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1. INTRODUCTION

In wireless communications, systems with multiple-input-multiple-output (MIMO) de-
sign have become very popular since they allow higher bit rate and because of their appli-
cations in the analysis of signal-to-noise ratio (SNR). In the analysis of channel capacity,
the formation of complex channel coefficients play a deterministic role and been taken to be
complex matrix variate normal distributed so far, to the best of our knowledge. However, this
normality assumption has not been challenged. [17] mentioned that the Rayleigh density func-
tion is usually derived based on the assumption that from the central limit theorem for large
number of partial waves, the resultant process can be decomposed into two orthogonal zero-
mean and equal-standard deviation normal random processes. This is an approximation and
the restriction of complex normal is unnecessary — it is not always a large number of interfer-
ing signals. Thus a more general assumption than complex matrix variate normal may not be
that far from reality (see also [12]). This speculative research challenges this assumption of a
channel being fed by normal inputs, and sets the platform for introducing our newly proposed
models to the MIMO wireless systems arena, and to provide deeper insight into these systems.

The performance of these MIMO systems relies on the quadratic form of the complex
normal channel matrix, with n “inputs” and p “outputs”, colloquially referred to as “receivers”
and “transmitters” respectively. Thus, the distribution of quadratic forms of the underlying
complex normal channel matrix is of particular interest. Distributions of quadratic forms
of complex normal matrix variates is a topic that has been studied to a wide extent in
literature ([7], [6], [15]). In this paper the distribution of S = XHAX is of interest1, where
X ∈ Cn×p

1 is taken to be the complex matrix variate elliptical distribution to address the
criticism against the questionable use of the normal model (A ∈ Cn×n

2 , where Cn×p
1 denotes

the space of n×p complex matrices, and Cp×p
2 denotes the space of Hermitian positive definite

matrices of dimension p). This complex matrix variate elliptical distribution, which contains
the well-studied complex matrix variate normal distribution as a special case, is defined next.

The complex matrix variate X ∈ Cn×p
1 , whose distribution is absolutely continuous,

has the complex matrix variate elliptical distribution with parameters M ∈ Cn×p
1 , Φ ∈ Cn×n

2 ,
Σ ∈ Cp×p

2 , denoted by X ∼ CEn×p(M ,Φ⊗Σ, g), if it has the following density function2 (see
also [10]):

(1.1) hX(X) =
1

|Σ|n |Φ|p
g
[
− tr

(
Σ−1(X−M)H Φ−1(X−M)

)]
.

In (1.1), g(·) denotes the density generator3 g : R+→R+, which should be a function of a
quadratic form (see also [6]).

[2] and [6] demonstrates that real elliptical distributions can always be expanded as an
integral of a set of normal densities. Similar to [13], we present the following lemma to define
the complex matrix variate elliptical distribution as a weighted representation of complex
matrix variate normal density functions. This representation can be used to explore the
distribution of S when the distribution of X can be that of any member of the complex
matrix variate elliptical class.

1 XH denotes the conjugate transpose of X.
2 |X| denotes the determinant of matrix X.
3 R+ denotes the positive real line.
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Lemma 1.1. If X ∼ CEn×p(M ,Φ⊗Σ, g) with density function hX(X), then there

exists a scalar weight function W(·) on R+ such that

hX(X) =
∫

R+

W(t)fCNn×p(M ,Φ⊗t−1Σ)

(
X |t

)
dt ,

where4 fCNn×p(M ,Φ⊗t−1Σ)(X|t) = 1
πpn|Φ|p |t−1Σ|n etr

[
−
(
tΣ−1(X−M)H Φ−1(X−M)

)]
is the

density function of X|t ∼ CNn×p(M ,Φ⊗ t−1Σ), with

W(t) = πnp t−npL−1
{

g
[
− tr

(
Σ−1(X−M)H Φ−1(X−M)

)]}
,

where L is the Laplace transform operator.

Proof: Let s = tr
(
Σ−1(X−M)H Φ−1(X−M)

)
. Using (1.1) we have

hX(X) = |Σ|−n |Φ|−p g [−s]

= |Σ|−n |Φ|−p L
[
W(t) π−np tnp

]
= |Σ|−n |Φ|−p

∫
R+

W(t) π−np tnp e−ts dt

=
∫

R+

W(t) π−np
∣∣t−1Σ

∣∣−n |Φ|−p e−ts dt ,

from where the result follows.

Remark 1.1. Under the assumptions of Lemma 1.1, using Fubbini’s Theorem, we
have

1 =
∫

Cn×p
1

hX(X) dX =
∫

R+

W(t)

 ∫
Cn×p

1

fX(X) dX

dt =
∫

R+

W(t) dt .

Thus for a non-negative weight function W(·), the function W(·) is a density function of t.
Therefore Lemma 1.1 can only be interpreted as a representation of a scale mixture of complex
matrix variate normal distributions. However, W(·) is not always positive and can be negative
on some domains (see [13] for some examples). The only limitation of Lemma 1.1 is that it
defines those complex matrix variate elliptical distributions whose inverse Laplace transform
exist. There are some mild sufficient conditions that ensure the inverse Laplace transform
exists for most of the well-known complex matrix variate elliptical distributions.

In this paper two special cases of the complex matrix variate elliptical model is of
interest. Firstly, the complex random matrix X ∈ Cn×p

1 has the complex matrix variate
normal distribution with weight function W(·) in Lemma 1.1 given by

(1.2) W(t) = δ (t− 1) ,

where δ(·) is the Dirac delta function (see [2] and [13]).

4 etr(·) = etr(·) where tr(X) denotes the trace of matrix X, and X−1 denotes the inverse of matrix X.
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Secondly, X ∈ Cn×p
1 has the complex matrix variate t distribution with the param-

eters M ∈ Cn×p
1 , Φ ∈ Cn×n

2 , Σ ∈ Cp×p
2 and degrees of freedom υ > 0, denoted by X∼

Ctn×p(M ,Φ⊗Σ, υ), with the following density function:

(1.3) fX(X) =
υnp CΓ(np + υ)

πnp CΓp(υ)

{
1 +

1
υ

tr
(
Σ−1(X−M)H Φ−1(X−M)

)}−(np+υ)

,

where the complex multivariate gamma function is given by (see [7])

(1.4) CΓp(a) = π
1
2
p(p−1)

p∏
i=1

Γ
(
a− (i− 1)

)
.

In this case the weight function W(·) in Lemma 1.1 is given by

(1.5) W(t) =
(tυ)υ e−tυ

t Γ(υ)
,

where Γ(·) denotes the well-known gamma function.

This paper is organized as follows: in Section 2 the distribution of the quadratic form
within the complex elliptical class for the nonsingular- and singular case is derived, along
with the density functions of the eigenvalues of these quadratic forms. The distribution of
the eigenvalues of the quadratic forms are of particular interest in the MIMO environment
as it describes the underlying distribution for many of the performance measures for these
MIMO systems. In Section 3 this newly developed theory in the complex elliptical class
is used to evaluate the capacity of MIMO wireless systems for a specific channel environ-
ment; by particularly assuming the complex matrix variate t distribution. Furthermore, a
Rayleigh-type distribution stemming from the underlying elliptical assumption, is also de-
fined. Section 4 highlights the advantages of the complex matrix variate t distribution in the
MIMO environment and includes some conclusions.

2. DISTRIBUTIONS OF QUADRATIC FORMS FROM THE COMPLEX
ELLIPTICAL CLASS

In this section the necessary theoretical development is presented to set the platform for
Section 3. The density functions of the nonsingular and singular quadratic forms of complex
elliptical random matrices are derived and particular cases of them are of special focus. In
addition, the density functions for the joint eigenvalues are also derived; these densities are
of particular importance when calculating performance measures of MIMO systems. For the
reader’s convenience, Remark 2.1 provides background regarding matrix spaces.

Remark 2.1. Matrix spaces: The set of all n×p (n≥p) matrices, E, with ortho-
normal columns is called the Stiefel manifold, denoted by CVp,n. Thus CVp,n =

{
E (n×p) ;

EHE = Ip

}
. The volume of this manifold is given by Vol (CVp,n) =

∫
CVp,n

(
EHdE

)
= 2p πnp

CΓp(n) .

If n = p then a special case of the Stiefel manifold is obtained, the so-called unitary manifold,
defined as CVn,n =

{
E (n×n) ;EHE = In

}
≡ U(n) where U(n) denotes the group of unitary

n×n matrices. The volume of U(n) is given by Vol
(
U(n)

)
=
∫

U(n)

(
EHdE

)
= 2n πn2

CΓn(n) .
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2.1. Nonsingular case

Theorem 2.1. Suppose that n≥ p and X ∼ CEn×p(0,Φ⊗Σ, g), and let Φ,A ∈ Cn×n
2

and Σ ∈ Cp×p
2 . Then the quadratic form S = XHAX ∈ Cp×p

2 has the integral series complex

Wishart-type (ISCW) distribution with density function

(2.1) fS(S) =
|S|n−p G(S)

CΓp(n) |ΦA|p |Σ|n
,

where

G(S) =
∫

R+

tnp
0CF (p)

0 (B,−tΣ−1S)W(t) dt

and B = A− 1
2 Φ−1A− 1

2 . This distribution is denoted as S ∼ ISCWp(n,Φ⊗Σ,G(·)), where

0CF (p)
0 (·, ·) denotes the complex hypergeometric function with two Hermitian matrix argu-

ments (see [7], [9]).

Proof: From Lemma 1.1, X|t ∼ CN(0,Φ⊗ t−1Σ). The result follows from Theorem 1
of [15] and integrating with respect to the weight function W(t).

Remark 2.2. We know that if X ∼ CNn×p (0,Φ⊗Σ) then XHAX has the complex
matrix variate quadratic distribution, denoted by CQn×p (A,Φ⊗Σ). Assuming that X ∼
CEn×p (0,Φ⊗Σ, g), it then follows from Lemma 1.1 that

S = XHAX
d= ZHAZ , where Z|t ∼ CNn×p

(
0,Φ⊗ t−1Σ

)
,

with
ZHAZ |t ∼ CQn×p

(
A,Φ⊗ t−1Σ

)
.

Therefore
fS (S) =

∫
R+

W(t) fCQn×p(A,Φ⊗t−1Σ)

(
ZHAZ |t

)
dt .

Particular cases of the density function (2.1) will be focussed on, since they form part
of the investigation in Section 3.

Remark 2.3. If A = In and Φ = In then S ∈ Cp×p
2 has the complex Wishart-type

distribution with the following density function

(2.2) fS(S) =
|S|n−p G(S)
CΓp(n) |Σ|n

,

where
G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.2) simplifies to

fS(S) =
|S|n−p G(S)
CΓp(n) σ2np

,

where
G(S) =

∫
R+

tnp etr
(
−t σ−2S

)
W(t) dt .
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Next, an expression for the density function of the joint eigenvalues of S = XHAX is
given, when S ∼ ISCWp (n,Φ⊗Σ,G(·)) (see (2.1)).

Theorem 2.2. Suppose that S∼ ISCWp (n,Φ⊗Σ,G(·)), and let λ1 > λ2 > ···> λp > 0
represent the ordered eigenvalues of S∈Cp×p

2 . Then the eigenvalues of S, Λ= diag(λ1,λ2,...,λp),
has density function5

f(Λ) = K

∫
R+

tnp

∫
E∈U(p)

0CF (p)
0

(
B,−tΣ−1EΛEH

)
dEW(t) dt(2.3)

= K

∫
R+

tnp
∞∑

k=0

∑
κ

CCκ(B)
k!Cκ(In)

CCκ

(
−tΣ−1

)
CCκ(Λ)

Cκ(Ip)
W(t) dt ,(2.4)

where B = A− 1
2 Φ−1A− 1

2 and K =
πp(p−1)

�
pQ

i=1
λn−p

i

� 
pQ

k<l
(λk−λl)

2

!

CΓp(n) CΓp(p) |ΦA|p |Σ|n .

Proof: Using Eq. 93 of [7] and (2.1), the joint density function of the eigenvalues
λ1 > λ2 > ... > λp > 0 of S is given by

f(Λ) =
πp(p−1)

(
p∏

k<l

(λk − λl)
2

)
|Λ|n−p

CΓp(n) CΓp(p) |ΦA|p |Σ|n

∫
E∈U(p)

G(EΛEH) dE .

By using Definition 2.6 from [3], (2.4) follows directly.

Particular cases of the density function in (2.3) are focussed on next, since they form
part of the investigation in Section 3.

Remark 2.4. If A = In and Φ = In then the joint density function of the eigenvalues
of the complex Wishart-type distribution, f(Λ), simplifies to

(2.5) f(Λ) =
πp(p−1)

(
p∏

i=1
λn−p

i

)(
p∏

k<l

(λk − λl)
2

)
CΓp(n) CΓp(p) |Σ|n

∫
R+

tnp
0CF (p)

0

(
Λ,−tΣ−1

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.5) simplifies to

f(Λ) =
πp(p−1)

(
p∏

i=1
λn−p

i

)(
p∏

k<l

(λk − λl)
2

)
CΓp(n) CΓp(p) σ2np

∫
R+

tnp exp

(
−t σ−2

p∑
i=1

λi

)
W(t) dt .

Remark 2.5. It is known that expressions containing hypergeometric functions of
matrix argument and zonal polynomials may be cumbersome to compute, and that software
packages have limitations to handle such computations. In this paper only cases with specific
interest in MIMO systems will be focussed on. The reader is referred to [1], [5], and [9] for
some analytical expressions to compute such hypergeometric functions of matrix arguments.

5 CCκ(Z) denotes the complex zonal polynomial of Z corresponding to the partition κ = (k1, ..., kp), k1 ≥
··· ≥ kp ≥ 0, k1 + ···+ kp = k and

P
κ denotes summation over all partitions κ.
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The following table gives the density function for the special cases (see (2.2) and (2.5))
for the complex matrix variate normal and complex matrix variate t distribution (see (1.5))
case respectively. The expressions for the complex matrix variate normal case reflects the
results of [7].

Table 1: Density functions of certain cases of complex matrix variate
elliptical quadratic form.

Distribution of X Density function

fS(S) (see (2.2))

Normal
�
CΓp(n) |Σ|n

�−1 |S|n−p etr(−Σ−1S)

t
�
Γ(υ) CΓp(n) |Σ|n

�−1
υυ |S|n−p Γ(np + υ) (trΣ−1S + υ)(np+υ)

f(Λ) (see (2.5))

Normal

�
CΓp(n) CΓp(p) |Σ|n

�−1
πp(p−1)

�
pQ

i=1

λn−p
i

�

×
�

pQ
k<l

(λk−λl)
2

�
0CF (p)

0 (Λ,−Σ−1)

t

�
CΓp(n) CΓp(p) |Σ|n Γ(υ) υnp

�−1

πp(p−1)

�
pQ

i=1

λn−p
i

�

×
�

pQ
k<l

(λk−λl)
2

�P∞
k=0

P
κ

CCκ(−Σ−1) CCκ(Λ)

υk k! Cκ(Ip)
Γ(np + υ + k)

2.2. Singular case

In this section the singular case of the quadratic form of the complex matrix variate
elliptical distribution is also considered, where 0 < n < p.

Theorem 2.3. Suppose that 0 < n < p and X ∼ CEn×p(0,Φ⊗Σ, g), and let Φ,A ∈
Cn×n

2 and Σ ∈ Cp×p
2 . Let Λ = diag(λ1, λ2, ..., λp). Then the quadratic form S = XHAX ∈

Cp×p
2 has the integral series complex singular Wishart-type (ISCSW) distribution with density

function

(2.6) fS(S) =
πn(n−p) |Λ|n−p G(S)
CΓn(n) |ΦA|p |Σ|n

,

where

G(S) =
∫

R+

tnp
0CF (n)

0

(
B,−tΣ−1S

)
W(t) dt

and B = A− 1
2 Φ−1A− 1

2 . This distribution is denoted as S ∼ ISCSWn(p,Φ⊗Σ,G(·)).

Proof: See that

f(X) =
∫

R+

tnp |ΦA|−p |Σ|−n π−np etr
(
−tBXΣ−1XH

)
W(t) dt ,



244 J.T. Ferreira, A. Bekker and M. Arashi

where X|t ∼ CN
(
0,Φ⊗ t−1Σ

)
. Let XHA

1
2 = E1ΥH (where A

1
2 A

1
2 = A), and note S =

XHA
1
2 A

1
2 X = E1ΥHHHΥEH

1 = E1Υ2EH
1 = E1ΛEH

1 (where Υ2 = Λ). From Remark 2.1
follows:

f(S) =
π−np |Λ|n−p

CΓn(n) |ΦA|p |Σ|n

∫
CVn,n

∫
R+

tnp
0CF (n)

0

(
B,−tΣ−1S

)
W(t) dt dH ,

from where the result follows after some simplification.

Particular cases of the density function (2.6) will be focussed on, since they form part
of the investigation in Section 3.

Remark 2.6. If A = In and Φ = In, then S has the complex singular Wishart-type
distribution with the following density function

(2.7) fS(S) =
πn(n−p) |Λ|n−p G(S)

CΓn(n) |Σ|n
,

where
G(S) =

∫
R+

tnp etr
(
−tΣ−1S

)
W(t) dt .

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

fS(S) =
πn(n−p) |Λ|n−p G(S)

CΓn(n) σ2np
,

where
G(S) =

∫
R+

tnp etr
(
−tσ−2S

)
W(t) dt .

Next, expressions for the density function of the joint eigenvalues for the singular case
are derived.

Theorem 2.4. Suppose that 0 < n < p and S ∼ ISCSWn(p,Φ⊗Σ,G(·)) (see (2.6)),

and let λ1 > λ2 > ... > λn > 0 represent the ordered eigenvalues of S. Then the joint distri-

bution of the eigenvalues of S, Λ = diag(λ1, λ2, ..., λp), has density function

f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) |ΦA|p |Σ|n

×
∫

R+

tnp

∫
CVp,n

0CF (n)
0

(
B,−tΣ−1EΛEH

)
(dE)W(t) dt ,

(2.8)

where B = A− 1
2 Φ−1A− 1

2 .

Proof: Consider a partial spectral decomposition where S = EΛEH , where E ∈ CVp,n.
The transformation from S to E,Λ has volume element

(dS) = (2π)−n
∣∣Λn−p

∣∣−2
n∏

k<l

(λk − λl)
2 (dΛ)

(
EHdE

)
.
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Therefore, from (2.6) and Remark 2.1:

f(Λ) =
πn(n−p)

CΓn(n) |ΦA|p |Σ|n
(2π)−n

∣∣Λn−p
∣∣−2 |Λ|n−p

(
n∏

k<l

(λk − λl)

)2

×
∫

R+

tnp

∫
CVp,n

0CF (n)
0

(
B,−tΣ−1

2 EΛEH
) (

EHdE
)
W(t) dt

and the result follows.

Some special cases of the density function in (2.8) are reported next.

Remark 2.7. If A = In and Φ = In, then the joint density function of the eigenvalues
of the complex singular Wishart type distribution, f(Λ), simplifies to the following density
function:

(2.9) f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) |Σ|n

∫
R+

tnp
0CF (n)

0

(
Λ,−tΣ−1

)
W(t) dt.

If Σ = σ2Ip (thus, uncorrelated with variance σ2), (2.7) simplifies to

f(Λ) =
πn(n−1)

(
n∏

i=1
λp−n

i

)(
n∏

k<l

(λk − λl)
2

)
CΓn(n) CΓn(p) σ2np

∫
R+

tnp exp

(
−t σ−2

n∑
i=1

λi

)
W(t) dt .

The following table gives the density function for the special cases (see (2.7) and (2.9))
for weight functions (1.2) and (1.5) respectively.

Table 2: Density functions of certain cases of complex singular matrix
variate elliptical quadratic form.

Distribution of X Density function

fS(S) (see (2.7))

Normal
�
CΓn(n) |Σ|n

�−1
πn(n−p) |Λ|n−p etr(−Σ−1S)

t
�
Γ(υ) CΓn(n) |Σ|n

�−1
υυ πn(n−p) |Λ|n−p Γ(np + υ) (trΣ−1S + υ)−(np+υ)

f(Λ) (see (2.9))

Normal

�
CΓn(n) CΓn(p) |Σ|n

�−1
πn(n−1)

�
nQ

i=1

λp−n
i

�

×
�

nQ
k<l

(λk−λl)
2

�
0CF (n)

0 (Λ,−Σ−1) (see Eq. 25 in [14])

t

�
CΓn(n) CΓn(p) |Σ|n Γ(υ) υnp

�−1

πn(n−1)

�
nQ

i=1

λp−n
i

�

×
�

nQ
k<l

(λk−λl)
2

�P∞
k=0

P
κ

CCκ(−Σ−1) CCκ(Λ)

υk k! Cκ(Ip)
Γ(np + υ + k)
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3. CHANNEL CAPACITY

Suppose that a communication system is being characterized by the following output
relation, as depicted in Figure 1:

y = Hx + v ,

where y,v ∈ Cnr×1
1 , x ∈ Cnt×1

1 and H ∈ Cnr×nt
1 . In a correlated Rayleigh channel, the dis-

tribution of an nr×nt channel matrix H is usually given by H ∼ CNnr×nt(0, Inr⊗Σ) with
nr ≥ nt (in other words, the channel coefficient from different transmitter antennas to a sin-
gle receiver antenna is correlated), and note that the off-diagonal elements of Σ ∈ Cnt×nt

2 are
nonzero for correlated channels. Suppose that the channel matrix H and noise vector v are
independently distributed according the complex matrix variate elliptical and complex mul-
tivariate normal distributions, respectively, in other words, H ∼ CEnr×nt(0, Inr⊗Σ, g), and
v ∼ CNnr×1(0, σ2Inr). In this section, the focus is to derive the channel capacity capacity if
H ∼ Ctnr×nt(0, Inr⊗Σ, υ), with the weight function (1.5).

Figure 1: MIMO System.

The input power is distributed equally over all transmitting antennas and is constrained
to ρ (the signal to noise ratio) such that (see [15])

E(xHx) ≤ ρ .

For the purpose of this paper we are particularly interested in Rayleigh distributed channels.
However, having an underlying complex matrix variate elliptical distribution for H results
in having to consider a Rayleigh-type channel which is defined next.

Proposition 3.1. Consider a complex elliptical process, Z = X + iY , where X, Y are

independent and identically zero-mean elliptical random variates. Let R =
√

X2 + Y 2 denote

an element hij of H. The density function of R emanating from the complex elliptical class

is given by

h(r) =
r

σ2

∫
R+

t exp
(
− r2

2 σ2 t−1

)
W(t) dt ,

where r > 0, which is described as a Rayleigh-type density function (see also [11]).
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Moreover, if a block-fading model is assumed together with coding over many indepen-
dent fading intervals, then the ergodic capacity of the random MIMO channel is given by
(see [18])

C = EH

(
log
∣∣∣∣(Int +

ρ

nt
HHH

)∣∣∣∣
)

= EΛ

(
log

nt∏
k=1

(
1 +

ρ

nt
λk

))
,

(3.1)

where λ1 > ... > λnt are the eigenvalues of S. Hence (3.1) can be evaluated using the joint den-
sity functions of the eigenvalues ((2.3) and (2.8) respectively). In the following two sections,
the channel capacity is derived for the nonsingular- and singular case, for both correlated-
and uncorrelated cases.

3.1. Nonsingular case

In this section the assumption is that the complex channel coefficients are distributed
according to the complex matrix variate t distribution. To this end, we first consider the more
general complex matrix variate elliptical distribution and subsequently derive the results for
the complex matrix variate t distribution. We firstly derive the expressions for the channel
capacity of a correlated- and uncorrelated Rayleigh-type nr×2 channel environment when the
underlying distribution is complex matrix variate elliptical. In particular, a two-input (nt=2),
nr output communication system is considered and the capacity graphically illustrated.

Theorem 3.1.

1. For a two-input correlated Rayleigh-type channel H ∼ CEnr×2(0, Inr⊗Σ, g), with

nr ≥ 2, the capacity C is given by

C =
(a1a2)

nr

Γ(nr) Γ(nr − 1) (a1 − a2)

∞∫
0

log
(
1 +

ρ

2
λ1

)

×

λnr−1
1 Γ(nr − 1) a

−(nr−1)
2

∫
R+

tnr exp(−ta1λ1)W(t) dt

− λnr−1
1 Γ(nr − 1) a

−(nr−1)
1

∫
R+

tnr exp(−ta2λ1)W(t) dt

− λnr−2
1 Γ(nr) a−nr

2

∫
R+

tnr−1 exp(−ta1λ1)W(t) dt

+ λnr−2
1 Γ(nr) a−nr

1

∫
R+

tnr−1 exp(−ta2λ1)W(t) dt

 dλ1 ,

(3.2)

where a1 > a2 are the ordered eigenvalues of the diagonalized covariance matrix Σ.
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2. For a two-input uncorrelated Rayleigh-type channel H ∼ CEnr×2(0, Inr⊗ σ2I2, g),
with nr ≥ 2, the capacity C is given by

C =

∞∫
0

log
(
1 +

ρ

2
λ1

)
∫

R+

λnr
1 tnr+1 exp

(
−t σ−2λ1

)
W(t)

2 Γ(nr) σ2
dt

−
∫

R+

λnr−1
1 tnr exp

(
−t σ−2λ1

)
W(t)

Γ(nr − 1)
dt

+
∫

R+

λnr−2
1 tnr−1 Γ(nr + 1) exp

(
−t σ−2λ1

)
W(t)

2 Γ(nr − 1) σ−2
dt

 dλ1 .

(3.3)

Proof: 1. The unordered density function of (2.5) is obtained by dividing by p! =
nt! = 2!:

f(λ1, λ2) =
(λ1λ2)

nr−2 (λ1 − λ2) (a1a2)
nr

2! Γ(nr) Γ(nr − 1) (a2 − a1)

∫
R+

t2nr−1
∣∣exp(−t aiλj)

∣∣W(t) dt ,

since from (1.4) we have CΓ2(2) = π Γ(2) Γ(1), CΓ2(nr) = π Γ(nr) Γ(nr − 1), and using an
expression for the complex hypergeometric function by [8]. Then∣∣exp(−t aiλj)

∣∣ =

∣∣∣∣∣ exp(−t a1λ1) exp(−t a1λ2)
exp(−t a2λ1) exp(−t a2 λ2)

∣∣∣∣∣
= exp

(
−t(a1λ1 + a2λ2)

)
− exp

(
−t(a1λ2 + a2λ1)

)
.

From (3.1) the capacity for a correlated Rayleigh-type fading model of dimension nr×2 under
the complex matrix variate elliptical distribution is given by

C = 2
∫ ∞

0
log
(
1 +

ρ

2
λ1

)∫ ∞

0
f(λ1, λ2) dλ2 dλ1

= K

∫ ∞

0
log
(
1 +

ρ

2
λ1

)∫ ∞

0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
×
∫

R+

t2nr−1
(
exp
(
−t (a1λ1 + a2λ2)

)
− exp

(
−t (a1λ2 + a2λ1)

))
W(t) dt dλ2 dλ1

= K

∫ ∞

0
log
(
1 +

ρ

2
λ1

) ∫
R+

t2nr−1

∫ ∞

0

(
λnr−1

1 λnr−2
2 − λnr−2

1 λnr−1
2

)
×
(
exp
(
−t (a1λ1 + a2λ2)

)
− exp

(
−t (a1λ2 + a2λ1)

))
dλ2W(t) dt dλ1 ,

where K = (a1a2)nr

Γ(nr) Γ(nr−1) (a2−a1) . The latter integral equals

λnr−1
1 exp(−ta1λ1) Γ(nr−1) (ta2)

−(nr−1) − λnr−1
1 exp(−ta2λ1) Γ(nr−1) (ta1)

−(nr−1) −
− λnr−2

1 exp(−ta1λ1) Γ(nr) (ta2)
−nr + λnr−2

1 exp(−ta2λ1) Γ(nr) (ta1)
−nr

by using Eq. 3.381.4 from [4]. Result (3.2) follows.

2. The proof follows similarly where Σ = σ2I2.

A particular focus is that of an underlying complex matrix variate t distribution, there-
fore the weight function (1.5) is substituted into (3.2) and (3.3) to obtain the corresponding
capacity.
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Corollary 3.1.

1. For a two-input correlated Rayleigh-type channel, H ∼ Ctnr×2(0, Inr⊗Σ, υ), with

nr ≥ 2, the capacity is given by

C =
anr

1 a2 υυ Γ(nr + υ)
(a1 − a2) Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a1λ1 + υ)−(nr+υ) dλ1

− a1anr
2 υυ Γ(nr + v)

(a1 − a2) Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1 (a2λ1 + υ)−(nr+υ) dλ1

− anr
1 υυ Γ(nr + υ − 1)

(a1 − a2) Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a1λ1 + υ)−(nr+υ−1) dλ1

+
anr

2 υυ Γ(nr + υ − 1)
(a1 − a2) Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1 (a2λ1 + υ)−(nr+υ−1) dλ1 .

(3.4)

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ctnr×2(0, Inr ⊗σ2I2, υ),
with nr ≥ 2, the capacity C is given by

C =
υυ Γ(nr + υ + 1)

σ2 Γ(υ) Γ(nr)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr

1

(
λ1

σ2
+ υ

)−(nr+υ+1)

dλ1

− 2 υυ Γ(nr + υ)
Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−1

1

(
λ1

σ2
+ υ

)−(nr+υ)

dλ1

+
υυ Γ(nr +υ−1) Γ(nr +1)

σ−2 Γ(υ) Γ(nr − 1)

∞∫
0

log
[
1 +

ρ

2
λ1

]
λnr−2

1

(
λ1

σ2
+ υ

)−(nr+υ−1)

dλ1 .

Figure 2: (3.4) against nr for different values of ρ.



250 J.T. Ferreira, A. Bekker and M. Arashi

Figure 2 shows the calculated channel capacity (3.4) versus nr for different values of ρ,
assuming a correlation of 0.9, σ2 = 1, and υ = 10.

Figure 3 shows the calculated channel capacity (3.5) versus nr for different values of ρ,
assuming a correlation of 0, σ2 = 1, and υ = 10.

Figure 3: (3.5) against nr for different values of ρ.

Table 3 shows the capacity in nats6 for this nr×2 correlated Rayleigh-type fading chan-
nel matrix (as illustrated in Figure 2). Table 4 shows the capacity in nats for this nr×2 uncor-
related Rayleigh-type fading channel matrix (as illustrated in Figure 3). Each column repre-
sents different levels of SNR, in decibels (dB). Observe how the capacity is increasing in both
Tables 3 and 4 with regards to increasing SNR, as well as increasing number of receivers nr.

Table 3: Capacity (3.4) in nats for a nr×2 system for different values of ρ and υ = 10.

nr 0 dB 5dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.2916 2.0609 3.3057 4.8558 6.6852 8.7821 10.9059 13.1656

4 1.9816 2.9984 4.5956 6.5129 8.6450 10.8836 13.1643 15.4598

6 2.4582 3.6126 5.3811 7.4294 9.6327 11.9010 14.1924 16.4914

8 2.8266 4.0737 5.9455 8.0592 10.2922 12.5715 14.8665 17.1666

10 3.1289 4.4445 6.3856 8.5381 10.7872 13.0721 15.368 17.6696

12 3.3862 4.7550 6.7460 8.9240 11.1831 13.4713 15.7691 18.0700

14 3.6105 5.0222 7.0506 9.2467 11.5125 13.8028 16.1012 18.4021

16 3.8095 5.2564 7.3141 9.5234 11.7939 14.0856 16.3842 18.6850

18 3.9882 5.4646 7.5456 9.7650 12.0988 14.3313 16.6298 18.9303

20 4.1502 5.6515 7.7414 9.9786 12.2547 14.5476 16.8458 19.1458

6 In (3.4) if loge is used then the measurement unit for capacity is termed “nats”.
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Furthermore, note how the capacity for the uncorrelated case (Table 4) is higher for all
corresponding entries than that of the correlated case (Table 3). The same is observed for
other arbitrarily chosen υ.

Table 4: Capacity (3.5) in nats for a nr×2 system for different values of ρ and υ = 10.

nr 0 dB 5dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1.4843 2.4498 4.0298 5.9281 8.0291 10.2403 12.5045 14.7941

4 2.4402 3.7860 5.7830 7.9676 10.2292 12.5184 14.8167 17.1179

6 3.1083 4.6148 6.7334 8.9714 11.2528 13.5486 15.8490 18.1509

8 3.6156 5.2064 7.3788 9.6373 11.9256 14.2237 16.5284 18.8269

10 4.0228 5.6647 7.8668 10.1360 12.4279 14.7270 17.0285 19.3307

12 4.3622 6.0382 8.2591 10.5948 12.8287 15.1285 17.4302 19.7325

14 4.6583 6.3532 8.5869 10.8670 13.1623 15.4625 17.7643 20.0668

16 4.9069 6.6253 8.8684 11.1516 13.4479 14.7484 18.0503 20.3525

18 5.1324 6.8648 9.1149 11.4004 13.6974 15.9981 18.3000 20.6022

20 5.3350 7.0785 9.3342 11.6214 13.9189 16.2197 18.5215 20.8237

3.2. Singular case

For the singular case, the correlated- and uncorrelated Rayleigh-type 2×nt channel
matrix is considered, and its corresponding capacity derived.

Theorem 3.2.

1. For a two-input correlated Rayleigh-type channel, H ∼ CE2×nt(0, I2⊗Σ, g), with

nt ≥ 2, the capacity C is given by

C = K

∞∫
0

λ1∫
0

{
log
(
1 +

ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ2

)}
(λ1λ2)

nt−2 (λ1 − λ2)

×
∫

R+

tnt+1 det
(
exp(−taiλj)

)
W(t) dt dλ2 dλ1 ,

(3.5)

where K =

ntQ
i=1

a2
i

2Γ(nt) Γ(nt−1)
ntQ

k<l
(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigenvalues

of Σ−1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ CE2×nt(0, I2⊗σ2Int , g),
with nt ≥ 2, the capacity C is given by

C =
1

σ2nt+2 Γ(nt)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt

1

∫
R+

tnt+1 exp
(
−t σ−2λ1

)
W(t) dt dλ1

− 2
σ2nt Γ(nt − 1)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt−1

1

∫
R+

tnt exp
(
−t σ−2λ1

)
W(t) dt dλ1

+
Γ(nt + 1)

σ2nt−2 Γ(nt) Γ(nt−1)

∞∫
0

log
[
1+

ρ

nt
λ1

]
λnt−2

1

∫
R+

tnt−1 exp
(
−t σ−2λ1

)
W(t) dt dλ1 .

(3.6)
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Proof: 1. The unordered density function of (2.9) is obtained by dividing by n! =
nr! = 2!:

f(λ1, λ2) =
π2(2−1)

(
2∏

i=1
λnt−2

i

)(
2∏

k<l

(λk − λl)
2

)
2 CΓ2(2) CΓ2(nt) |Σ|2

∫
R+

t2nt
0CF (2)

0

(
Λ,−tΣ−1

)
W(t) dt .

In the same way as Theorem 3.1, integrating with respect to λ2 and calculating the expecta-
tion of (3.1) leads to the final result.

2. The proof follows similarly where Σ = σ2I2.

Corollary 3.2.

1. For a two-input correlated Rayleigh-type channel, H ∼ Ct2×nt(0, I2⊗Σ, ν), with

nt ≥ 2, the capacity C is given by

C = K
υυ

Γ(υ)

∞∫
0

λ1∫
0

{
log
(

1 +
ρ

nt
λ1

)
+ log

(
1 +

ρ

nt
λ1

)}
(λ1λ2)

nt−2 (λ1 − λ2)

×
∫

R+

tnt+υ e−tυ det
(
exp(−t aiλj)

)
dt dλ2 dλ1 ,

(3.7)

where K =

ntQ
i=1

a2
i

2 Γ(nt) Γ(nt−1)
ntQ

k<l
(al−ak)

, and a1 > a2 > ... > ant > 0 are the eigenvalues

of Σ−1.

2. For a two-input uncorrelated Rayleigh-type channel, H ∼ Ct2×nt(0, I2 ⊗ σ2Int , υ),
with nt ≥ 2, the capacity C is given by

C =
υυ Γ(nt + υ + 1)
σ2nt+2 Γ(υ) Γ(nt)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt

1

(
λ1

σ2
+ υ

)−(nt+υ+1)

dλ1

− 2 υυ Γ(nt + υ)
σ2nt Γ(υ) Γ(nt − 1)

∞∫
0

log
[
1 +

ρ

nt
λ1

]
λnt−1

1

(
λ1

σ2
+ υ

)−(nt+υ)

dλ1

+
υυ Γ(nt +υ−1) Γ(nt +1)

σ2nt−2 Γ(υ) Γ(nt) Γ(nt−1)

∞∫
0

log
[
1+

ρ

nt
λ1

]
λnt−2

1

(
λ1

σ2
+ υ

)−(nt+υ−1)

dλ1 .

(3.8)

Figure 4 shows the calculated channel capacity (3.7) (correlation 0.9) and (3.8) (no
correlation) versus SNR (ρ) for nt = 4 and υ = 10. Figure 5 illustrates the higher capacity
for the underlying complex matrix variate t distribution versus the complex matrix variate
normal distribution for the correlated nonsingular case.
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Figure 4: (3.7) and (3.8) against ρ, for nt = 4.

Figure 5: (3.4) and Eq. (29) from [16] against nr, for ρ, υ = 10.
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4. CONCLUDING REMARKS

In this paper the distribution of the quadratic form and its associated joint eigenval-
ues with an underlying complex matrix variate elliptical model was derived. The proposed
methodology is based on an integral representation that provides the researcher with expres-
sions for allowing other underlying models than that of the normal, providing new insightful
research possibilities. Some special cases were highlighted with the well-known Wishart dis-
tribution as a special case when the complex matrix variate normal distribution is under
consideration. Another special case is that of no correlation; this case is of specific interest
in the performance measure of channel capacity in the MIMO environment.

In particular the complex matrix variate t distribution was applied and the literature
is enriched with its representation. The channel capacity within the MIMO environment is
investigated for correlated and uncorrelated scenarios in the nonsingular and singular cases.
It is observed that

(1) Correlation between transmitters/receivers degrade system capacity; and

(2) The capacity of the system is higher in the case of underlying complex matrix vari-
ate complex t distribution than that compared to an underlying complex matrix
variate normal distribution.

When no correlation exists between receivers, the well-known central limit theorem can
be assumed which results in H ∼ CNnr×nt(0, Inr⊗Σ). However, this paper provides new
possibilities in the wireless communications systems environment with the elliptical platform.
In particular, the complex matrix variate t distribution is considered (as the t is a familiar
candidate when placed alongside the normal). These numerical examples (see Figure 5) of
the channel capacity show that the derived expressions under the complex matrix variate t

distribution provide significant insights on the behaviour of performance measures when the
assumption of the complex matrix variate normal distribution is challenged.

If the receivers and transmitters are correlated simultaneously, i.e. H∼CNnr×nt(0,Φnr⊗
Σnt), then the well-known central limit theorem does not apply. In that case the complex ma-
trix variate elliptical distribution may provide greater flexibility in this regard. Although the
results in this paper are presented for the Inr⊗Σ and related cases, in the case of Φnr⊗Σnt

the covariance structure can be adapted to Inr⊗Σ via a transformation.
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