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1. INTRODUCTION

Many macroeconomic and financial time series vary over wide range around mean,
and very large or small prediction errors may occur in practice. Since financial markets are
sensitive to political events, speculations, changes in monetary policy etc., this variability
in the error terms may occur. This implies that the variance of the errors may not be
constant and it changes over time so the errors can be serially correlated in financial data.
Additionally, one of the uncertain and decisive factors in financial time series analysis is the
volatility as a measure of dispersion and an indicator of magnitude of fluctuations of the
asset price series. Hence, measuring volatility as well as construction of valid predictions for
future returns and volatilities have an important role in assessing risk and uncertainty in
the financial market. Since volatility is the unobservable component of financial time series,
it should be modeled correctly to obtain efficient parameter estimation and improve the
accuracy of prediction intervals for assessing uncertainty in risk management. In this context,
the generalized autoregressive conditionally heteroscedastic (GARCH) model proposed by [7]
is one of the most commonly used technique for modeling volatility and obtaining dynamic
prediction intervals for returns as well as volatilities. See [4], [22], [13] and [28] for recent
studies on GARCH model in modelling volatility. Also see [1], [2], [3], and [15] for detailed
information about construction of prediction intervals for future returns in financial time
series analysis. However, those works only consider point forecast of volatility even though
prediction intervals provide better inference taking into account uncertainty of unobservable
sequence of volatilities. On the other hand, construction of prediction intervals requires some
distributional assumptions which are generally unknown in practice. Moreover, they can be
affected due to any departure from the assumptions and may lead us to unreliable results.
One remedy to construct prediction intervals without considering distributional assumptions
is to apply the well known resampling methods, such as the bootstrap.

For the serially correlated data, the method of block bootstrap is one of the most
general tool to approximate the properties of estimators. In this technique the underlying
idea is to construct a resample of the data of size n by dividing the data into several blocks
with a sufficiently large block length ` and choosing among them till the bootstrap sample is
obtained. Then, the dependence structure of the original data is attempted to be captured
by these ` consecutive observations in each block drawn independently. The commonly used
block bootstrap procedures called “non-overlapping” and “overlapping” are first proposed
by [16] in the context of spatial data. Then [10] and [20], respectively, adapted the non-
overlapping block bootstrap (NBB) and moving block bootstrap (MBB) approaches to the
univariate time series context. In addition to these methods, [26] introduced the circular block
bootstrap (CBB) method by wrapping the data around a circle before blocking them. Also,
the stationary bootstrap (SB) method which deals with random block lengths is proposed
by [25]. Moreover, Ordered non-overlapping block bootstrap (ONBB), which orders the
bootstrapped blocks according to given labels to each original block, was suggested by [6]
to improve the performance of the block bootstrap technique by taking into account the
correlations between the blocks.

Bootstrap-based prediction intervals of autoregressive conditionally heteroscedastic
(ARCH) model for future returns and volatilities are proposed by [23] and [27]. [24] further
extends the previous works to GARCH(1, 1) model. Later, [11] suggests computationally
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efficient bootstrap prediction intervals for ARCH and GARCH processes in the context for
financial time series. All of these methods are based on resampling the residuals. The block
bootstrap methods are not suitable for construction of prediction intervals in conditionally
heteroskedastic time series models because of their poor finite sample performances. On
the other hand, it is possible to construct valid block bootstrap based prediction intervals for
GARCH processes by using the autoregressive-moving average (ARMA) representation of the
GARCH models. For instance, [5] proposed to use the ONBB method to obtain prediction
intervals for GARCH process and they obtained better prediction intervals for returns and
volatilities compared to the existing residual based bootstrap method(s). Also, [19] intro-
duced a stationary bootstrap prediction interval for GARCH models. In this paper, following
the idea of [19], we propose a new bootstrap algorithm to obtain prediction intervals for
future returns and volatilities under GARCH processes. In summary, our extension works
as follows: First, we use the squares of the GARCH process, which have the ARMA rep-
resentation, to make the parameter estimation process linear. The ordinary least squares
estimators of the ARMA model are calculated by a high order autoregressive model of order
m, and the residuals are computed. Then the block bootstrap methods are applied to the
data to obtain the bootstrap sample of the returns which are used to calculate the bootstrap
estimators of the ARMA coefficients and the bootstrap sample of the volatilities. Finally, the
future values of the returns and volatilities of the GARCH process are obtained by means of
bootstrap replicates and quantiles of the Monte Carlo estimates of the generated bootstrap
distribution.

The rest of the paper is organized as follows. We describe our proposed methods in
Section 2. An extensive Monte Carlo simulation is conducted to examine the finite sample
performance of the proposed methods and the results are presented in Section 3. In Section 4,
the JPY/USD daily exchange rate data is analyzed using the new methods and the results
are presented. Section 5 concludes the paper.

2. METHODOLOGY

We use ARMA parameterization of a GARCH model and its least squares (LS) esti-
mators in order to employ block bootstrap methods for constructing prediction intervals.

The GARCH(p, q) process considered in this study has the following representation:

yt = σtεt,

σ2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j , t = 1, ..., T,(2.1)

where {εt} is a sequence of white noise random variables and E(ε4) < ∞, ω, αi and βj are
unknown parameters satisfying ω > 0, αi ≥ 0 and βj ≥ 0 for i = 1, ..., p and j = 1, ..., q. The
stochastic process σt is assumed to be independent of εt. Throughout this paper, we assume
that the process {yt} is strictly stationary, i.e.,

∑r
i=1(αi +βi) < 1, where r = max(p, q), αi = 0

for i > p and βi = 0 for i > q; see [8] and [9]. A GARCH(p, q) process {yt} is represented in
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the form of ARMA as follows:

(2.2) y2
t = ω +

r∑
i=1

(αi + βi)y2
t−i + νt −

q∑
j=1

βjνt−j ,

where the innovation νt = y2
t − σ2

t is a white noise (not i.i.d. in general) and identically
distributed under the strict stationary assumption of yt. Using the unconditional mean of
the ARMA model given in (2.2), we have

(2.3) E(y2
t ) =

ω

1−
∑r

i=1(αi + βi)
.

According to [18], the LS estimators of an ARMA model are obtained as follows:

(a) First, a high order autoregressive model of order m, AR(m), with m > max(p, q),
is fitted to the data by Yule-Walker method to obtain ν̂t, where m is determined
from the data by using Akaike information criteria or Bayesian information crite-
ria.

(b) Then a linear regression of y2
t onto y2

t−1, ..., y
2
t−r, ν̂t−1, ..., ν̂t−q is fitted to estimate

the parameter vector φ = ((α1 + β1), ..., (αr + βr),−β1, ...,−βq)′.

In matrix notations, let ZT and X be as follows:

ZT =

y2
m+1
...

y2
T


and

X =

 y2
m y2

m−1 ... y2
m−p+1 ν̂m ν̂m−1 ... ν̂m−q+1

...
...

. . .
...

...
...

. . .
...

y2
T−1 y2

T−2 ... y2
T−p ν̂T−1 ν̂T−2 ... ν̂T−q

 .

Then, the LS estimator φ̂ = ( ̂(α1 + β1), ..., ̂(αr + βr),−β̂1, ...,−β̂q)′ is obtained as

(2.4) φ̂ = (X
′
X)−1X

′
ZT ,

given X
′
X is non-singular. The corresponding α̂i’s are calculated as α̂i = (α̂i + βi)− β̂i, for

i = 1, ..., p.

For clarity, we next describe the complete algorithm of the proposed block bootstrap
prediction intervals for future returns and volatilities.

Step 1. For a realization of GARCH(p, q) process, {y1−r, ..., y0, y1, ..., yT }, calculate
the LS estimates of ARMA coefficients as in (2.4), and the corresponding ω̂

is calculated by using (2.3) such that ω̂ = E(ŷ2
t )

[
1−

∑r
i=1

̂(αi + βi)
]
, where

E(ŷ2
t ) = T−1

∑T
t=1 y2

t .

Step 2. For t = r, ..., T , calculate the residuals ε̂t = yt/σ̂t where σ̂2
t = ω̂+

∑p
i=1 α̂iy

2
t−i+∑q

j=1 β̂j σ̂
2
t−j and σ̂2

0 = ω̂/(1−
∑r

i=1(α̂i + β̂i)). Let F̂ε be the empirical dis-
tribution function of the centered and rescaled residuals.
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Step 3. Compute the error term as ξ̂ = ZT −Xφ̂ and construct the design matrix
Y = (X, ξ).

Y =

y2
t−1 y2

t−2 ... y2
t−r ν̂t−1 ν̂t−2 ... ν̂t−q ξ̂t

...
...

. . .
...

...
...

. . .
...

...
y2

T−1 y2
T−2 ... y2

T−r ν̂T−1 ν̂T−2 ... ν̂T−q ξ̂T

 .

Let Yt = (y2
t−1, y

2
t−2, ..., y

2
t−r, ν̂t−1, ν̂t−2, ..., ν̂t−q, ξ̂t), t = 1, ..., T , denotes the

tth row of the design matrix Y. Let also B(k), for k = 1, 2, 3, respectively, rep-
resents the block vectors of NBB, MBB and CBB methods obtained from Y
such that B(1)

j = {Y(j−1)`+1, ..., Yj`} where b = bT/`c and j = 1, ..., b, B(2)
j =

{Yj , ..., Yj+l−1} where 1≤ j≤N and N = T− `+1 and B(3)
j = {Yj , ..., Yj+l−1}

where 1 ≤ j ≤ T . Then obtain the block bootstrap observations {Y ∗
1 , ..., Y ∗

T },
where Y∗

t = (y2∗
t−1, y

2∗
t−2, ..., y

2∗
t−r, ν̂

∗
t−1, ν̂

∗
t−2, ..., ν̂

∗
t−q, ξ̂

∗
t ), by sampling with

replacement from B(k). The ONBB and SB observations are obtained as
follows:

– ONBB observations are obtained as ordering the bootstrapped non-over-
lapping blocks according to given labels to each original block. Suppose
the data is divided into the four independent non-overlapping blocks.
Then, the labels are determined as B1 = 1, B2 = 2, B3 = 3 and B4 = 4,
and let the bootstrapped blocks are B∗

1 = B4, B
∗
2 = B2, B

∗
3 = B3 and B∗

4 =
B3. As a consequence, the ONBB data is obtained as {B2

...B3
...B3

...B4}.

– Let B(i`) = (Yi, ..., Yi+`−1), for i ≥ 1, be the blocks of ` consecutive ob-
servations starting from Yi. The observed time series data is wrapped
around a circle in order to ensure that all starting points have equal
probability of selection. Let I1, I2, ... be the independently and identi-
cally distributed discrete uniform random variables on {1, ..., T} so that
P (I1 = i) = 1/T , for i = 1, ..., T . Let also L1, L2, ... be the i.i.d. geometric
random variables with parameter ρ such that 0 < ρ < 1 and the proba-
bility mass function P (L1 = `) = ρ(1− ρ)`−1, for ` = 1, 2, .... We assume
that two sets {I1, I2, ...} and {L1, L2, ...} are independent and ρ → 0 as
Tρ →∞. Then, the SB data {Y ∗

1 , ..., Y ∗
T } are generated by sampling from

{BI1L1 , BI2L2 , ...} where BIrLr = {YIr , ..., YIr+Lr−1} for r ≥ 1.

Step 4. Let X∗ be the bootstrap analogue of X such that

X∗ =

 y∗2m y∗2m−1 ... y∗2m−p+1 ν̂∗m ν̂∗m−1 ... ν̂∗m−q+1
...

...
. . .

...
...

...
. . .

...
y∗2T−1 y∗2T−2 ... y∗2T−p ν̂∗T−1 ν̂∗T−2 ... ν̂∗T−q

 .

Then calculate the block bootstrap estimators of ARMA coefficients as

φ̂∗ = (X∗′X∗)−1X∗′Z∗
T = ( ̂(α1 + β1)

∗
, ..., ̂(αr + βr)

∗
,−β̂∗

1 , ...,−β̂∗
q )′,

where Z∗
T =X∗φ̂+ ξ̂. Also, calculate the corresponding α̂∗

i ’s as α̂∗
i = (α̂i +βi)∗

− β̂∗
i , for i = 1, ..., p, and ω̂∗’s as in Step 1 but using bootstrap observations.

Step 5. Obtain block bootstrap volatilities as σ̂2∗
t = ω̂∗ +

∑p
i=1 α̂∗

i y
2∗
t−i +

∑q
j=1 β̂∗

j σ̂2∗
t−j

with σ̂2∗
0 = ω̂/(1−

∑r
i=1(α̂i + β̂i)).
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Step 6. Calculate h = 1, 2, ... steps ahead block bootstrap future returns and volatil-
ities with the following recursions:

σ̂2∗
T+h = ω̂∗ +

p∑
i=1

α̂∗
i y

2∗
T+h−i +

q∑
j=1

β̂∗
j σ̂2∗

T+h−j ,

y∗T+h = σ̂2∗
T+hε̂∗T+h,

where y∗T+h = yT+h for h ≤ 0 and ε̂∗T+h is randomly drawn from F̂ε.

Step 7. Repeat Steps 3-6 B times to obtain bootstrap replicates of returns and volatil-
ities {y∗,1T+h, ..., y∗,BT+h} and {σ̂2∗,1

T+h, ..., σ̂2∗,B
T+h} for each h. Note that B denotes

the number of bootstrap replications.

As noted in [24], the one-step conditional variance is perfectly predictable if the model
parameters are known, and the only uncertainty which is caused by the parameter estimation,
is associated with the prediction of σ2

T+1. On the other hand, there are further uncertainties
about future errors when predicting two or more step ahead variances. Thus, it is more inter-
esting issue to have prediction intervals for future volatilities. Now, let G∗

y(k) = P (y∗T+h ≤ k)
and G∗

σ2(k) = P (σ̂∗2
T+h ≤ k) be the block bootstrap distribution functions of unknown dis-

tribution functions of yT+h and σ2
T+h, respectively. Also let G∗

y,B(k) = #(y∗,bT+h ≤ k)/B and
G∗

σ2,B(k) = #(σ̂2∗,b
T+h ≤ k)/B, for b = 1, ..., B, be the corresponding Monte Carlo (MC) esti-

mates. Then, the 100(1− γ)% bootstrap prediction intervals for yT+h and σ2
T+h, respectively,

are given by

[
LB∗

y,B, UB∗
y,B

]
=

[
Q∗

y,B(γ/2), Q∗
y,B(1− γ/2)

]
,[

LB∗
σ2,B, UB∗

σ2,B

]
=

[
Q∗

σ2,B(γ/2), Q∗
σ2,B(1− γ/2)

]
,

where Q∗
y,B = G∗−1

y and Q∗
σ2,B = G∗−1

σ2 .

3. NUMERICAL RESULTS

We performed a simulation study to investigate the performances of the block boot-
strap prediction intervals constructed through the GARCH(1, 1) model given in (3.1) below,
and we compared our results with the method proposed by [24] (abbreviated as “PRR”).
In brief, the PRR method uses quasi-maximum likelihood method to estimate the param-
eters and then, uses residual-based resampling to construct prediction intervals for future
returns and volatilities. The comparison was made through the coverage probabilities and
length of prediction intervals. It is worth the mention that we also checked the performances
of the conventional block bootstrap methods. Roughly, we observed the coverage probabil-
ities of other block bootstrap methods range in between 90%-94% for future returns while
those range only in between 25%-60% for future volatilities. These results are not shown to
save space, but are available from the authors upon request.
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To discuss the numerical study we present here, let us start with the following
GARCH(1, 1) model:

yt = σtεt

σ2
t = 0.05 + 0.1y2

t−1 + 0.85σ2
t−1,(3.1)

where εt follows a N(0, 1) distribution. The significance level γ is set to 0.05 to obtain 95%
prediction intervals for future returns and volatilities. Since the block bootstrap methods are
sensitive to the choice of the block length `, we choose three different block lengths in our
simulation study: T 1/3, T 1/4, T 1/5 as proposed by [17]. Let h = 1, 2, ..., s, s ≥ 1, be defined
as the lead time. We obtain the prediction intervals for next s = 20 observations. The
experimental design is similar to those of [24] which is as follows:

Step 1. Simulate a GARCH(1, 1) series with the parameters given in equation (3.1),
for h = 1, ..., s, generate R = 1000 future values yT+h and σ2

T+h to calcu-
late the average coverage probabilities and interval lengths (as well as their
standard errors) for the prediction intervals.

Step 2. Calculate bootstrap future values y∗,bT+h and σ2∗,b
T+h for h = 1, ..., s and b =

1, ..., B. Then estimate the coverage probabilities (C∗) of bootstrap predic-
tion intervals for y∗T+h and σ2∗

T+h as

C∗
yT+h

=
1
R

R∑
r=1

1{Q∗
yT+h

(γ/2) ≤ y∗,rT+h ≤ Q∗
yT+h

(1− γ/2)},

C∗
σ2

T+h
=

1
R

R∑
r=1

1{Q∗
σ2

T+h
(γ/2) ≤ σ2∗,r

T+h ≤ Q∗
σ2

T+h
(1− γ/2)},

where 1 represents the indicator function. The corresponding interval lengths
(L∗) are calculated by

L∗
yT+h

= Q∗
yT+h

(1− γ/2)−Q∗
yT+h

(γ/2),

L∗
σ2

T+h
= Q∗

σ2
T+h

(1− γ/2)−Q∗
σ2

T+h
(γ/2).

Step 3. Repeat Steps 1-2, MC = 1000 times to calculate the average values of C∗
yT+h

,
C∗

σ2
T+h

, L∗
yT+h

and L∗
σ2

T+h
.

Our results showed that the accuracy of the prediction intervals for volatilities are
sensitive to the choice of block length parameter `. The higher coverage probabilities are
obtained for all the methods when ` = T 1/5 is used, therefore to save space we present only
the results obtained for the choices of block length parameter ` = T 1/5. Table 1 summarizes
the simulation results. More detailed results are presented in Figures 1–4. Our findings show
that ONBB outperforms PRR and other block bootstrap methods in general. For coverage
probabilities of future returns (see Figure 1), the performances of all the methods are almost
the same. Also, all the proposed methods provide competitive interval lengths for returns (see
Figure 3). For the prediction intervals of volatilities (please see Figure 4), the performance of
ONBB is always better than PRR and other block bootstrap methods in small sample sizes
especially for short-term forecasts, and it outperforms other methods also in large samples.
PRR has better performances compared to non-ordered block bootstrap methods for short
term forecasts, and all the methods have similar performances for long term forecasts. We
note that the results obtained by MBB and CBB methods are quite similar, therefore to make
the results more readable we present the results only for the CBB method.
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Table 1: Prediction intervals for returns and volatilities of GARCH(1, 1) model.

Lead
time

Sample
size

Method

Average coverage
for return

(SE)

Average length
for return

(SE)

Average coverage
for volatility

(SE)

Average length
for volatility

(SE)

T Empirical 0.95 3.814 0.95 —

PRR 0.945 (0.021) 3.748 (0.874) 0.904 (0.295) 0.649 (0.520)
ONBB 0.943 (0.022) 3.690 (0.704) 0.949 (0.220) 0.720 (0.592)

300 NBB 0.941 (0.041) 3.739 (0.562) 0.847 (0.360) 0.986 (0.528)
CBB 0.941 (0.042) 3.737 (0.558) 0.850 (0.357) 0.991 (0.536)

1 SB 0.941 (0.042) 3.731 (0.564) 0.846 (0.361) 1.001 (0.544)

PRR 0.946 (0.011) 3.800 (0.863) 0.952 (0.214) 0.181 (0.194)
ONBB 0.948 (0.015) 3.815 (0.793) 0.995 (0.070) 0.803 (0.740)

3000 NBB 0.948 (0.045) 3.889 (0.343) 0.892 (0.310) 1.224 (0.297)
CBB 0.948 (0.046) 3.886 (0.340) 0.897 (0.304) 1.230 (0.297)
SB 0.948 (0.045) 3.888 (0.347) 0.885 (0.319) 1.232 (0.300)

T Empirical 0.95 3.946 0.95 1.389

PRR 0.943 (0.026) 3.846 (0.712) 0.902 (0.117) 1.564 (1.387)
ONBB 0.938 (0.025) 3.723 (0.530) 0.921 (0.113) 1.541 (1.181)

300 NBB 0.937 (0.032) 3.738 (0.497) 0.898 (0.141) 1.547 (0.943)
CBB 0.937 (0.032) 3.736 (0.503) 0.902 (0.136) 1.549 (0.944)

10 SB 0.936 (0.032) 3.721 (0.499) 0.896 (0.141) 1.516 (0.923)

PRR 0.946 (0.012) 3.875 (0.604) 0.941 (0.036) 1.354 (0.653)
ONBB 0.947 (0.014) 3.867 (0.584) 0.955 (0.059) 1.582 (0.967)

3000 NBB 0.947 (0.029) 3.901 (0.270) 0.939 (0.097) 1.670 (0.531)
CBB 0.947 (0.029) 3.907 (0.275) 0.939 (0.098) 1.669 (0.533)
SB 0.947 (0.029) 3.897 (0.278) 0.932 (0.103) 1.647 (0.541)

T Empirical 0.95 3.948 0.95 1.661

PRR 0.940 (0.026) 3.876 (0.647) 0.881 (0.122) 1.771 (1.515)
ONBB 0.935 (0.026) 3.741 (0.507) 0.903 (0.119) 1.646 (0.990)

300 NBB 0.934 (0.029) 3.746 (0.502) 0.895 (0.128) 1.635 (0.911)
CBB 0.934 (0.029) 3.740 (0.498) 0.898 (0.125) 1.640 (0.900)

20 SB 0.933 (0.029) 3.727 (0.499) 0.895 (0.126) 1.623 (0.919)

PRR 0.946 (0.012) 3.907 (0.444) 0.940 (0.033) 1.634 (0.627)
ONBB 0.946 (0.014) 3.895 (0.460) 0.949 (0.063) 1.861 (0.972)

3000 NBB 0.946 (0.020) 3.910 (0.255) 0.948 (0.073) 1.876 (0.595)
CBB 0.946 (0.020) 3.913 (0.255) 0.948 (0.071) 1.872 (0.583)
SB 0.946 (0.020) 3.900 (0.259) 0.946 (0.073) 1.859 (0.598)
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Figure 1: Estimated coverage probabilities of returns. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB
vs PRR. Solid line represents the empirical coverage. Dashed line and
dotted line represent the coverage probabilities obtained using PRR and
proposed methods, respectively.
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Figure 2: Estimated coverage probabilities of volatilities. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical coverage. Dashed line and dotted line rep-
resent the coverage probabilities obtained using PRR and proposed methods,
respectively.



Block Bootstrap Prediction Intervals for GARCH Processes 407

5 10 15 20

3
.5

3
.8

n = 300

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

n = 900

Lead time

L
e

n
g

th
5 10 15 20

3
.5

3
.8

n = 1500

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

n = 3000

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20
3

.5
3

.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

5 10 15 20

3
.5

3
.8

Lead time

L
e

n
g

th

Figure 3: Estimated lengths of prediction intervals of returns. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical interval lengths. Dashed line and dotted
line represent the interval lengths obtained using PRR and proposed methods,
respectively.
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Figure 4: Estimated lengths of prediction intervals of volatilities. First line: ONBB vs PRR,
second line: NBB vs PRR, third line: CBB vs PRR, fourth line: SB vs PRR.
Solid line represents the empirical interval lengths. Dashed line and dotted line
represent the interval lengths obtained using PRR and proposed methods, respec-
tively.
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We also compared our proposed algorithm with the PRR in terms of their computing
times. Let c1 and c2 be the obtained computing times for PRR and proposed algorithm,
respectively. Figure 5 represents the ratio of computing times, c1/c2, for various sample sizes
based on B = 1000 bootstrap replications and only one Monte Carlo simulation. As presented
in Figure 5, the proposed algorithm has considerably less computational time such that PRR
requires about 36–12 times more computing time (in small and large samples, respectively)
than the proposed algorithm.
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Figure 5: Ratio of the estimated computing times for PRR and proposed algorithm.

4. CASE STUDY

The JPY/USD daily exchange rate data were obtained starting from 3rd January,
2011 and ending on 30th April, 2015 (available at https://www.stlouisfed.org/). After
excluding observations on weekends and inactive days, our final data consisted a total of
1071 observations. The daily logarithmic returns were obtained as yt = 100 ∗ log(Pt/Pt−1),
where Pt was the closing price on t-th day. The time series plots of the exchange rates and
returns are presented in Figure 6. We checked the stationary status of the return series
by applying the Ljung-Box and Augmented Dickey-Fuller t-statistic tests and small p-values
reject the null hypothesis against stationary alternative and suggest that the return series
is a mean-zero stationary process. Table 2 reports the sample statistics of yt series, and it
shows that the estimated kurtosis is higher than 3 which indicates that the distribution of
the returns was leptokurtic. Next, we checked for the Gaussianity of the return series and the
p-value = 0.000 of Jarque-Bera test indicated that yt was not Gaussian. Further, we performed
the Box-Pierce test to test for auto-correlations in the absolute and squared returns and
smaller p-values indicated that the absolute and squared returns are highly auto-correlated.

https://www.stlouisfed.org/


410 Beste Hamiye Beyaztas and Ufuk Beyaztas

2011 2012 2013 2014 2015

80
90

10
0

11
0

12
0

Year

D
ai

ly
 e

xc
ha

ng
e 

ra
te

2011 2012 2013 2014 2015

−
4

−
2

0
2

4

Year

D
ai

ly
 r

et
ur

n

Figure 6: Time series plots of JPY/USD daily exchange rates and returns
from 3rd January, 2011 to 30th April, 2015.

Table 2: Sample statistics for yt.

T Mean Median SD Skewness Kurtosis Min. Max.

1070 0.04 0.01 0.58 0.64 7.21 −2.13 3.34

The auto-correlations of returns, absolute and squared returns are presented in Table 3. All of
our preliminary exploratory analyses suggested the presence of conditional heteroscedasticity
in the series. To find the optimal lag for the GARCH model to model the return series
we defined many possible subsets of the GARCH(p, q) models with different p and q values.
To choose the best model we used Akaike information (AIC) criterion (since it is proposed
to determine the best model for forecasting) and the results show that GARCH(1, 1) model
is optimal according to AIC.

Table 3: Autocorrelations of yt at lag k, k = 1, 2, 5, 10, 16, ..., 20.

Autocorrelations r(1) r(2) r(5) r(10) r(16) r(17) r(18) r(19) r(20)

yt 0.008 −0.006 −0.009 −0.027 −0.085 0.015 −0.016 0.011 0.097
|yt| 0.117 0.107 0.111 0.125 0.119 0.070 0.084 0.132 0.096
y2

t 0.094 0.091 0.066 0.085 0.070 0.027 0.021 0.097 0.083
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To obtain out-of sample prediction intervals for the real data, we divide the full data
into the following two parts: The model is constructed based on the observations from 3rd
January, 2011 to 19th March, 2015 (1041 observations in total) to calculate 30 steps ahead
predictions from 20th March to 30th April, 2015 and compare with the actual values. The
fitted models for the PRR and proposed block bootstrap methods are obtained as in equations
(4.1) and (4.2), respectively:

y2
t = 0.0054 + 0.0569y2

t−1 + 0.9283σ̂2
t−1,(4.1)

y2
t = 0.0150 + 0.9556y2

t−1 + νt − 0.8805νt−1,(4.2)

where ω̂ = 0.0150, α̂1 = 0.0750 and β̂1 = 0.8805 for the model estimated by (4.2). The 30
steps ahead prediction intervals for returns yT+h based on the models given in equations (4.1)
and (4.2), together with the true returns are presented in Figure 7. The intervals obtained
using all the methods are similar and they include all of the true values of returns (only PRR
fails to cover the 13th point).

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

1.
5

ONBB

Lead time

R
et

ur
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

1.
5

NBB

Lead time

R
et

ur
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

1.
5

CBB

Lead time

R
et

ur
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

1.
5

SB

Lead time

R
et

ur
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

1.
5

PRR

Lead time

R
et

ur
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

Bootstrap bounds
Bootstrap point predictions
Real returns

Figure 7: 95% prediction intervals of returns from 20th March, 2015
to 30th April, 2015.
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Figure 8 shows the predicted intervals for 30 steps ahead volatilities σ2
T+h. The true

values of the volatilities can not be observed directly. We calculate the realized volatility by
summing squared returns at day t, σ2

t = y2
t,1 + ...+ y2

t,n, where n is the number of observations
recorded during day t as proposed by [1]. Since our data is from 24 hour open trading
market, the realized volatilities are computed by using one-minute returns based on tick-by-
tick prices such that n = 1440 approximately. Figure 8 indicates that the PRR and ONBB
methods produce narrower prediction intervals than the one obtained by other block bootstrap
methods.
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Figure 8: 95% prediction intervals of volatilities from 20th March, 2015
to 30th April, 2015.

5. CONCLUSION

In this paper, we propose a novel resampling algorithm to obtain prediction intervals for
returns and volatilities under GARCH models, and we compare the performances of the meth-
ods by both simulations and a case study. Our idea is based on using the ARMA representation
of the GARCH models. Under ARMA representation, estimation of parameters becomes lin-
ear, which allows us to have a valid prediction intervals for the block bootstrapping procedure.
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Our findings show that our proposed ONBB method:

(i) is a good competitor or even better,
(ii) is computationally more efficient than traditional method(s).

Also, the proposed algorithm improves the performances of the non-ordered block bootstrap
methods significantly compared to their conventional counterparts.

As a future research, the performances of the proposed methods can also be studied for
forecasting time series with BOOT.EXPOS procedure as studied by [12] or they can also be
used in other statistical inference problems for dependent data.
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