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1. INTRODUCTION

At the screening stage of an experiment, a main effect plan (MEP) is employed to
estimate the main effects, assuming that all interactions are negligible. MEPs were introduced
and implemented after World War II, for more details refer to the pioneering paper of Box
and Wilson [6]. MEPs, including saturated resolution III regular and irregular designs, have
been widely used in practical industrial experiments. For example, Plackett and Burman [11]
introduced an irregular saturated MEP for 2m factorial experiments, where m = 4t− 1, for
t ≥ 3. Nevertheless, there might exist a small number of non-zero lower order interactions,
which cause bias in estimating main effects. Enhancing the resolution, i.e., upgrading to
resolution IV or V, for instance through fold-over approach to overcome the problem, increases
the number of runs and, in turn, the cost of the experiment.

To save the number of runs, Srivastava [14] introduced and suggested using SDs to
search for and estimate k unknown non-zero interactions in addition to estimating the main
effects. Such a design is known as main effect plus k plan (MEP.k). Several researchers have
developed the MEP.k (see Ghosh et al. [8], for a thorough review). For example, Esmailzadeh
et al. [7] and Talebi and Jalali [18] constructed MEP.1 for 2m factorial designs respectively,
for odd and even m. Consider search linear model for providing a key condition in planning a
general SD and in particular MEP.k. For a vector of observations y(N×1), the search linear
model is

y = A1ξ1 + A2ξ2 + e , Cov(e) = σ2IN ,(1.1)

where Ai(N×νi) are known design matrices; and ξi(νi×1) are vectors of effects for i = 1, 2;
e(N×1) is an error vector; σ2 is the error variance; and IN is the identity matrix of order N .
It is known for a fact that k effects in ξ2 are non-zero, but we don’t know which ones.
Therefore, the plan sets out to search for and identify the non-negligible effects in ξ2 and
estimate them in addition to estimating the effects in ξ1. Alternatively, let S be the set of all(
ν2

k

)
models with only one correct model, each including a set of k possible non-zero effects

from ξ2 and ξ1. The j-th model, j = 1, 2, ...,
(
ν2

k

)
, in S is expressed as follows:

y = A1ξ1 + A21(ζj)ζj + e ,(1.2)

where ζj(k×1) is a vector of k effects from ξ2 and A21(ζj) is the N×k submatrix of A2

whose columns are corresponding to ζj .

To identify the non-zero set of effects in ξ2 for noisy case (σ2 > 0), Srivastava [14]
suggested choosing the model in (1.2) with the lowest sum of square error (SSE). Moreover,
Shirakura et al. [12] studied the stochastic properties of SSE and derived the SP in an explicit
form for k= 1 under the normal error. SP is design-dependent and hence Shirakura et al. [12]
suggested using it for comparing SDs with respect to their search performance. Subsequently,
Ghosh and Teschmacher [9] and Talebi and Esmailzadeh [16] derived the SP-based criteria.
Furthermore, Talebi and Esmailzadeh [15] conducted another design-comparison study and
derived the KL (Kullback–Leibler) criterion based on Kullback–Leibler distance, which can
be used for k ≥ 1.

All of the above proposed criteria were obtained for models with normal error. However,
such models may not adequately fit the data in many practical situations. For example,
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Arnold and Beaver [2] described a real situation in which the observations followed a non-
normal distribution. They termed this situation ‘hidden truncation’, for which the model
is SN. Afterwards, Arnold et al. [3] reported observations related to the hidden truncation.
Moreover, Arellano-Valle et al. [1] assumed the SN error to fit a mixed model to a real
set of longitudinal data on cholesterol levels collected as a part of the famed Framingham
heart study. The above examples revealed the abundance of phenomena with SN models in
real situations. The present study was also motivated by a hidden truncation problem, i.e.
candidates who want to partake in the PhD Admission Examination of Iranian Universities
must have an overall above-average Master’s GPA. To deal with this, distributions such
as skew-t distribution or mixture of two normal distributions may be proposed. However,
based on our findings, such proposed distributions may not lead to an explicit solution.
We considered the rival models in (1.2) with the multivariate SN distribution for error and
used a Bayesian method to propose a new approach for finding the true model. This led to
criteria which will be presented in an explicit form. The Bayesian approach in developing
new explicit criteria allowed us to take into account the hierarchical principle in factorial
experiments, by which the lower order interactions are more important than the higher orders.
It was, therefore, rational to choose an appropriate prior distributional model for the factorial
effects in order to deal with this issue. Through this prior distribution, we allocated non-zero
probability to the main effects and k possible low order non-zero interactions, while all other
interactions came down to zero probability. In this study, which is the first Bayesian research
in the context of search design, it was shown that the Bayesian approach could simplify the
complexity in deriving the appropriate criteria.

In the next section some useful preliminaries are presented. The new Bayesian search
criteria will be proposed in Section 3. These criteria are

1 – expected Shannon information (ESI), and

2 – Bayesian expected Kullback–Leibler (BEKL),

which enable us to compare the search performance of any given SD. The calculations are
moved to the Appendix in order to enhance the readability of the article.

2. PRELIMINARIES

The primary aim of this study was to acquire criteria for model identification in the
context of search linear model. This problem has long been investigated by several researchers
for models with normal error. In this study, we considered models with SN error. Thus,
a better understanding of the SN distribution can be helpful.

Following Azzalini [4], who introduced SN distribution, a random variable Y has an
SN distribution, denoted by Y ∼ SN(µ, σ, λ), with location parameter µ; scale parameter σ;
and shape parameter λ, if its probability density function (pdf) is

f(y) =
2
σ
φ

(
y−µ
σ

)
Φ
(
λ
y−µ
σ

)
, y ∈ R ,(2.1)

where φ(·) and Φ(·) are the pdf and cumulative distribution function (cdf) of the standard
normal distribution, respectively. The multivariate SN distribution has also been proposed
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by some researchers. That is, an N -dimensional random vector, Y , follows a multivariate
SN distribution SNN (µ,Σ,λ) with location vector µ ∈ RN ; positive definite dispersion matrix
ΣN×N ; and skewness vector λ ∈ RN , if its pdf is

f(y) = 2φN

(
y |µ,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ)
)
, y ∈ RN ,(2.2)

where φN (·) is the pdf of the N(µ,Σ), (Arellano-Valle et al. [1]). Evidently, the random
vector Y follows N(µ,Σ) for λ = 0. Following Arellano-Valle et al. [1], the random vector
Y ∼ SNN (µ,Σ,λ) can be expressed as

Y
d= µ + Σ

1
2

(
δ |T0|+

(
IN − δδ′

)1
2 T1

)
,(2.3)

where δ = λ√
1+λ′λ

; T0 ∼ N(0, 1); T1 ∼ N(0, IN ) is independent of T0, and d= stands for equal-
ity in distribution. In Z = |T0|, Z has a half-normal distribution. It is worth noting that
model (2.3) covers bias and correlation among errors in addition to skewness. Now, for hid-
den truncation problem, the SN distribution is written as follows. Suppose random vector

(X,W1,W2, ...,WN )′ distributed as NN+1(θ,Ω), where θ = (µx,µ
′)′ and Ω =

(
1 δ′

δ IN

)
. Let

W = (W1,W2, ...,WN )′, then following Azzalini [5]

Y = W |X > µx ∼ SNN (µ, IN ,λ) ,(2.4)

where λ = (1− δ′δ)−
1
2 δ. We calculated some of the existing criteria for detecting non-zero

effects under the SN search model. Based on the findings, the calculation of SP for SN model
has proven to be very intricate. Furthermore, the expected KL (EKL) criterion, proposed by
Talebi and Esmailzadeh [15], for Y ∼ SNN (µ,Σ,λ) led to the integral below:∫

2φN

(
y |µ0,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ0)
)

log

{
φN

(
y |µ0,Σ

)
Φ1

(
λ′Σ− 1

2 (y−µ0)
)

φN

(
y |µj ,Σ) Φ1

(
λ′Σ− 1

2 (y−µi)
) } dy ,(2.5)

where for non-zero ζ0, µ0 = A1ξ1 + A21(ζ0)ζ0 and µj = A1ξ1 + A21(ζj)ζj . This can not be
made any simpler, and thus it is hard to be satisfied with (2.5) as a criterion. The desire
of finding a very simple and conceivable criterion, consequently, motivated us to look for a
different approach.

Lindley [10] defined the expected information about θ for observation vector y in an
experiment E, prior function π(θ), and posterior pdf π(θ|y) as below:

Iθ
{
E, π(θ)

}
=
∫
f(y)

∫
π(θ|y) log

π(θ|y)
π(θ)

dθ dy ,(2.6)

provided that the integral exists. This is the expected KL distance between prior and posterior
distributions, which measures the average overall observations information. Using Bayes’
theorem, Iθ{E, π(θ)} in (2.6) can be written as follows:

Iθ
{
E, π(θ)

}
= Eθ

{
EY |θ

(
log f(y|θ)

)}
− EY

{
log fy

}
.(2.7)

The distance in (2.7) will be used for proposing the new criteria in Section 3.

For the normal distribution N(0, σ2Σ) and SN distribution SNN (0, σ2Σ,λ) with un-
known σ2, let’s take y∗= y/σ and rewrite model (1.2) as below, which will be used throughout
this article,

y∗ = A(ξj) ξ∗j + e∗ , j = 1, 2, ...,
(
ν2

k

)
,(2.8)
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where ξ∗j = 1
σ (ξ′1, ζ

′
j)
′; A(ξj) = [A1 :A21(ζj)]; and e∗= e/σ. In the Bayesian framework,

ξ∗j is assumed to have the prior distribution N(0,Σ0), where Σ0 is a known (ν1+k)× (ν1+k)
diagonal matrix. Following Wu and Hamada [19, p. 434], by assuming large diagonal elements
in Σ0, we are assured of the possibility of the presence of non-zero effects in ξ∗j . For a given
prior, π(ξ∗j ), the event of observing a small interior integral in (2.6) indicates that the data
support the existence of the non-negligible effects. Therefore, a small interior integral value
in Iθ{E, π(θ)}, presumably confirms the possibility of the presence of non-zero effects in ξ∗j .
By this scenario, we suggested calculating the interior integral in (2.6) for all

(
ν2

k

)
models in

(2.8) and selecting the model with the lowest value as the true model. The following simula-
tion study was performed as the verity performance assessment of the proposed criterion.

The search design D1 given in the Appendix was used to generate data. Let ξ1 be
the vector of the general mean and main effects and let ζ0 be the two-factor interaction AB.
Furthermore, in a hidden truncation model, assume that δ = 0.2 112, where 112 is a 12×1
vector of 1s, and Σ0 = 100I6. Based on these parameter values, 1 000 data set were simulated
from a 12 dimensional SN distribution using “sn” package in R software. The interior integral
in (2.6) was calculated for all 6 possible models with any one of the two-factor interactions.
The simulation results showed that the interior integral had the lowest value for the true model
with AB interaction. We also calculated SSE for all models and found that the same model
had the minimum SSE. Moreover, we ran this simulation for the case k = 2, by assuming ζ0

to be (AB AC) and found that the interior integral and SSE were minimal for the chosen
model.

Meanwhile, for a given model, Zhang [20] used Iθ{E, π(θ)} to select the optimum de-
sign, i.e. the design which maximizes the expression in (2.6). Due to the design-independence
of the prior in denominator, she concluded that maximizing Iθ{E, π(θ)} comes down to
maximizing the following quantity

U =
∫
fy

{∫
π(θ|y) log π(θ|y) dθ

}
dy .(2.9)

It is worth noting that for any given design, say D, U(D) is the expected Shannon information
of the posterior distribution denoted by ESID. Zhang [20] achieved an expression for (2.9)
in the normal regression model and showed that maximization of U(D) is equivalent to
maximizing the determinant of inverted posterior variance of unknown parameter.

Under model uncertainty, when one is faced with a multi-model case, it is logical to
calculate (2.9) for all models, opt for the model with the lowest value and then, select a design
that has the maximum of such the value. In other words, let Ui(D) be ESID in (2.9) for the i-
th model,

(
i=1,2,...,ν2

k

)
, then MESID = minS Ui(D). Evidently, in the context of search design

for any given design D, the larger the value of MESID, the higher the performance of D in
searching for non-zero effects. So, for comparing and ranking the SDs with respect to their
search performance, MESID can be used as a criterion for design comparison. Hence, we
present the following definition.

Definition 2.1. Suppose D1 and D2 are two SDs with N treatments, D1 is said to
be better than D2 for identifying the set of non-zero effects if MESID1>MESID2 .
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3. MAIN RESULTS

3.1. ESI search criterion

In this section, we first introduce ESID as a criterion under normality assumption and
then give a generalized form of the criterion using the SN model.

Consider the model in (2.8) and assume that Y ∗ ∼ N(µ,Σ), where µ = A(ξj)ξ∗j .
Then for foregoing π(ξ∗j ), j = 1, 2, ...,

(
ν2

k

)
, the posterior distribution of ξ∗j is proportional

to f(ξ∗j ,y
∗) given in (A.1) below. After some calculations, as given in the Appendix, the

interior integral in U becomes

Eξ∗
j |y∗
{
log π(ξ∗j |y∗)

}
= −1

2
log |Σξ| −

ν1 + k

2
,(3.1)

where Σξ is a conditional posterior variance of ξ∗j given y∗. U is obtained from (3.1) by
integration with respect to the marginal distribution of Y ∗. After removing the redundant
terms, U is reduced to a simple form ψ(D) for design D,

ψ(D) = log |Σξ|−1 .(3.2)

Note that |Σy∗ | = |Σξ|−1 |Σ0|, hence ψ(D) is proportional to log |Σy∗ |. It should also be
noted that ψ(D) is design-dependent and written in terms of the hyper parameter Σ0. There-
fore, for any given design D, ψ(D) is calculable.

Remark 3.1. In Σξ, the expression A′(ζj)Σ−1A(ζj) is the inverted variance of(
A′(ζj)Σ−1A(ζj)

)−1
A(ζj)′ Σ−1y∗, and Σ−1

0 is the inverted prior variance of ξ∗j which, in
fact, combines prior information with extracted information from the data.

Now, it is assumed that vector Y ∗ in the model (2.8) is distributed as a multivariate
SN, SNN (µ,Σ,λ). Calculation of Eξ∗

j |y∗
{
log π(ξ∗j |y∗)

}
for SN distribution is not simple due

to complexity of such distribution. To simplify the problem, we used expression (2.3) for Y ∗

and apply the conditional distribution below:

(3.3) Y ∗ |Z = z ∼ N
(
µ + zΣ

1
2 δ, G

)
,

where G = Σ
1
2 (IN − δδ′)Σ

1
2 . Following Sorensen and Gianola [13], we use the distribution of

Y ∗ condition on the latent variable Z, in writing the posterior distribution as given in (A.2).
Insert the unobserved random variable Z in the parameters vector, i.e. θ′j = (ξ∗j

′, Z), j =
1, 2, ...,

(
ν2

k

)
, and take the prior distributions N(0,Σ0) for ξ∗j . The joint posterior distribution

of θj is proportional to f(θj ,y
∗) in (A.2).

The Shannon information criterion is

Eθj|y∗
{
log π(θj |y∗)

}
= EZ|y∗

{
Eξ∗

j |z,y∗
(
log π(θj |y∗)

)}
.(3.4)

More calculations and details are given in the Appendix, based on which, the conditional
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expectation in (3.4) is simplified to the reduced form below:

Eθj|y∗
{
log π(θj |y∗)

}
= − 1

2
log |2πΣξ| −

ν1+k

2

− 1
2

log(2πσ2
z )− 1

2
+

z∗φ
(

z∗

σz

)
2σz Φ

(
z∗

σz

) − log

(
Φ
(
z∗

σz

))
,

where Σξ and σ2
z are conditional posterior variance of ξ∗j given (z,y∗) and conditional pos-

terior variance of Z given y∗, respectively. z∗ is conditional posterior mean of Z given y∗.
More details on these can be found in the Appendix.

Meanwhile, the expected value of (2.9) is computed with respect to the marginal dis-
tribution of Y ∗ given in the Appendix, i.e. SNN (0,Σy∗ ,γy∗). It gives

U = − ν1+k+1
2

log(2π)− ν1+k+1
2

− 1
2

log
{
|Σξ|(σ2

z )
}

+
1
2
ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
,

(3.5)

where T = z∗

σz
with T ∼SN(0, σ2

t , σt); σ2
t = δ′Σ

1
2 M ′Σy∗MΣ

1
2 δ

1+δ′Σ
1
2 MΣ

1
2 δ

; and M is given in the Appendix.

ESID in (3.5) can be written as the following design-dependent criterion and then the mini-
mum of such the criterion over all models in S be maximized over SDs to come up with the
superior design

ψ(D,λ) = log
{
|Σξ|−1(σ2

z )−1
}

+ ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
.(3.6)

It should also be noted that |Σy∗ | = |G| |Σξ|−1 |Σ0|(σ2
z )−1, therefore

ψ(D,λ) ∝ log |Σy∗ |+ ET

{
T
φ(T )
Φ(T )

− 2 log
[
Φ(T )

]}
.(3.7)

The subsequent remarks present more details on ψ(D,λ).

Remark 3.2. Generally, λ is an N×1 unknown vector. Lacking a specific knowledge
on λ may lead one to follow the Bayesian approach for choosing a prior distribution such as
uniform on a sphere.

Remark 3.3. Similar to Remark 3.1, the term A′(ξj)G−1A(ξj) in |Σξ|−1 is the
inverted variance of

(
A′(ξj)G−1A(ξj)

)−1
A(ξj)′ (V G)−

1
2 y∗ where V = Σ

1
2

(
IN − 2

π δδ′
)
Σ

1
2 .

Remark 3.4. For λ → 0 (Normality error case) random variable T is degenerated at
zero. Therefore, the second term in (3.7) disappears and ψ(D,λ) remains with its first term.
It is similar to what is given in (3.2) for normal case. In the hidden truncation model, if for
every i= 1,2, ...,N, δi → 0, then Y ∗∼ N(µ, IN ) and ψ(D) is simplified to (3.2) with Σ = I.

Remark 3.5. For the special case of identical skewness, i.e. λ = λ1N , λ ∈ R, σt and
G−1 = Σ− 1

2 (IN + λ21N 1′N )Σ− 1
2 are symmetric in λ. Therefore, ψ(D,λ) is symmetric in λ.

It should also be noted that for a hidden truncation problem with δ = δ1N, ψ(D,δ) is sym-
metric in δ.



318 Sara Sadeghi and Hooshang Talebi

3.2. BEKL search criterion

In what follows, we obtain the expected KL distance, Iθ{E, π(θ)}, under normal and
SN distributions for error. It should be noted that by keeping the prior distribution in
expected information (2.6) the results in this section will be different from the findings in
Section 3.1, which were obtained from U in (2.9).

Consider model (2.8), and for more understanding, first assume that Y ∗∼ N(µ,Σ).
Now, for ξ∗j ∼ N(0,Σ0), j = 1, 2, ...,

(
ν2

k

)
, compute EY ∗|ξ∗

j

(
log f(y∗|ξ∗j )

)
and EY ∗

{
log f(y∗)

}
to reach Iθj

{
E, π(θj)

}
given in (2.7). From marginal distribution of Y ∗, which is given in

the Appendix, we have

EY ∗
{
log f(y∗)

}
= −N

2
(
log(2π) + 1

)
− 1

2
log |Σy∗| .

Clearly, EY ∗|ξ∗
j

(
log f(y∗|ξ∗j )

)
= −N

2

(
log(2π) + 1

)
, hence Iθj

{
E, π(θj)

}
is

Iθj
{
E, π(θj)

}
=

1
2

log |Σy∗| .(3.8)

As can be seen in (3.8), in order to minimize Iθj
{
E, π(θj)

}
, it is enough to minimize the

simple form |Σy∗ | over all possible
(
ν2

k

)
models.

Now, suppose Y ∗∼ SNN (µ,Σ,λ). Let’s add the unobserved random variable Z to the
parameters vector to get θ′j = (ξ∗j

′,Z), j = 1, 2, ...,
(
ν2

k

)
. By assuming the prior distribution

for the vector ξ∗j , as given herein, and noting that Y ∗ can be written as (2.3), we have

EY ∗|θj

(
log f(y∗|θj)

)
= −N

2
(
log(2π) + 1

)
− 1

2
log |G| ,

and

EY ∗
(
log f(y∗)

)
= log 2− N

2
(
log(2π) + 1

)
− 1

2
log |Σy∗ |+ ET

{
log[Φ(T )]

}
.

Therefore, Iθj
{
E, π(θj)

}
provides the following:

Iθj
{
E, π(θj)

}
= − log 2− 1

2
log |G|+ 1

2
log |Σy∗ | − ET

{
log[Φ(T )]

}
.(3.9)

Evidently, minimizing Iθj
{
E, π(θj)

}
in (3.9) is equivalent to minimizing Φ(D,λ) =

log |Σy∗ | − 2ET

{
log
(
Φ(T )

)}
over the set of all possible models in S, known as the BEKL

criterion. Note that the ESI in (3.7) has an extra term ET

(
T φ(T )

Φ(T )

)
in comparing to the

BEKL. That is, although the prior distribution is design-independent, keeping such the prior
in (2.6) leads to a simple and more flexible criterion.

The proposed BEKL measure, which is primarily proposed for model discrimination,
can also be used to compare search performance of SDs. In doing so, first for each of the
SDs the minimum of the BEKL (MBEKLD) is obtained over the set of all models. Then, the
design with a larger MBEKLD is considered to be the desired one. Therefore, Definition 2.1
is valid for designs D1 and D2 with respect to MBEKLD-criterion if MBEKLD1>MBEKLD2 .
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4. IMPLEMENTATION

In this section, we assess the performance of the two proposed Bayesian criteria through
comparing and ranking rival SDs. To do so, we use MBEKLD and MESID under SN distri-
bution for error. We compare search performance of three 12-run search designs D1, D2 and
D3, as given in the Appendix, for a 24 factorial experiment. Design D1 is a balanced array
of full strength, Design D2 is the projection of a 12-run Plackett–Burman design onto its
4 columns, and Design D3 is a non-repeated run orthogonal main effect plan. These designs
have already been compared by Ghosh and Teschmacher [9] and Talebi and Esmailzadeh [17],
under normality.

Example 4.1. Let in model (1.1), ξ1 be the vector of the general mean and main ef-
fects, and ξ2 be two- and three-factor interactions, while assuming that four-factor interaction
is negligible. Furthermore, it is assumed that ξ2 includes two non-zero effects at the most.
D1, D2, and D3 are MEP.1. They are also MEP.2 plans, when ξ2 includes only two-factor
interactions, assuming higher-order interactions are all zero. We were interested in study-
ing scores of 12 EEIU volunteers with a GPA over than mean, i.e. Y = W |X > µx, where
Wi’s, i= 1, 2, ..., 12, are the scores and X is the GPA. Consider model (2.8) for the vector
of observations Y and assume (X,W ′)′ ∼ N13(θ,Ω), where θ = (µx,µ

′)′, µ = A(ξj)ξ∗j , and

Ω =
(

1 δ′

δ I12

)
. In this case, Y satisfies the conditional distribution of (2.4). Data were col-

lected through 3 possible designsD1, D2, andD3. For δ = δ 112, let σD,δ =
[
σtζ1

, σtζ2
, ..., σtζl

]′,
where l =

(
ν2

k

)
, and σtζj

denotes σt for the j-th model. MATLAB software was used to cal-
culate amount of the criterion. It was learned that σD,δ = cδ1l, for D1, D2 and D3, where
cδ is scalar and depends on δ for all models. It is also true that σD1,δ = σD2,δ = σD3,δ, which
means that the value of σt depends neither on the model nor on the design. Consequently,
in order to compare designs D1, D2, and D3, for a fixed value of δ, the second expression for
both criteria is canceled out and, therefore, both ESID and BEKLD become the same. This is
true for the following design comparison and hence there is no difference in computing either
of the criteria. For k = 1, once again we considered the prior distribution N(0,Σ0) for ξ∗j in
which Σ0 is a 6×6 diagonal matrix, with large diagonal elements of 100. The comparisons
showed that D2 is better than both D1 and D3, and D1 is better than D3. This result is the
same as what was obtained using the compound criteria proposed by Talebi and Esmailzadeh
[17]. For instance, when δ = 0.2, values of criterion are 42.6251, 42.6738, and 42.4026 for D1,
D2, and D3, respectively, while the EKL values for these Designs are the same and equal to
10.667. This shows that the EKL is unable to discriminate search abilities of D1, D2, and
D3.

Example 4.2. In continuation of Example 4.1, let ξ2 be the vector of two-factor in-
teractions only, and assume that three- and four-factor interactions are all zero. For k = 1,
results showed that D3 has the same search ability as D1, and they are better than D2, based
on the present criteria. For example, when δ = 0.2, criterion value for D1 and D3, is 42.6895
and for D2 is 42.6738. For k = 2, assume that ξ∗j is distributed as N(0,Σ0) in which Σ0 is
a 7×7 diagonal matrix, with diagonal elements of 100. When δ = 0.2, criterion value for D1

and D3 is 49.376, and for D2 is 49.3115.
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5. DISCUSSION

Findings in Section 4 reveal that both criteria, MESID and MBEKLD increase as
δ increases; this means as δ (≥ 0) gets larger, the capability of SD enhances in identifying
the non-zero effects, which has been ignored by the former criteria. The proposed criteria
are also applicable for k > 1. So, an important advantage of the present criteria is their
flexibility with respect to distributional model and the number of non-zero effects in ξ2.
This study generalizes the previously-obtained results for the normal model by utilizing the
SN distribution, where normal distribution is its special case. It is notable that unlike SP,
MESID and MBEKLD do not depend on an unknown parameter. This allows us to come
up with numerical values for the criteria. Furthermore, the results presented in Section 4
showed that MESID and MBEKLD criteria have a higher discriminating power than the EKL,
obtained by Talebi and Esmailzadeh [15].
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A. APPENDIX

A.1. Conditional posterior distributions for normal distribution error

For e∗ ∼ N(0,Σ), f(ξ∗j ,y
∗) can be written as

f(ξ∗j ,y
∗) = f(y∗|ξ∗j ) π(ξ∗j )

= (2π)−
N+ν1+k

2 |Σ|−
1
2 exp

{
−1

2
(
y∗−A(ξj)ξ∗j

)′ Σ−1
(
y∗−A(ξj) ξ∗j

)}
× |Σ0|−

1
2 exp

{
−1

2
ξ∗j

′ Σ−1
0 ξ∗j

}
,

(A.1)

where | · | stands for determinant. Using the joint distribution in (A.1) together with some
other calculations, it can be shown that the conditional posterior distributions of parameters
are as follows:

ξ∗j |y∗ ∼ N
(
µξ∗

j
,
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
)

,

where µξ∗
j

=
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
A′(ξj)Σ−1y∗. The logarithm of the joint posterior

distribution is

log
{
π(ξ∗j |y∗)

}
= − 1

2
log
∣∣∣2π(A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
∣∣∣

− 1
2

(ξ∗j −µξ∗
j
)′
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)
(ξ∗j −µξ∗

j
) .

Note that

(ξ∗j −µξ∗
j
)′
(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)
(ξ∗j −µξ∗

j
)
∣∣∣y∗ ∼ χ2

ν1+k ,

where χ2
ν1+k is chi-squared distribution with ν1 + k degrees of freedom. Marginal distribution

of Y ∗ is obtained from the joint distribution in (A.1). It can be easily shown that Y ∗ is
distributed as N(0,Σy∗), where

Σy∗ =
{
Σ−1 −Σ−1A(ξj)

(
A′(ξj)Σ−1A(ξj) + Σ−1

0

)−1
A′(ξj)Σ−1

}−1
.

A.2. Conditional posterior distributions for SN distribution error

For Y ∗∼ SNN (µ,Σ,λ), the joint density of vector (θj ,y
∗) is

f(θj ,y
∗) = f(y∗|θj) f(z|ξ∗j ) π(ξ∗j )

= |G|−
1
2 exp

{
−1

2
(
y∗−A(ξj)ξ∗j − zΣ

1
2 δ
)′

G−1
(
y∗−A(ξj)ξ∗j − zΣ

1
2 δ
)}

× 2 (2π)−
N+ν1+k+1

2 |Σ0|−
1
2 exp

{
−1

2
[
z2 + ξ∗j

′ Σ−1
0 ξ∗j

]}
.

(A.2)

From (A.2), the conditional posterior distributions of unknown parameters are obtained as:

ξ∗j |z,y∗ ∼ N(µξ∗
j
,Σξ) and Z|y∗ ∼ N(z∗, σ2

z ) I(Z>0) ,
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in which the conditional posterior distribution of Z|y∗ is truncated normal at zero with the
following pdf:

π(Z|y∗) = φ

(
z−z∗

σz

)/(
σz Φ

(
z∗

σz

))
and

µξ∗
j

= Σξ A′(ξj) G−1
(
y∗− zΣ

1
2 δ
)
, Σξ =

(
A′(ξj) G−1A(ξj) + Σ−1

0

)−1 ,

z∗ = σ2
z y∗′M Σ

1
2 δ , σ2

z =
(
1 + δ′ Σ

1
2 M Σ

1
2 δ
)−1 ,

M = G−1+ G−1A(ξj)
[(

ΣξA′(ξj)G−1A(ξj) + Iν1+k)−1−Iν1+k

](
A′(ξj)G−1A(ξj)

)−1
A′(ξj)G−1.

The logarithm of π(θj |y∗) (the joint posterior distribution of θj) can be written as

log π(θj |y∗) = log
{
π(ξj |z,y∗)

}
+ log

{
π(Z|y∗)

}
= − 1

2
log |2πΣξ| −

1
2

(ξ∗j −µξ∗
j
)′ Σ−1

ξ (ξ∗j −µξ∗
j
)

− 1
2

log(2πσ2
z )− 1

2

(
Z−z∗

σz

)2
− log

(
Φ
(
z∗

σz

))
,

It should be noted that

(ξ∗j − µξ∗
j
)′ Σ−1

ξ (ξ∗j − µξ∗
j
) ∼ χ2

ν1+k ,

and

EZ|y∗(Z−z∗)2 = σ2
z − σz z

∗ φ( z∗

σz
)

Φ( z∗

σz
)
.

From (A.2) the marginal distribution of Y ∗ is distributed as SNN (0,Σy∗ ,γy∗), in which

Σy∗ =
{
M − σ2

z M Σ
1
2 δδ′Σ

1
2 M ′}−1 and γy∗ = Σ

1
2
y∗

M Σ
1
2 δq

1+δ′Σ
1
2 M Σ

1
2 δ

.

A.3. Search designs D1, D2 and D3 with 12 runs and 4 factors

D1 D2 D3

A B C D A B C D A B C D

+ + + + + − + − + + + +
- − − − + + − + + − + +
− − − + − + + − − − + +
− − + − + − + + − + − +
− + − − + + − + + − − +
+ − − − + + + − − − − −
− − + + − + + + − + + −
− + − + − − + + + − + −
+ − − + − − − + − − + −
− + + − + − − − + + − −
+ − + − − + − − + − − −
+ + − − − − − − − − − −
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