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Abstract:

• It is well known that the least squares estimate in classical linear regression model is very sensitive
to violation of the assumptions, in particular normality of model errors. That is why a lot of
alternative estimates has been developed to overcome these shortcomings. Quite interesting class
of such estimates is formed by R-estimates. They use only ranks of response variable instead of
their actual value.
The goal of this paper is to extend this class by another estimates and tests based only on ranks.
First, we will introduce a new rank test in linear regression model. The test statistic is based on a
certain minimum distance estimator, but unlike classical rank tests in regression it is not a simple
linear rank statistic. Then, we will return back to estimates and generalize minimum distance
estimates for various type of distances.
We will show that in some situation these tests and estimates have greater power than the classical
ones. Theoretical results will be accompanied by a simulation study to illustrate finite sample
behavior of estimates and tests.
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1. INTRODUCTION

Consider the model of regression line

(1.1) Yi = β0 + xiβ + ei , i = 1, ..., n ,

where β0 and β are unknown parameters, x1, ..., xn are regressors, model errors e1, ..., en

are assumed to be i.i.d. with an unknown distribution function F and uniformly continuous
density f . Our aim is to estimate the slope parameter β and test the hypothesis

H0 : β = 0 against K0 : β 6= 0 .

There is a lot of methods described in the literature. Ordinary least squares estimate
and the corresponding t-test which are optimal for normal model errors. Unfortunately,
normality assumption is often in practice not satisfied. Its violation may cause that the
estimate or test fails.

We do not put any assumptions on the shape of the distribution function F . Generally,
F is unknown; therefore we should use a nonparametric approach. We will focus on rank
tests and estimates that instead of original response variables Yi’s use their ranks.

Rank tests form a class of statistical procedures which have the advantage of simplicity
combined with surprising power. Modern development of rank tests began in the 1930’s, see
e.g. [2] and [4]. Well known is also Wilcoxon [11] who introduced popular Wilcoxon test for
comparing two treatments. At first, it was believed that a high price in loss of efficiency when
using rank tests has to be paid. However, it turned out that efficiency of rank tests behaves
quite well under the classical assumption of normality. In addition these tests remain valid
and have high efficiency when the assumption of normality is not satisfied. These facts were
first brought out by Pitman [8]. Recently rank tests have been still very popular and widely
used, see [1] and [5].

Let us briefly show the classical approach based on linear rank statistic (see e.g. [3]).
It was developed more than fifty years ago and it is still being used thanks to its simplicity
and robustness. Denote

Qn =
1
n

n∑
i=1

(xi − x)2 , with x =
1
n

n∑
i=1

xi .

Let Ri be the rank of Yi among Y1, ..., Yn and define linear rank statistic

Sn =
1√
n

n∑
i=1

(xi − x) ϕ

(
Ri

n + 1

)
for some nondecreasing, nonconstant, square integrable score function ϕ : (0, 1) 7→ R.
Test criterion for H0 is then

(1.2) T 2
n =

S2
n

A2(ϕ) Qn
,

where

A2(ϕ) =
∫ 1

0

(
ϕ(t)− ϕ

)2
dt , ϕ =

∫ 1

0
ϕ(t) dt .
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T 2
n has under H0 asymptotically (under very mild conditions) χ2 distribution with 1 degree

of freedom.

Remark 1.1. The choice ϕ(u) = u, for 0 < u < 1, leads to Wilcoxon rank test in
regression. Hájek in [3] proved that such test in locally most powerful linear rank test for
logistic model errors. In this case it has even greater power than t-test.

2. EMPIRICAL PROCESSES IN SIMPLE LINEAR REGRESSION

Koul [6] considered a class of estimates in linear regression model based on minimization
of certain type of distances. Let us remind his approach. Define

Tg,n(s, t) =
1√
n

n∑
i=1

g(xi) I
{
Ri,t ≤ ns

}
, 0 ≤ s ≤ 1 , t ∈ R ,(2.1)

Kg,n(t) =
∫ 1

0
T 2

g,n(s, t) dL(s) , t ∈ R ,(2.2)

where Ri,t is the rank of the residual Yi− xi t among Y1− x1t, ..., Yn− xn t. L is a distribution
function on [0, 1] and g a real (weight) function such that

∑n
i=1 g(xi) = 0.

The minimum distance estimator β̂g,n is then defined as

β̂g,n = argmin
{

Kg,n(t) : t ∈ R
}

.

Koul [6] showed that such estimates might have in some situations greater efficiency
then corresponding R-estimates and LSE respectively. He also proved their asymptotic unbi-
asedness and normality. We will develop his idea and introduce a class of test statistics based
on these estimates. We will investigate their finite sample as well as asymptotic behavior.
Finally, we will return back to the estimates, generalize them and show that some have greater
efficiency then original Koul’s estimates.

3. TEST IN SIMPLE LINEAR REGRESSION

Recall that we want to test whether regression is present, i.e. we test the null hypothesis

H0 : β = 0 against K0 : β 6= 0 .

We put the hypothetical value β = 0 into (2.1) and (2.2) and get the test statistic

(3.1) Kg,n(0) = K∗
g,n =

∫ 1

0
T 2

g,n(s, 0) dL(s) .
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Discuss some computation aspects of (3.1). First, have a look at the formula (3.1) for
K∗

g,n. Inserting (2.1) into (2.2) for t = 0 we have

K∗
g,n =

1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∫ 1

0
I
{
Ri ≤ ns

}
I
{
Rj ≤ ns

}
dL(s)

=
1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∫ 1

max
n

Ri
n

,
Rj
n

o1 dL(s) .

L is a distribution function, hence L(max{a, b}) = max{L(a), L(b)}, it also remains true for
limits from the left

K∗
g,n =

1
n

n∑
i=1

n∑
j=1

g(xi) g(xj)

(
1−max

{
L

(
Ri

n
−
)

, L

(
Rj

n
−
)})

.

Since
∑n

i=1 g(xi) = 0 we get

K∗
g,n = − 1

n

n∑
i=1

n∑
j=1

g(xi) g(xj) max
{

L

(
Ri

n
−
)

, L

(
Rj

n
−
)}

.

Using the fact
2 max{a, b} = a + b + |a− b| , ∀ a, b ∈ R ,

and
∑n

i=1 g(xi) = 0 we have

K∗
g,n = − 1

2n

n∑
i=1

n∑
j=1

g(xi) g(xj)
∣∣∣∣L(Ri

n
−
)
− L

(
Rj

n
−
)∣∣∣∣ ,

which is much more convenient for practical computations.

Since K∗
g,n depends on Yi’s only through their ranks Ri’s, it is a rank statistic. However,

unlike the classical rank test statistic T 2
n defined in (1.2), K∗

g,n is not a linear function of the
ranks. That may cause some computation issues, but we can profit from its greater power in
some situations.

Under H0 (β = 0) model (1.1) reduces to

(3.2) Yi = β0 + ei , i = 1, ..., n .

Since distribution of model errors ei is absolutely continuous, there can be any ties in ranks
with probability 0. Thanks to invariance of ranks with respect to the location, distribution
of R1, ..., Rn under null hypothesis is uniform over all n! permutations of numbers {1, ..., n}.
Therefore distribution of K∗

g,n given x1, ..., xn under H0 is distribution-free and may be even
computed directly. To do it, we have to compute all values of the test statistic K∗

g,n for
each of n! permutations of numbers {1, ..., n}. From there we can get (1− α)-quantile or the
corresponding p-value.

However, for large sample size n computation of exact (conditional) distribution may
be time consuming, that is why we will investigate asymptotic distribution of K∗

g,n.

For s ∈ [0, 1] define empirical processes

V̂g,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1

n (s)
}

,
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Vg,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1(s)

}
,

where Fn(s) = 1
n

∑n
i=1 I{ei ≤ s)} is empirical distribution function.

Now, state assumptions needed for proofs of asymptotic properties of K∗
g,n. Note that

all limits are considered as n →∞:

x1, ..., xn are not all equal ,(3.3)

max
i=1,...,n

(xi − x̄)2∑n
j=1(xj − x̄)2

→ 0 ,(3.4)

g(xi) 6= 0 for some i = 1, ..., n ,(3.5)

there exists α1 > 0 , such that
1
n

n∑
i=1

g(xi) (xi − x) → α1 ,(3.6)

max
i=1,...,n

g2(xi) → 0 ,(3.7)

sup
n∈N

max
i=1,...,n

|g(xi)| ≤ c for some 0 < c < ∞ ,(3.8)

there exists γ2 > 0 , such that
1
n

n∑
i=1

g2(xi) → γ2 .(3.9)

Remark 3.1. Assumptions (3.3) and (3.4) state that the design points x1, ..., xn are
well-defined. Remaining assumptions put conditions on the g function. If there exists a limit
lim

n→∞
1
n

∑n
i=1(xi − x)2, then the natural choice g(xi) = xi − x meets the above assumptions.

Lemma 3.1. Under (3.3)–(3.6) it holds∣∣∣∣K∗
g,n −

∫
V̂ 2

g,n(s) dL(s)
∣∣∣∣ = op(1) , as n →∞ .

Proof: For convenience we will drop off an index g in K∗
g,n and V̂g,n. Adding and

subtracting V̂n(s) in the first integral, squaring and using Cauchy–Schwarz inequality we get∣∣∣∣∫ T 2
n(s) dL(s)−

∫
V̂ 2

n (s) dL(s)
∣∣∣∣ =

=
∣∣∣∣∫ [Tn(s)− V̂n(s)

]2
dL(s) + 2

∫
V̂n(s)

(
Tn(s)− V̂n(s)

)
dL(s)

∣∣∣∣
≤ sup

0≤s≤1

∣∣Tn(s)− V̂n(s)
∣∣2 + 2

√∫
V̂ 2

n (s) dL(s)
∫ (

Tn(s)− V̂n(s)
)2

dL(s) .

The fact
sup

0≤s≤1

∣∣∣Tn(s)− V̂n(s)
∣∣∣ ≤ 2 max

i=1,...,n

∣∣g(xi)
∣∣ = op(1)

together with
∫

V̂ 2
n (s) dL(s) = Op(1) proves the Lemma.
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Lemma 3.2. Under (3.3)–(3.6) it holds∣∣∣K∗
g,n−

∫
V 2

g,n(s) dL(s)
∣∣∣ = op(1) , as n →∞ .

Proof:∣∣∣∣∫ T 2
n(s) dL(s)−

∫
V 2

n (s) dL(s)
∣∣∣∣ =

=
∣∣∣∣∫ [Tn(s)−Vn(s)

]2
dL(s) + 2

∫
Vn(s)

(
Tn(s)−Vn(s)

)
dL(s)

∣∣∣∣ .(3.10)

Using Minkowski inequality∫ [
Tn(s)−Vn(s)

]2
dL(s) =

∫ [
Tn(s)− V̂n(s)+ V̂n(s)−Vn(s)

]2
dL(s)

≤ 2
∫ [

Tn(s)− V̂n(s)
]2

dL(s) + 2
∫ [

V̂n(s)−Vn(s)
]2

dL(s) .
(3.11)

By Cauchy–Schwarz inequality∣∣∣∣∫ Vn(s)
(
Tn(s)−Vn(s)

)
dL(s)

∣∣∣∣ ≤
√∫

V 2
n (s) dL(s)

∫ [
Tn(s)−Vn(s)

]2
dL(s)

= op(1) ,

(3.12)

because
∫

V 2
n (s) dL(s) = Op(1) and

∫ [
Tn(s)−Vn(s)

]2
dL(s) = op(1).

Observe that

Vn

(
FF−1

n (s)
)

=
n∑

i=1

g(xi) I
{
ei ≤F−1FF−1

n (s)
}

=
n∑

i=1

g(xi) I
{
ei ≤F−1

n (s)
}

= V̂n(s) .

Therefore
sup

0≤s≤1

∣∣V̂n(s)−Vn(s)
∣∣ = sup

0≤s≤1

∣∣Vn

(
FF−1

n (s)
)
− Vn(s)

∣∣ = op(1) ,

because

sup
0≤s≤1

∣∣FF−1
n (s)− s

∣∣ = sup
0≤s≤1

∣∣∣FF−1(s)− FnF−1
n (s) + FnF−1

n (s)− s
∣∣∣

≤ sup
x∈R

∣∣F (x)− Fn(x)
∣∣+ sup

0≤s≤1

∣∣FnF−1
n (s)− s

∣∣ = op(1) .

Now, combining previous result, Lemma 3.1 and (3.10), (3.11) and (3.12) we have proven the
Lemma.

Remark 3.2. The previous lemma states that the asymptotic distribution of K∗
g,n is

the same as
∫

V 2
g,n(s) dL(s) that is easier to investigate. Now, we are able to state the theorem

about asymptotic null distribution of K∗
g,n.
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Theorem 3.1. Under (3.3)–(3.9) in model (1.1) under H0

K∗
g,n

d−→ γ2 ·YL , with YL =
∫ 1

0
B2(s) dL(s) ,

where B(s) is a Brownian bridge in C[0, 1].

Proof: Recall that

Vg,n(s) =
1√
n

n∑
i=1

g(xi) I
{
ei ≤F−1(s)

}
=

1√
n

n∑
i=1

g(xi) I
{
F (ei)≤ s

}
=

1√
n

n∑
i=1

g(xi) I
{
Ui ≤ (s)

}
,

where U1, ..., Un are i.i.d. random variables with uniform U(0, 1) distribution.

By [6] we have
Vg,n(s) =⇒ γ ·B(s) in D[0, 1]

and therefore
∫

V 2
g,n(s) dL(s) d−→ γ2

∫
B2(s) dL(s). That together with Lemma 3.2 proves

Theorem 3.1.

Distribution of random variable YL for L(s) = s was first investigated by Smirnov [9].
Values of its distribution function may be found for example in [10], some quantiles are listed
in Table 1. For other choices of function L one has to use simulated values.

Table 1: Quantiles of distribution YL for L(s) = s.

α 0.90 0.95 0.99 0.999

α-quantile 0.34730 0.46136 0.74346 1.16786

In [7] we also investigated the behavior of K∗
g,n under the local alternative

K0,n : β = n−1/2β∗ , 0 6= β∗ ∈ R fixed .

The resulting distribution cannot be expressed in a closed formula, that is why we omit it
here. Power of the test will be illustrated later in the simulation study.

4. GENERALIZATION OF THE TEST

In the definition of the test statistic K∗
g,n (3.1) we used second power of the L2-norm

of the empirical process Tg,n(s, 0). Instead, we may use any norm on D[0, 1]. For simplicity,
we will consider only the class of Lp-norms for p ∈ [1,∞].
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For p ∈ [1,∞) define

(4.1) K(p)
g,n =

(∫ 1

0

∣∣Tg,n(s, 0)
∣∣p dL(s)

)1
p

,

for p = ∞ define

(4.2) K(∞)
g,n = max

{∣∣Tg,n(s, 0)
∣∣ : s ∈ [0, 1]

}
.

Remark 4.1. Obviously, for p = 2 we have
(
K

(2)
g,n

)2= K∗
g,n.

From computation point of view, formulas (4.1) and (4.2) might be simplified. Obviously,
Tg,n(0, 0) = 0 and Tg,n(s, 0) is piecewise constant:

Tg,n(s, 0) =
1√
n

∑
i:Ri≤j

g(xi) ,
j−1

n
< s≤ j

n
, j = 1, ..., n .

Therefore,

K(∞)
g,n =

1√
n

max
i=1,...,n

∣∣∣∣∣∣
∑

i:Ri≤j

g(xi)

∣∣∣∣∣∣ ,
K(1)

g,n =
1

n3/2

n∑
i=1

∣∣∣∣∣∣
∑

i:Ri≤j

g(xi)

∣∣∣∣∣∣ ,
for L(s) = s.

Again, since K
(p)
g,n depends on Yi’s only through their ranks Ri’s, it is a rank statistic,

but not linear like (1.2). That may cause some computation issues, but we can profit from
its greater power in some situations.

Now, focus on the distribution under the null hypothesis. Under H0 (β = 0) model
(1.1) reduces to (3.2)

Yi = β0 + ei , i = 1, ..., n .

Thanks to the same arguments as in the previous section, the distribution of K
(p)
g,n given

x1, ..., xn under the null hypothesis is distribution-free and can be easily computed directly
the same way. For large sample sizes n the following asymptotic approximation might be
used.

Theorem 4.1. Under (3.3)–(3.9) in model (1.1) under H0

K(p)
g,n

d−→ γ · Y (p)
L , with Y

(p)
L =

(∫ 1

0

∣∣B(s)
∣∣p dL(s)

)1
p

,

where B(s) is a Brownian bridge in C[0, 1].

Proof: The proof is analogous to the proof of Theorem 3.1.
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5. CHOICE OF THE PARAMETERS IN PRACTISE

In the previous section, we derived a class of minimum distance tests. In practise there
arises a question how to choose optional parameters of the test.

Function g is in fact a weight function for regressors, so it can downweight outlying
observations to robustify these tests against extreme values of xi (if g is bounded for example).
Anyway, if we are not afraid of leverage observations xi, then the optimal choice of the
g function is g(xi) = xi − x. This choice leads to the test with the greatest power among all
test with different g functions.

Function L has similar interpretation as score-function ϕ in standard rank tests theory,
optimal L could be chosen based on the estimate of unknown model errors. Anyway, the
simplest choice L(s) = s gives very reasonable results (see the simulations).

And finally, the choice of Lp-norm depends on the model errors ei. From computational
point of view, one should consider p = 1, 2,∞ for that we have a simple formula. Power
comparisons are made in the simulation study.

6. GENERALIZATIONS

In [7] we investigated behavior the test in measurement error model:

Yi = β0 + βxi + ei ,

wi = xi + vi , i = 1, ..., n ,

where instead of actual regressors xi we observed wi affected by measurement errors vi.

We showed that the test is still valid in this model, the presence of measurement errors
decreases power of the test, because we do not use values of function g in optimal points
x1, ..., xn but in wi’s.

In Section 4 we showed extension of the test using various norms for the empirical
process. Analogously, we may define generalization of Koul’s estimate defined in Section 2.

Consider empirical process Tg,n(s, t) defined in (2.1) and for p ∈ [1,∞) define

K(p)
g,n(t) =

(∫ 1

0

∣∣Tg,n(s, t)
∣∣p dL(s)

)1
p

, t ∈ R ,

and for p = ∞
K(∞)

g,n (t) = max
{∣∣Tg,n(s, t)

∣∣ : s ∈ [0, 1]
}

, t ∈ R .

Minimum distance estimator β̂
(p)
g,n is then defined as

β̂(p)
g,n = argmin

{
K(p)

g,n(t) : t ∈ R
}

.
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In the similar way, thanks to duality of rank tests and estimates, we may show favorable
properties and good performance of the estimates. Detailed analysis will be part of our future
study.

7. SIMULATIONS

To support previous theoretical results we conducted a large simulation study, let us
present a few interesting results. Let us start with model (1.1) for moderate sample size
n = 30. We have compared empirical power of our test based on the test statistic K∗

g,n with
g(xi) = xi− x̄ and L(s) = s (call it minimum distance test) with Wilcoxon test for regression
(based on (1.2) with ϕ(u) = u) and standard t-test for regression.

Regressors x1, ..., x30 were once generated from uniform U(−2, 10) distribution and
then considered fixed, model errors ei were generated from normal, logistic, Laplace and
t-distribution with 6 degrees of freedom, respectively, always with 0 mean a variance 3/2.
The empirical powers of the tests were computed as a percentage of rejections of H0 among
10 000 replications, at significance level α = 0.05. The results are summarized in Table 2.

Table 2: Percentage of rejections of hypothesis H0 : β = 0 of minimum distance test (MD),
Wilcoxon test for regression (W) and t-test for regression (t); n = 30, α = 0.05.

β \ ei N
�
0, 3

2

�
Log

�
0,
√

2π
3

�
Lap

�
0,
√

3
2

�
t(6)

MD W t MD W t MD W t MD W t

0 4.98 4.42 5.00 5.06 4.55 5.00 5.00 4.55 5.04 5.00 4.32 4.93
0.1 28.7 28.3 31.5 32.7 31.4 32.0 42.4 39.0 33.5 34.6 33.1 32.9

−0.1 28.3 28.2 30.9 32.7 31.2 32.2 42.5 39.0 33.7 33.3 32.1 31.9
0.2 78.2 78.8 82.3 82.5 81.8 81.9 88.3 86.6 82.0 84.5 83.9 82.6

−0.2 78.3 78.7 82.9 83.3 82.7 82.9 89.2 87.5 83.1 84.0 83.4 82.5

For normal model errors t-test achieves (not surprisingly) the largest power, but the
differences among the three tests are not much distinct. For distributions with heavier tails
than normal our test has the largest power, even for logistic distribution (for which Wilcoxon
test is locally most powerful rank test). It is caused by the slow convergence of Wilcoxon test
statistic to its asymptotic distribution.

In Table 3 comparison of tests based on various norms (L2, L1, L∞) is made.

Bad performance of the test based on L∞-norm is caused by slow convergence of cor-
responding test statistic to its limit distribution. For large sample size n test preserves
prescribed significance level α under null hypothesis and under the alternative its power is
quite similar to other tests. Tests based on L2 and L1-norm perform very similar. Test based
on L1-norm might have slightly greater power which is caused by faster convergence of the
test statistic. On the other hand, computation of the test statistic based on L2-norm is easier
than those with L1-norm.
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Table 3: Percentage of rejections of hypothesis H0 : β = 0 of minimum distance test
based on L2, L1 and L∞-norm; n = 30, α = 0.05.

ei N
�
0, 3

2

�
Log

�
0, 3√

2π

�
Lap

�
0,
√

3
2

�
t(6)

β L2 L1 L∞ L2 L1 L∞ L2 L1 L∞ L2 L1 L∞

0 5.15 5.03 2.73 5.34 5.31 2.61 5.03 5.18 2.71 4.90 4.97 2.64
0.1 30.0 31.0 17.8 33.4 34.1 20.6 43.6 43.0 30.6 35.8 36.6 22.4

−0.1 29.2 30.2 17.2 34.0 34.7 21.4 44.2 43.4 30.4 35.0 35.8 21.6
0.2 81.2 82.6 62.4 84.9 85.7 68.1 90.5 90.3 78.9 87.8 88.5 72.2

−0.2 80.6 82.6 62.2 84.9 86.0 68.8 90.5 90.4 78.9 86.8 87.4 71.2

We performed more simulations for various design points xi, sample sizes n and model
errors ei. We also compared the tests according to the choice of functions L and g. However,
the corresponding results are very similar to those presented in Tables 2 and 3.

Finally, we studied the finite sample behavior of generalized estimates from Section 6.
Because of the duality of rank tests and estimates corresponding results and conclusions were
the same as for the tests. That is why we omit it here.

8. CONCLUSIONS

We introduced a class of new rank tests in linear regression model. Unlike the classical
ones introduced by Hájek and Šidák, our tests are not linear functions of the ranks. Thanks
to that they can achieve greater power. Our tests are robust, we do not need to assume
normality of model errors. Anyway, under normality our tests has similar power as classical
t-test; for model errors with heavy tails our test has significantly greater power.

Our test may be also robust with respect to leverage observations. The right choice
of the weight function leads to the test that is not sensitive to outlying regressors. We also
generalized Koul’s minimum distance estimates when considering various Lp-norms instead
of L2. Corresponding estimates have the same favorable properties as the tests.
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