiles. As the median is a robust central tendency measure, we choose to
reparametrize the LEEG law with its median and construct the associated regression model,
which relates the median response to a linear predictor through a link function. Nevertheless,
it will become evident that any other quantile could be used.

The literature on parametric quantile regression is rather scarce. An example is the
parametric regression quantile in Noufaily and Jones [32], designed for a positive response,
while our proposal is for a bounded response. In addition to this evident distinctive feature,
the main difference between our approach and that in [32] lies in the following: Noufaily
and Jones [32] assume a distribution for the response (specifically, the generalized gamma
with three parameters) and consider parametric forms for the dependence of the parameters
(or some subset of them) on the covariate (they only assume a unique covariate, although
their proposal can be extended to more covariates); then they replace the parameters in the
expression of the quantile function of the assumed model by the fitted regression equations
for the parameters. By contrast, we reparametrize the distribution in terms of the median
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(although we could consider any other quantile) and assume a parametric form for the de-
pendence of the median on the covariates (we do not limit the number of covariates). In our
proposal, only one of the parameters is allowed to depend on the covariates, but it would be
an obvious extension to express both of them as functions of the covariates. Note that our
strategy is closer, in spirit, to Koenker [27], which assumes a regression model for a quantile;
if the quantile is changed then the regression model also changes. In our scheme, if the dis-
tribution is parametrized in terms of another quantile (different from the median), the model
parameters will change. On the contrary, in Noufaily and Jones [32] the model parameters
are the same for each quantile since they do not fit a genuine quantile regression model, they
just allow the distribution parameters to vary with the covariates and then replace them in
the expression of the quantile function.

The remainder of this paper is organized as follows. In Section 2, some statistical pro-
perties of the LEEG distribution are studied. Precisely, it is shown that the LEEG law can
be derived as the distribution of the minimum or maximum of a geometric random number
of independent random variables with power function distribution, the moments, as well as
the moments of the order statistics, can be expressed analytically in terms of the Lerch tran-
scendent function, the quantile function can be given in closed form and the members of the
new family of distributions can be ordered in terms of the likelihood ratio order. For the
sake of clarity, the proofs of this section are deferred to Appendix B. Section 3 deals with the
parameter estimation problem. Specifically, the method of maximum likelihood is theoreti-
cally and numerically studied. In addition, an explicit expression for the Fisher information
matrix is obtained, which is useful for asymptotic inferences on the parameters. The proof
of these results is deferred to Appendix C. Some numerical results studying the finite sample
performance of the maximum likelihood estimators as well a real data set application are also
displayed in this section. Section 4 shows how to construct a regression model for bounded
responses on the basis of the LEEG distribution. A real data application demonstrates that
such model may be more appropriate than others previously proposed. For the sake of com-
pleteness, Appendix A presents a known result concerning a logarithmic integral, which is
used to provide unified proofs in Appendices B and C.

2. STATISTICAL PROPERTIES

This section studies some statistical properties of the LEEG distribution. Specifically,
an stochastic representation is provided together with the shape of the pdf, the computation of
moments, the computer-generation of pseudo-random data and the computation of moments
of the order statistics. In all cases, closed-form expressions are given. Additionally, it is
shown that the new family of distributions can be ordered in terms of the likelihood ratio
order.

2.1. Stochastic representation

The LEEG distribution has been defined in (1.1) via an exponential transformation of
the EEG distribution. It should be noted that the LEEG law can also be derived as follows.
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Let N be a random variable having a geometric distribution with probability mass function
(pmf) given by

P (N = n) =
(

1− 1
1 + β

)n−1 1
1 + β

, n = 1, 2, ...,

with β > 0. Let M be a random variable having a geometric distribution with pmf given by

P (M = m) = (−β)m−1(1 + β), m = 1, 2, ...,

with β ∈ (−1, 0). Let T1, T2, ... be independent identically distributed random variables
having Ti a power function distribution with parameter α > 0, that is, its cdf is given by
FTi(t;α) = tα, 0 < t < 1. Assume that N and M are independent of Ti, i = 1, 2, ....

Proposition 2.1.

(i) The random variable V = min{T1, T2, ..., TN} has a LEEG distribution with pa-

rameters α > 0 and β > 0.

(ii) The random variable W = max{T1, T2, ..., TM} has a LEEG distribution with pa-

rameters α > 0 and β ∈ (−1, 0).

2.2. Shape and mode

As it can be seen from Figure 1, the pdf of the LEEG distribution has a wide variety of
shapes. The next result characterizes the shape of the pdf in terms of the parameter values.

Proposition 2.2. Let X be a LEEG distribution with parameters α > 0 and β > −1.

(i) For any α > 1, if β > (α− 1)/(1 + α) then X has a mode at x =
(

α− 1
(1 + α)β

)1/α

and if β ∈ (−1, (α− 1)/(1 + α)] then (1.1) is an increasing function.

(ii) For any 0 < α < 1, if β ∈ (−1, (α− 1)/(1 + α)) then (1.1) has a minimum at

x =
(

α− 1
(1 + α)β

)1/α
and if β ≥ (α− 1)/(1+α) then (1.1) is a decreasing function.

(iii) If α = 1 and β = 0, then (1.1) is the pdf of the uniform distribution on (0, 1).

2.3. Moments

The moments of X can be expressed in closed form in terms of the Lerch transcendent
function, Φ. Remind that Φ is defined as the analytic continuation of the series

Φ(z, λ, v) =
∞∑
i=0

zi

(i + v)λ
,

which converges for any real number v > 0 if z and λ are any complex numbers with either
|z| < 1 or |z| = 1 and Re(λ) > 1 (see Apostol [5] for further details).
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Proposition 2.3. Let X be a LEEG distribution with parameters α > 0 and β > −1.

The moments of X are given by

(2.1) E[Xk] = 1− (1 + β)k
α

Φ
(
−β, 1, 1 +

k

α

)
, k = 1, 2, ....

It is interesting to note that the Lerch transcendent function is available in computer
algebra systems such as Maple (function LerchPhi(z,λ,v)) and Mathematica (function
LerchPhi[z,λ,v]). Accordingly, usual statistical measures involving E[Xk] can be efficiently
computed from equation (2.1).

2.4. Quantile function

An interesting advantage of the LEEG distribution with respect to the beta distribution
is that the cdf of X is readily invertible.

Proposition 2.4. The quantile function of the LEEG distribution with parameters

α > 0 and β > −1 is given by

F−1(u;α, β) =
(

u

1 + β − β u

)1/α

, 0 < u < 1.

From Proposition 2.4, the quartiles of the LEEG law are given by

Q1 =
(

1
4 + 3β

)1/α

, Q2 =
(

1
2 + β

)1/α

, Q3 =
(

3
4 + β

)1/α

.

The explicit expression in Proposition 2.4 is helpful in simulation studies because
pseudo-random data from the LEEG distribution can be generated by computer using the
inverse transform method.

2.5. Order statistics

Next, analytical expressions to compute the moments of the order statistics are pro-
vided. To this end, it is shown that the moments of the largest order statistic of the LEEG
law can be given in terms of a finite sum involving the Lerch transcendent function Φ and
the generalized Stirling numbers of the first kind Rj

n (see Appendix A for the definition and
calculation of these numbers).

Let X1, ..., Xn be a random sample of size n from the LEEG distribution with param-
eters α > 0 and β > −1. Let X1:n ≤ X2:n ≤ ... ≤ Xn:n be the order statistics obtained by
arranging Xi, i = 1, ..., n, in non-decreasing order of magnitude. For any n = 1, 2, ... and
k = 1, 2, ..., denote by E[Xk

r:n] the kth moment of Xr:n, r = 1, ..., n.
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Proposition 2.5. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. Let Xn:n be the largest order statistic. Then

E[Xk
n:n] =

(1 + β)n

Γ(n)

n∑
j=0

Rj
n(k/α, 1)Φ

(
−β, 1− j, n +

k

α

)
, k = 1, 2, ....

The result in Proposition 2.5 is useful to evaluate the moments of Xr:n, for r=1, ..., n−1,
thanks to the following well-known formula (see, for example, David and Nagaraja [13, p. 45])

E[Xk
r:n] =

n∑
j=r

(−1)(j−r)

(
j − 1
r − 1

)(
n

j

)
E[Xk

j:j ], r = 1, ..., n− 1.

2.6. Stochastic orderings

To conclude Section 2, it is shown that the members of the new distribution can be
ordered in terms of the likelihood ratio order, which is defined as follows (see, for example,
Shaked and Shanthikumar [40, Chapter 1]).

Definition 2.1. Let X1 and X2 be two continuous random variables with pdfs f1 and
f2, respectively, such that f2(x)/f1(x) is non-decreasing over the union of the supports of
X1 and X2. Then X1 is said to be smaller than X2 in the likelihood ratio order, denoted by
X1 ≤LR X2.

The likelihood ratio order is stronger than the hazard rate order and the usual stochastic
order, which are defined as follows.

Definition 2.2. Let X1 and X2 be two random variables with cdfs F1 and F2 and
hazard rates h1 and h2, respectively. Then

(i) X1 is said to be stochastically smaller than X2, denoted by X1 ≤ST X2, if F1(x) ≥
F2(x) for all x.

(ii) X1 is said to be smaller than X2 in the hazard rate, denoted by X1 ≤HR X2, if
h1(x) ≤ h2(x) for all x.

The LEEG family can be ordered in the following way.

Proposition 2.6. Let X1 and X2 be two random variables having a LEEG distribu-

tion with parameters (α, β1) and (α, β2), respectively, for some α > 0, β1, β2 > −1. If β1 ≥ β2

then X1 ≤LR X2.

As an immediate consequence of Proposition 2.6 and the well-known fact that

X1 ≤LR X2 ⇒ X1 ≤HR X2 ⇒ X1 ≤ST X2,

the following corollary is stated.
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Corollary 2.1. Let X1 and X2 be two random variables having a LEEG distribution

with parameters (α, β1) and (α, β2), respectively, for some α > 0, β1, β2 > −1. If β1 ≥ β2

then

(i) E(Xk
1 ) ≤ E(Xk

2 ), ∀k > 0.

(ii) h1(x) ≤ h2(x), ∀x ∈ (0, 1).

As a special case of Corollary 2.1 (i) it follows that, for fixed α > 0, the mean of the
LEEG distribution decreases as β increases.

3. PARAMETER ESTIMATION

This section considers the estimation of the parameters of the LEEG distribution.
Specifically, Subsection 3.1 describes the maximum likelihood (ML) method. A closed-form
expression for the Fisher information matrix is provided in Subsection 3.2. The performance
of the ML method is evaluated via a Monte Carlo simulation study in Subsection 3.3. Finally,
a real data application is presented in Subsection 3.4.

3.1. Maximum likelihood method

Let X1, ..., Xn be a random sample of size n from a LEEG distribution with unknown
parameters α > 0 and β > −1 and denote by x1, ..., xn the observed values. From the likeli-
hood function, L(α, β) =

∏n
i=1 f(xi;α, β), the log-likelihood function is given by

(3.1) log L(α, β) = n log α + n log (1 + β) + (α− 1)
n∑

i=1

log xi − 2
n∑

i=1

log (1 + β xα
i ).

The ML estimates of α and β are the values α̂ and β̂ that maximize log L(α, β). The partial
derivatives of log L(α, β) with respect to each parameter are the following:

∂

∂α
log L(α, β) =

n

α
+

n∑
i=1

log xi − 2β

n∑
i=1

xα
i log xi

1 + β xα
i

,(3.2)

∂

∂β
log L(α, β) =

n

1 + β
− 2

n∑
i=1

xα
i

1 + β xα
i

.(3.3)

The ML estimates of the parameters satisfy the system that results from equating to 0 the
equations (3.2) and (3.3). Nevertheless, since such system does not have an explicit solution,
in order to obtain the ML estimates it is preferable to maximize the function (3.1). Subsection
3.3 will deal with this practical issue.

Another practical point is the possible presence of extreme values in the data. Although
we are assuming that the data are continuous, which implies that the probability of observing
the values zero and one is null, in applications, due to rounding errors, these extreme cases
may appear in the observations. By looking at the expression of the log-likelihood (3.1), the
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presence of ones involves no problem; on the other hand, the presence of zeroes implies that
the log-likelihood cannot be calculated. In such a case, we recommend replacing all zeroes
by a positive small quantity.

3.2. Fisher information matrix

Below, an analytical expression for the Fisher information matrix is given, which let
us explicitly calculate the asymptotic covariance matrix of the ML estimators. To this end,
the polylogarithm function, which is a particular case of the Lerch transcendent function (see
Appendix A), plays an important role.

Proposition 3.1. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. For α > 0 and β ∈ (−1, 0) ∪ (0,∞) the Fisher

information matrix is given by

I(α, β) =


n

α2
− 2n

3α2β
{(1 + β)Li2(−β) + β} n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)
n(1 + β)

3αβ

(
1

(1 + β)2
− log (1 + β)

β

)
n

3(1 + β)2

,

where Li2 denotes the polylogarithm function of order two. For α > 0 and β = 0,

I(α, 0) =


n

α2
− n

2α

− n

2α

n

3

.

As it is well-known, it is useful to have an explicit expression for I(α, β) since by inver-
ting this matrix we get the asymptotic covariance matrix of the ML estimators and it can
be used to approximate their standard errors. Denote by N2 a bivariate normal distribution
and by d−→ the convergence in distribution.

Proposition 3.2. Let X1, ..., Xn be a random sample of size n from a LEEG distri-

bution with parameters α > 0 and β > −1. Let θ̂ denote the ML estimator of θ = (α, β).
Then,

√
n(θ̂ − θ) d−→ N2(0,Σ),

where Σ = Σ(α, β) is such that for β 6= 0

Σ(α, β) =

 − 3α2β4

(1 + β)c(β)
−3αβ2[(1 + β)2 log(1 + β)− β]

c(β)

−3αβ2[(1 + β)2 log(1 + β)− β]
c(β)

3β3(1 + β)[2(1 + β)Li2(−β)− β]
c(β)

,

with

c(β) = (1 + β)3 log2(1 + β)− 2β(1 + β) log(1 + β) + β3[2Li2(−β)− 1] + β2

and Li2 stands for the polylogarithm function of order two, and for β = 0

Σ(α, 0) =
[

4α2 6α

6α 12

]
.
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3.3. Simulation study

As discussed in Subsection 3.1, in order to obtain the ML estimates of the parameters
the following optimization problem is solved

(3.4)

max log L(α, β)

s.t. α > 0

β > −1,

where log L(α, β) is given in equation (3.1). In our simulations, problem (3.4) was solved
by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, available in the function
constrOptim of the R programming language [37]. We chose the BFGS algorithm because
(3.4) is an optimization problem with linear inequality constraints. The BFGS algorithm
requires a starting point, which must be in the interior of the feasible region, together with
the gradient function of log L(α, β). As starting point we tried several options with little or
no effect on the final solution. All numerical results in this paper were obtained by using as
starting point the pair (1, 1).

The performance of the ML estimators was assessed via a Monte Carlo simulation study.
The following notation was used. The number of random samples generated is denoted by N

and the size of each random sample is denoted by n. The following quantities were computed
for the simulated estimates α̂j , j = 1, ..., N :

(i) The mean: ᾱ = (1/N)
∑N

j=1 α̂j .

(ii) The bias: Bias(α̂) = ᾱ− α.

(iii) The mean-square error: MSE(α̂) = (1/N)
∑N

j=1(α̂j − α)2.

The quantities β̄, Bias(β̂) and MSE(β̂) are analogously defined and were also computed.
In particular, we generated N = 10, 000 random samples of different sizes n for several values
of α and β. Some simulation results are shown in Table 1, where it is included the mean, bias
and MSE of the simulated estimates together with the asymptotic variance of the estimators
calculated directly from the diagonal elements of (1/n)Σ(α, β), with Σ(α, β) given by Propo-
sition 3.2, and denoted by Var[α̂] and Var[β̂]. From the obtained results, it can be concluded
that the ML method provides acceptable estimates of the parameters, although it should be
noted that the ML method tended to slightly overestimate the value of both parameters in
the cases considered in the present study.
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ᾱ
B

ia
s(

α̂
)

M
S
E

(α̂
)

V
a
r[

α̂
]

β̄
B

ia
s(

β̂
)

M
S
E

(β̂
)

V
a
r[

β̂
]

ᾱ
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3.4. A real data application

In this subsection, a real data set illustrates the practical usefulness of the LEEG
distribution by showing that it may be a more appropriate model than other distributions
with support in the standard unit interval.

The data set is available from the personal website of Professor E.W. Frees1 and consists
of 73 observations on 7 variables. The data were collected from a questionnaire carried out
with the purpose of relating cost effectiveness to management philosophy of controlling the
company’s exposure to various property and casualty losses, after adjusting for company
effects such as size and industry type. These data have been previously analyzed by Schmit
and Roth [38], Frees [16, Chapter 6], Gómez-Déniz et al. [17] and Jodrá and Jiménez-Gamero
[23].

In this section, interest is centered on the variable FIRMCOST (divided by 100), which
is a measure of the cost effectiveness of the risk management practices of the firm. Based
on Subsection 3.1, the LEEG law was fitted to the variable FIRMCOST/100. The ML esti-
mates obtained were α̂ = 1.4322 and β̂ = 52.1069. It can also be checked that the correlation
coefficient between the theoretical and the empirical cumulative probabilities is 0.9956.

Additionally, we applied the following goodness-of-fit tests based on the empirical cdf:
the Cramér von Mises statistic W 2, the Watson statistic U2, the Anderson–Darling statistic
A2 and the Kolmogorov–Smirnov statistic D. A detailed definition together with simple
formulae for computing these statistics can be found in D’Agostino and Stephens[12, Chapter
4]. To get the p-values we applied a parametric bootstrap generating 10,000 bootstrap samples
(see Stute et al. [41] and Babu and Rao [6] for full details). We also applied two test based on
the empirical characteristic function [19, 20] by using the integral transformation, as proposed
in Meintanis et al. [30], taking as weight functions: the standard normal law, FC1, and the
pdf w(t) = {1− cos(t)}/πt2, which is the choice recommended in Epps and Pulley [14] (see
also Section 4 in [20]), FC2. The results are shown in Table 2 and suggest that the LEEG
law provides a satisfactory fit.

Table 2: Goodness-of-fit tests.

W 2 U2 A2 D FC1 FC2

Statistic value: 0.0571 0.0571 0.5133 0.0626 0.0011 0.1142
p-value: 0.2610 0.2610 0.1363 0.5320 0.1164 0.2663

The LEEG fitting was compared to the ones provided by other two-parameter dis-
tributions used to model data in the unit interval. Specifically, we considered the beta,
Kumaraswamy, Log–Lindley and transformed Leipnik distributions. In order to compare
these models, we calculated the Akaike information criterion AIC (see Akaike [4]), the con-
sistent Akaike information criterion CAIC (see Bozdogan [9]) and the Bayesian informa-

1
http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html,

filename: RiskSurvey.

http://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
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tion criterion BIC (see Schwarz [39]), which are defined as follows, AIC = 2m− 2 log L,
CAIC = m(1 + log n)− 2 log L and BIC = m[log n− log(2π)]− 2 log L, respectively, where
m is the number of parameters, n is the sample size and L denotes the maximized value of
the likelihood function. As it is well-known, the model with lowest values of AIC, CAIC and
BIC is preferred. For each fitted distribution, Table 3 shows the ML estimated parameters
together with the log-likelihood, AIC, CAIC and BIC values. Looking at Table 3, the LEEG
distribution provides the best fit. Moreover, the Vuong test [42] was applied to compare the
LEEG model to the beta, Kumaraswamy, Log–Lindley and transformed Leipnik distribu-
tions. In the four cases the Vuong statistic was very close to 0, so suggesting that all these
distributions can be considered equally close to the data. In this regard, we consider the
LEEG distribution an attractive alternative to the aforesaid models.

Table 3: Fitted distribution, ML estimates, log-likelihood, AIC, CAIC and BIC.

Distribution ML estimates log L AIC CAIC BIC

LEEG(α, β) α̂ = 1.4322

f(x; α, β) =
α(1 + β)xα−1

(1 + β xα)2
β̂ = 52.1069

93.63 −183.26 −176.68 −182.35

Beta(a, b) â = 0.6125
f(x; a, b) =

1

B (a, b)
xa−1(1− x)b−1

b̂ = 3.7978
76.11 −148.23 −141.65 −147.32

Kumaraswamy(a, b) â = 0.6648

f(x; a, b) = abxa−1(1− xa)b−1 b̂ = 3.4407
78.65 −153.30 −146.72 −152.40

Log–Lindley(a, b) â = 0.6906

f(x; a, b) = a[b + a(b− 1) log x]xa−1 b̂ = 0.0231
76.60 −149.20 −142.62 −148.30

Transformed Leipnik(µ, λ)
µ̂ = 0.0261

f(x; µ, λ) =
[x(1− x)]−

1
2

B
�

λ+1
2

, 1
2

�
�
1 +

(x− µ)2

x(1− x)

�−λ
2

λ̂ = 6.4061
80.51 −157.02 −150.43 −156.11

4. A REGRESSION MODEL FOR BOUNDED RESPONSES

Regression models are commonly used to model the mean of a response variable as a
function of a set of covariates (also called independent variables or regressors). As shown in
Proposition 2.3, the moments of the LEEG distribution can be expressed in terms of the Lerch
transcendent function, which implies that the mean does not possess a simple expression.
This fact makes difficult to build a regression model which relates the mean response with
covariates. By contrast, the expression of the quantiles of the LEEG distribution is quite
tractable, so our proposal is to use them to construct a regression model. In principle, we
could choose any quantile, but since the median is a robust measure of location and, in this
regard, it is considered as a competitor of the mean, we will choose the median.

As a first step towards the construction of the regression model, the LEEG distribution
is reparametrized in terms of the median Q2 by equating Q2 to a new parameter θ and solving
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the resultant equation for β. The resulting pdf is

(4.1) f(x;α, θ) =
αθα(1− θα)xα−1

[θα + (1− 2θα)xα]2
, 0 < x < 1, α > 0, 0 < θ < 1.

It should be noted that all properties studied for the parametrization (1.1) carry over for the
above one with β = (1− 2θα)/θα.

Let X1, ..., Xn be n independent random variables and denote by x1, ..., xn the observed
values. Assume that each Xi has pdf f(x;α, θi) given by (4.1). Suppose that the median
of Xi satisfies θi = g(zt

iγ), i = 1, ..., n, where zi = (zi1, ..., zik)t is the vector of covariates
associated to the response xi, γ = (γ1, ..., γk) is an unknown vector of regression coefficients
and g is the link function. It is assumed that the link function g is a strictly monotonic and
twice differentiable function. There are several possible choices for g satisfying the required
conditions, such as the logit, probit, log-log, Cauchy, etc.

From equation (4.1), the log-likelihood function of the model with covariates is given
by

`(α, γ) = n log α + (α− 1)
n∑

i=1

log xi + α
n∑

i=1

log θi +
n∑

i=1

log(1− θα
i )

−2
n∑

i=1

log(θα
i + xα

i − 2θα
i xα

i ).

The derivatives of `(α, γ) with respect to each parameter, which are required to compute the
ML estimates of the parameters, are given by

∂

∂α
`(α, γ) =

n

α
+

n∑
i=1

log xi +
n∑

i=1

log θi −
n∑

i=1

θα
i log θi

1− θα
i

−2
n∑

i=1

θα
i log θi + xα

i log xi − 2xα
i θα

i (log θi + log xi)
θα
i + (1− 2θα

i )xα
i

,

∂

∂γr
`(α, γ) = α

n∑
i=1

1
θi

∂

∂γr
θi − α

n∑
i=1

θα−1
i

1− θα
i

∂

∂γr
θi − 2α

n∑
i=1

(1− 2xα
i )θα−1

i

θα
i + (1− 2θα

i )xα
i

∂

∂γr
θi,

for r = 1, ..., k. The derivative ∂
∂γr

θi will depend on the chosen link function. For example,
if it is considered the logit link, which is given by

θi =
exp(zt

iγ)
1 + exp(zt

iγ)
,

then
∂

∂γr
θi = θi(1− θi)zir, i = 1, ..., n, r = 1, ..., k.

As in most regression models, for the proposed model it is possible to evaluate the
marginal effects that each covariate has on the conditional median, given the covariates, by
calculating (see, for example, [36, § 2.2.3])

(4.2) δij =
∂θi

∂zij
= θi(1− θi)γj , i = 1, ..., n, j = 1, ..., k.
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This marginal effect indicates that a small change in the jth covariate, say ν, increases or
decreases the conditional median θi by a quantity δijν + o(ν). As a summary measure of all
these k × n effects, one can calculate the average marginal effects that each covariate has on
the conditional median by evaluating the above derivative at θ̄ = θ(z̄), obtaining

δ̄j =
∂θ̄

∂zij
= θ̄(1− θ̄)γj , j = 1, ..., k.

For the practical use of these quantities, all parameters must be replaced by estimators.

As an application, we analyze the data set considered in Subsection 3.4. The full data
set consists of 73 observations on 7 variables: FIRMCOST, previously studied; ASSUME,
the per occurrence retention amount as a percentage of total assets; CAP, which indicates
that the firm owns a captive insurance company; SIZELOG, the logarithm of total assets;
INDCOST, a measure of the firm industry risk; CENTRAL, a measure of the importance of
the local managers in choosing the amount of risk to be retained; and SOPH, a measure of
the degree of importance in using analytical tools.

As response variable we took x =FIRMCOST/100 and the other variables were con-
sidered as covariates. An intercept was also included in the regression model. The data
were analyzed using the beta regression model and the LEEG regression model presented in
this paper. Following [17], the logit link was considered in all cases. This data set was also
analyzed in [17] by using the Log–Lindley regression model. Nevertheless, due to the problems
observed in [23], we will not consider such model in our study. The response variables x and
1− x were both studied. For the analysis of the beta regression model we used the package
betareg (see [11]) of the R programming language [37]; to obtain the ML estimates of the
parameters in the LEEG regression model we used the function optim of the R language.
Table 4 reports the value of the log-likelihood function for the models under consideration.

Table 4: Values the of the log-likelihood with covariates
for the responses x and 1− x.

x 1− x

Beta 87.72 87.72
LEEG 122.48 103.33

As expected, the values of the log-likelihood function for x and 1−x for the beta fitting
are identical, since if a random variable X has a beta law with parameters a and b, then 1−X

has a beta law with parameters b and a. On the other hand, the values of the log-likelihood
for x and 1−x for the LEEG fittings differ, since these laws do not possess the aforementioned
property of the beta distribution. Hence, if the value of the log-likelihood function is used
as a criterion for comparison, we see that the best fit is obtained for the LEEG regression
model for the response variable x.

In addition, we applied the Vuong test [42] for testing the null hypothesis that both
models are equally close to the actual model, against the alternative that one model is closer
than the other. The test rejected the null hypothesis in favor of the hypothesis that the
LEEG regression model is closer than the beta regression model (the p-value is 0.0012).
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We also compared the Pearson residuals of both models. Figure 2 displays them.
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Figure 2: Pearson residuals for the beta regression model (black)
and the LEEG regression model (white).

Table 5 displays the estimation results for the LEEG regression model with response
variable x. The standard errors of the parameter estimates were approximated by means
of the square root of the diagonal elements of the negative of the observed information
matrix, that is, the matrix whose entries are the second order derivatives of the log-likeli-
hood (its expression is omitted for the sake of brevity). The p-values of the Wald test for
testing the nullity of each parameter were calculated by using the normal approximation.

Table 5: Parameter estimates for the LEEG regression model
with response x and average marginal effects (a.m.e.).

Parameter Estimate S.E. t-Wald p-value a.m.e.

α 2.20257 0.22661 9.71975 0.0000
Intercept 3.98741 1.21128 3.29191 0.0010
ASSUME −0.01234 0.01216 −1.01482 0.3102 −0.00080
CAP −0.05257 0.22327 −0.23545 0.8139 −0.00340
SIZELOG −0.90907 0.12466 −7.29242 0.0000 −0.05884
INDCOST 2.34318 0.62296 3.76138 0.0002 0.15166
CENTRAL −0.13648 0.08385 −1.62766 0.1036 −0.00883
SOPH 0.00932 0.01965 0.47398 0.6355 0.00060

From these results, it can be inferred that the covariates SIZELOG and INDCOST have a
significant non-null effect on the response variable. These two covariates have the largest
average marginal effects, negative for SIZELOG, indicating that an increase in SIZELOG
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diminishes the median of the response variable, and positive for INDCOST, indicating that
an increase in INDCOST increases the median of the response variable.

Before ending this section we would like to remark that the lack of a simple expres-
sion for the quantiles of the classic beta distribution hampers the development of a quantile
regression based on it.

A. APPENDIX

This appendix is devoted to present a known result concerning a logarithmic integral.
Such result will be used to solve in a unified manner the integrals arising in Appendices B
and C.

For any real numbers a ≥ 0, s ≥ 1 and z > −1, denote by

(A.1) Γn(z, s, a) =
∫ 1

0

ua logs−1(1/u)
(1 + zu)n+1

du, n = 1, 2, ....

Jodrá and Jiménez-Gamero [22] showed that Γn(z, s, a) can be expressed as a finite sum
involving the Lerch transcendent function together with the generalized Stirling numbers of
the first kind. To be more precise, Mitrinović [31] defined the generalized Stirling numbers
of the first kind, Rj

n(ρ, τ), by means of the following generating function
n−1∏
j=0

(w − ρ− τj) =
n∑

j=0

Rj
n(ρ, τ)wj ,

where n is a non-negative integer and ρ, τ are complex numbers with τ 6= 0. Mitrinović [31]
expressed these numbers in terms of the best-known signed Stirling numbers of the first kind
Rj

n(0, 1) (see Abramowitz and Stegun [1, p. 824])

(A.2) Rj
n(ρ, τ) =

n−j∑
k=0

(
j + k

k

)
(−1)kρkτn−j−kRj+k

n (0, 1), ρ 6= 0,

which is important from a computational point of view since the numbers Rj
n(0, 1) are avail-

able in most computer algebra systems. Jodrá and Jiménez-Gamero [22, Theorem 2.1] estab-
lished that for any a ≥ 0, s ≥ 1 and z > −1,

(A.3) Γn(z, s, a) =
Γ(s)

Γ(n + 1)

n∑
j=0

Rj
n(a− n + 1, 1)Φ(−z, s− j, a + 1), n = 1, 2, ...,

which in the special case z = 0 becomes Γn(0, s, a) = Γ(s)/(a + 1)s. Additionally, (A.3) can
be expressed in terms of the polylogarithm function if a = 0, 1, ..., n− 1 (see [22, Corollary
2.6] and also [21]), specifically,

(A.4) Γn(z, s, a) =
Γ(s)

(−z)a+1Γ(n + 1)

n∑
j=1

Rj
n(a− n + 1, 1)Lis−j(−z).

It is interesting to note that the Lerch transcendent function includes as a particular case the
polylogarithm function, more precisely, Liλ(z) = zΦ(z, λ, 1) (see Apostol [5]). In particular,
the case λ = 1 corresponds to the natural logarithm, Li1(z) = − log (1− z), and the case
λ = 2 is known as dilogarithm or polylogarithm function of order two.
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B. APPENDIX

Here, we give the proofs of the results stated in Section 2.

Proof of Proposition 2.1: The conditional cdf of the random variable V |N = n is
FV |N=n(v;α) = 1− (1− vα)n, with 0 < v < 1, α > 0 and n = 1, 2, .... Then, it is clear the
following

P (V ≤ v,N = n) = [1− (1− vα)n]
(

1− 1
1 + β

)n−1 1
1 + β

,

where β > 0. Hence, part (i) follows from the fact that the marginal cdf of V is

FV (v;α, β) =
∞∑

n=1

P (V ≤ v,N = n) =
(1 + β)vα

1 + β vα
, 0 < v < 1, α > 0, β > 0.

The proof of part (ii) follows a similar pattern. The conditional cdf of W |M = m is
FW |M=m(w;α) = wα m, with 0 < w < 1, α > 0 and m = 1, 2, .... Therefore, P (W ≤w,M = m)
= wα m(−β)m−1(1 + β), where β ∈ (−1, 0). Finally, considering that FW (w;α, β) =∑∞

m=1 P (W ≤ w,M = m) the result is obtained.

Proof of Proposition 2.2: The first derivative of (1.1) is given by

(B.1)
∂

∂x
f(x;α, β) = − α(1 + β)

(1 + βxα)3
[β(1 + α)xα − (α− 1)].

The solution of the equation (∂/∂x)f(x;α, β) = 0 is x0 =
(

α− 1
(1 + α)β

)1/α

. Moreover, after

some calculations, it can be checked that

∂2

∂x2
f(x;α, β)

∣∣∣∣
x=x0

= −(1 + β)(1 + α)2(α− 1)2

8αβ
.

On the one hand, if α > 1 and β > (α− 1)/(1 + α) then x0 ∈ (0, 1) and ∂2

∂x2 f(x;α, β)
∣∣
x=x0

< 0
which implies that x0 is the mode of X. In addition, from (B.1), it can be seen that (1.1)
is an increasing function if α > 1 and β ∈ (−1, (α− 1)/(1 + α)] since (∂/∂x)f(x;α, β) > 0.
This proves part (i). On the other hand, if 0 < α < 1 and β < (α− 1)/(1+α) then x0 ∈ (0, 1)
and ∂2

∂x2 f(x;α, β)
∣∣
x=x0

> 0 which implies that (1.1) achieves a minimum at x0. It can also be
checked that (1.1) is a decreasing function if 0 < α < 1 and β ≥ (α− 1)/(1 + α). This proves
part (ii). Part (iii) is directly obtained from (1.1).

Proof of Proposition 2.3: For any k = 1, 2, ..., the k-th moment of X can be com-
puted as follows

E[Xk] =
∫ 1

0
xkf(x;α, β)dx =

∫ 1

0
xk α(1 + β)xα−1

(1 + β xα)2
dx = (1 + β)

∫ 1

0

uk/α

(1 + β u)2
du,

where in the last equality we have made the change of variable xα = u. Hence, the k-th
moment of X can be rewritten as below

E[Xk] = (1 + β)
∫ 1

0

uk/α

(1 + β u)2
du = (1 + β)Γ1(β, 1, k/α),
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where Γ1 is given by equation (A.1). Using equation (A.3), we have

Γ1(β, 1, k/α) = R1
1(k/α, 1)Φ

(
−β, 0, 1 +

k

α

)
+ R0

1(k/α, 1)Φ
(
−β, 1, 1 +

k

α

)
.

By virtue of (A.2), R1
1(k/α, 1) = 1 and R0

1(k/α, 1) =−k/α since R0
1(0, 1) = 0 and R1

1(0, 1) = 1.
Moreover, Φ(−β, 0, 1 + k/α) = 1/(1 + β). Hence, the result is obtained.

Proof of Proposition 2.4: The result is obtained directly by solving the equation
F (x;α, β) = u, 0 < u < 1, with respect to the variable x.

Proof of Proposition 2.5: For any n = 1, 2, ..., the k-th moment of the largest order
statistic Xn:n is given by

E[Xk
n:n] = n

∫ 1

0
xk [F (x;α, β)]n−1 f(x;α, β)dx = n(1 + β)n

∫ 1

0

uk/α+n−1

(1 + βu)n+1
du,

where in the second equality we have made the change of variable u = xα. Now, taking into
account equation (A.1), E[Xk

n:n] can be written as follows

E[Xk
n:n] = n(1 + β)nΓn

(
β, 1,

k

α
+ n− 1

)
.

Finally, the claimed result follows by applying equation (A.3) in the above equation.

Proof of Proposition 2.6: Let us denote v(x) = ∂
∂x log

(
f(x;α,β2)
f(x;α,β1)

)
= num

den , where
den = x(1 + β1x

α)(1 + β2x
α) and num = 2αxα(β1 − β2). It can be checked that den > 0

for any x ∈ (0, 1), α > 0 and β1, β2 > −1 and also that num ≥ 0 for any x ∈ (0, 1) and α > 0
if and only if β1 ≥ β2. Since v(x) ≥ 0 implies that f(x;α,β2)

f(x;α,β1) is non-decreasing in x, the result
follows.

C. APPENDIX

Here, we give the proofs of the results presented in Subsection 3.2.

Proof of Proposition 3.1: The Hessian matrix of log L(α, β) is defined by

H(α, β) =


∂2 log L(α, β)

∂α2

∂2 log L(α, β)
∂α∂β

∂2 log L(α, β)
∂β∂α

∂2 log L(α, β)
∂β2

,

with

∂2

∂α2
log L(α, β) = − n

α2
− 2β

n∑
i=1

xα
i (log xi)2

(1 + β xα
i )2

,(C.1)

∂2

∂α∂β
log L(α, β) = −2

n∑
i=1

xα
i log xi

(1 + β xα
i )2

,(C.2)

∂2

∂β2
log L(α, β) = − n

(1 + β)2
+ 2

n∑
i=1

x2α
i

(1 + β xα
i )2

.(C.3)
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From (C.1)–(C.3), the Fisher information matrix, I(α, β) = −E[H(α, β)], is given by

I(α, β) =


n

α2
+ 2βn

∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx 2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

2n

∫ 1

0

xα log x

(1 + β xα)2
f(x)dx

n

(1 + β)2
− 2n

∫ 1

0

x2α

(1 + β xα)2
f(x)dx

,

where we have used the notation f(x) instead of f(x;α, β) for brevity. Below, we consider
each integral expression in the elements of I(α, β). Let us first assume that β 6= 0. Making
the change of variable u = xα and taking into account (A.1), those integrals can be expressed
as follows ∫ 1

0

xα(log x)2

(1 + β xα)2
f(x)dx =

1 + β

α2

∫ 1

0

u(log(1/u))2

(1 + β u)4
du =

1 + β

α2
Γ3(β, 3, 1),∫ 1

0

xα log x

(1 + β xα)2
f(x)dx = −1 + β

α

∫ 1

0

u log(1/u)
(1 + β u)4

du = −1 + β

α
Γ3(β, 2, 1),∫ 1

0

x2α

(1 + β xα)2
f(x)dx = (1 + β)

∫ 1

0

u2

(1 + β u)4
du = (1 + β)Γ3(β, 1, 2).

Now, by virtue of (A.4) and after some calculations we get

Γ3(β, 3, 1) = − 1
3β

(
Li2(−β)

β
+

1
1 + β

)
,

Γ3(β, 2, 1) =
1
6β

(
log (1 + β)

β
− 1

(1 + β)2

)
,

Γ3(β, 1, 2) =
1

3(1 + β)3
,

where Li2 denotes the polylogarithm function of order two. Now, the stated result is obtained
by substituting in the elements of I(α, β) the value of the corresponding integrals.

The result for β = 0 is derived by means of routine calculations, so we omit the details.

Proof of Proposition 3.2: The result follows by using standard large sample theory
results for ML estimators (for example, by applying Lehmann and Casella [29, Theorem 5.1,
p. 463]). In particular, the asymptotic covariance matrix of the ML estimators, Σ, is obtained
by inverting the expected Fisher information matrix (1/n)I(α, β), with I(α, β) provided in
Proposition 3.1.
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[22] Jodrá, P. and Jiménez-Gamero, M.D. (2014). On a logarithmic integral and the moments
of order statistics from the Weibull-geometric and half-logistic families of distributions, Journal
of Mathematical Analysis and Applications, 410(2), 882–890.
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