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1. INTRODUCTION

In general, the problem of characterization of probability distributions is described
as follows. Suppose a family of distributions F possesses a property A. If, conversely, a
distribution has propertyA only if it is a member of that family, then propertyA characterizes
the family F . This result is referred to as a characterization of the distributions in F .
Primary motivation for characterizations problems is due to statistical applications. If a
statistical procedure assumes that property A holds, then the underlying distribution must be
a member of the family F . Naturally, first characterizations results are for the normal family
of distributions. The exponential distribution is one of the non-normal distributions, which
has received a lot of attention as well. Comprehensive surveys of exponential characterizations
can be found in [1], [3], [5], [6], and [8].

More recently, Arnold and Villaseñor [4] obtained a series of characterizations of the
exponential distribution based on random samples of size two and conjectured possible gen-
eralizations for samples of size three. They provide motivation for their results by pointing
out an example of a goodness-of-fit construction. A test for exponentiality based on the
characterizations in [4] was recently constructed in [7]. Another possible use of the results
in [4] and their generalizations, is in verifying modeling assumptions and in simulations (see
also [8]). Extending the techniques from [4], we will prove some of Arnold and Villaseñor’s
conjectures.

Assume throughout that X1, X2, and X3 are independent random variables with a com-
mon absolutely continuous cumulative distribution function (cdf) F , such that F (0) = 0 and
probability density function (pdf) f . Denote X2:2 := max{X1, X2}, X3:3 := max{X1, X2, X3},
and F̄ = 1− F . Consider the relations:

(1.1)
3∑

j=1

1
j

Xj has pdf
3∑

j=1

(
3
j

)
(−1)j−1j f(j x) ,

(1.2) X3:3 has pdf
3∑

j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

(1.3)
3∑

j=1

(
3
j

)
(−1)j−1j f(jx) =

3∑
j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

(1.4) X2:2 +
1
3

X3
d= X3:3 and

3∑
j=1

1
j

Xj
d= X3:3 ,

where d= denotes equality in distribution. We will prove, under some regularity assumptions
on F , that each one of these five conditions, on its own, is sufficient for X1, X2, and X3 to be
exponentially distributed.

We organize this paper as follows. Using Laplace transforms, in Section 2 we prove the
characterization (1.1). In Section 3, we establish characterization (1.2) utilizing the Taylor
series expansion of the cdf F . In Section 4, using a recurrent relation, we prove that (1.3) is a
sufficient condition for having exponential parent. Section 5 contains characterization results
based on (1.4). In Section 6 we provide an example with simulated data. In the concluding
section, we discuss possible extensions of the given results.
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2. SUM OF THREE INDEPENDENT VARIABLES

To prove that (1.1) characterizes the exponential distribution, we will convert it into
an equation for the Laplace transform ϕ(t) := E[e−tX1 ].

Theorem 2.1. Assume ϕ(t) is finite for all t in a neighbourhood of zero. If for x > 0

(2.1)
3∑

j=1

1
j

Xj has pdf

3∑
j=1

(
3
j

)
(−1)j−1j f(j x) ,

then X1 ∼ exp(λ) for some λ > 0.

Proof: It follows by (2.1), interchanging the order of summation and integration, that

ϕ(t) ϕ

(
t

2

)
ϕ

(
t

3

)
= E

[
e
−t
P3

j=1
1
j
Xj

]
=
∫ ∞

0
e−tx

 3∑
j=1

(
3
j

)
(−1)j−1j f(j x)

 dx

=
3∑

j=1

(
3
j

)
(−1)j−1

∫ ∞

0
e−txj f(j x) dx

=
3∑

j=1

(
3
j

)
(−1)j−1 ϕ

(
t

j

)
.

(2.2)
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Dividing both sides of (2.2) by ϕ(t) ϕ(t/2) ϕ(t/3), we obtain

(2.3) 1 = α(t) α

(
t

2

)
− 3 α(t) α

(
t

3

)
+ 3 α

(
t

2

)
α

(
t

3

)
,

where for t > 0

(2.4) α(t) :=
1

ϕ(t)
=

∞∑
k=0

ak tk .

Note that, the series in (2.4) is convergent in a neighbourhood of zero, by assumption.
To prove the theorem, it is sufficient to show that

(2.5) α(t) = 1 + λt , λ > 0 .

We will prove (2.5) by calculating the coefficients of the series in (2.4) to be: a0 = 1, a1 =
λ > 0, and ak = 0 for k ≥ 2. It is clear that a0 = ϕ−1(0) = 1. Applying Cauchy formula for
multiplication of two power series, we have for any nonzeros p and q,

(2.6) α

(
t

p

)
α

(
t

q

)
=

∞∑
k=0

 k∑
j=0

1
pj qk−j

aj ak−j

 tk .

Now, (2.3) and (2.6) yield for k ≥ 1

(2.7)
k∑

j=0

(
1

2k−j
− 3

3k−j
+

3
2j 3k−j

)
aj ak−j = 0 .

Setting k = 1 we see that equation (2.7) has as solution any a1. The assumption F (0) = 0
implies that there is λ > 0, such that a1 = λ > 0. If k = 2, then (2.7) yields a2 = 0. Assuming
aj = 0 for 2 ≤ j ≤ k − 1, it follows from (2.7) that(

1− 1
2k−1

)
ak = 0 .

Thus, ak = 0 for any k ≥ 3. Therefore, (2.5) holds, which completes the proof.

Note that, conversely, if Xi ∼ exp(λ) for i = 1, 2, 3, then (2.1) holds true. To show
this, it is sufficient to verify (2.2). Indeed, assuming X1 ∼ exp(λ), we have ϕ(t) = (1 + λt)−1.
Therefore,

∫ ∞

0
e−tx

 3∑
j=1

(
3
j

)
(−1)j−1j f(j x)

 dx = 3 ϕ(t)− 3 ϕ

(
t

2

)
+ ϕ

(
t

3

)
=

3
1 + λt

− 6
2 + λt

+
3

3 + λt

= ϕ(t) ϕ

(
t

2

)
ϕ

(
t

3

)
= E

[
e−t
(
X1+ 1

2
X2+ 1

3
X3

)]
,

which is equivalent to (2.1).
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3. MAXIMUM OF THREE INDEPENDENT VARIABLES

In this section we will prove that, under some regularity assumptions on F , condition
(1.2) is sufficient for X1, X2, and X3 to be exponentially distributed. The proof will be based
on the Taylor series expansion of F .

Theorem 3.1. Assume the cdf F has a power series representation for x in a neigh-

borhood of zero. If for x > 0

(3.1) X3:3 has pdf

3∑
k=1

(
3
k

)
(−1)k−1kF̄ (kx) ,

then X1∼ exp(1).

Proof: The relation (3.1) implies

(3.2) F 2(x) f(x) + F (x)− 2 F (2x) + F (3x) = 0 .

Since F (x) =
∑∞

k=0 ckxk and f(x) =
∑∞

k=0(k + 1)ck+1x
k, Cauchy formula for the product of

three power series yields

(3.3) F 2(x) f(x) =
∞∑

k=0

 k∑
i=0

i∑
j=0

cj ci−j (k + 1− i) ck+1−i

xk .

Using (3.2) and (3.3), we obtain for any k ≥ 0

(3.4)
k∑

i=0

i∑
j=0

cj ci−j (k + 1− i) ck+1−i + ck(1− 2k+1 + 3k) = 0 .

Since F (0) = 0, we have c0 = 0. Also (3.4) with k = 1 yields c2
0c1 = 0, which in turn implies

that c1 is undetermined. Let us set c1 = δ, where −∞ < δ < ∞. Equation (3.4) with k = 2
yields c3

1 + 2 c2 = 0. Hence, c2 = δ3/2. We will prove by induction that

(3.5) ck = (−1)k−1 δ2k−1

k!
, k = 1, 2, 3, ... .

Indeed, assuming (3.5) holds true for 1, 2, ..., k, we have

(3.6)
k+1∑
i=0

i∑
j=0

cj ci−j (k + 2− i) ck+2−i =
k+1∑
i=2

i−1∑
j=1

(−1)k+1 δ2k+1

j! (i− j)! (k + 1− i)!
.

Observe that
k+1∑
i=2

i−1∑
j=1

1
j! (i− j)! (k + 1− i)!

=
k+1∑
i=2

1
i! (k + 1− i)!

i−1∑
j=1

i!
j! (i− j)!

=
1

(k + 1)!

k+1∑
i=2

(k + 1)!
i! (k + 1− i)!

(2i − 2)

=
1

(k + 1)!

[
k+1∑
i=2

(
k + 1

i

)
2i − 2

k+1∑
i=2

(
k + 1

i

)]

=
1

(k + 1)!

(
3k+1 − 2k+2 + 1

)
.

(3.7)
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It follows from (3.4), (3.6) and (3.7) that

(−1)k+1 δ2k+1

(k + 1)!

(
3k+1 − 2k+2 + 1

)
+ ck+1(1− 2k+2 + 3k+1) = 0 .

Therefore,

ck+1 = (−1)k δ2k+1

(k + 1)!
,

which completes the induction and hence proves (3.5).

Now, we have

F (x) =
∞∑

k=1

(−1)k+1 δ2k−1

k!
xk =

1
δ

(
1− e−δ2x

)
.

Since limx→∞ F (x) = 1, we obtain δ = 1. The proof is complete.

It is not difficult to see that, conversely, if X1 ∼ exp(1), then (3.1) holds. Indeed, under
the assumption of unit exponential parent variable, for the pdf of X3:3 we obtain

3F 2(x) f(x) = 3 (1− e−x)2 e−x = 3F̄ (x)− 6F̄ (2x) + 3F̄ (3x) ,

which is equivalent to (3.1).

4. SUMS OF DENSITY AND DISTRIBUTION FUNCTIONS

In this section we will prove that (1.3) is a sufficient condition for X1 to be exponentially
distributed. It is straightforward that (1.3) is a necessary condition as well.

Theorem 4.1. Assume that f is right-continuous at zero. If for x > 0

(4.1)
3∑

j=1

(
3
j

)
(−1)j−1j f(j x) =

3∑
j=1

(
3
j

)
(−1)j−1j F̄ (j x) ,

then X1∼ exp(1).

Proof: The relation (4.1) leads to

(4.2)
[
f(3x)− F̄ (3x)

]
−
[
f(2x)− F̄ (2x)

]
=
[
f(2x)− F̄ (2x)

]
−
[
f(x)− F̄ (x)

]
.

Denoting Q(y) = f(y)− F̄ (y), we rewrite (4.2) as

Q(y)−Q

(
2
3

y

)
= Q

(
2
3

y

)
−Q

(
1
3

y

)
.

Iterating this equation k times and taking limit as k →∞, we obtain

Q(y)−Q

(
2
3

y

)
= Q

(
2
3

y

)
−Q

(
1
3

y

)
= lim

k→∞
Q

((
2
3

)k
y

)
−Q

((
1
3

)k
y

)
= 0 .
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This implies Q(y) = Q(2y/3) and thus,

(4.3) Q(y) = Q

(
2
3

y

)
= lim

k→∞
Q

((
2
3

)k
y

)
= f(0+)− F̄ (0+) = f(0+)− 1 .

On the other hand,

(4.4) lim
y→∞

f(y) = lim
y→∞

f(y)− lim
y→∞

F̄ (y) = lim
y→∞

Q(y) = f(0+)− 1 .

But since f is integrable, we have limy→∞ f(y) = 0, and therefore, by (4.3) and (4.4), Q(x) = 0.
Thus, f(x) = F̄ (x) for every x ≥ 0. This, in turn, implies X1∼ exp(1).

5. SUM AND MAXIMUM OF THREE VARIABLES

It is known (e.g., Arnold et al. (2008), p. 77) that if X ∼ exp{λ}, then

(5.1)
3∑

j=1

1
j

Xj
d= X3:3 and X2:2 +

1
3

X3
d= X3:3 .

We will prove that both relations in (5.1) are also characterization properties of the expo-
nential distribution. Next lemma provides the key argument in the proof of Theorem 1 in [4]
and of the theorem below.

Lemma 5.1. If F (0) = 0, the pdf f has a Taylor series expansion for x > 0, and

(5.2) f (m)(0) =
[
f ′(0)
f(0)

]m−1

f ′(0) , m = 1, 2, ... ,

then X1∼ exp{λ} for some λ > 0.

Proof: For the Taylor series of f(x), using (5.2), we have for x > 0

f(x) =
∞∑

m=0

f (m)(0)
m!

xm = f(0) + f(0)
∞∑

m=1

[
f ′(0)
f(0)

]m xm

m!
= f(0) exp

{
f ′(0)
f(0)

x

}
.

Since f(x) is a pdf, we have f ′(0)/f(0) < 0. Denoting λ = −f ′(0)/f(0) > 0 and setting∫∞
0 f(x) dx = 1, we obtain λ = f(0). Therefore, f(x) = λe−λx.

Next theorem can be obtained as a particular case of the results in [9]. We include it
here since it complements the other results for samples of size three given in Theorems 2.1–4.1
and thus provides an easily reference.

Theorem 5.1. Assume the cdf F admits a power series representation in a neighbor-

hood of zero and F (0) = 0.

(i) If

(5.3) X2:2 +
1
3

X3
d= X3:3 ,

then X1∼ exp{λ} for some λ > 0.



184 G.P. Yanev

(ii) If

(5.4)
3∑

j=1

1
j

Xj
d= X3:3 ,

then X1∼ exp{λ} for some λ > 0.

Proof: (i). The pdf of the left-hand side of (5.3) is

fX2:2+X3/3(x) =
∫ x

0
fX3/3(y) fX2:2(x− y) dy

=
∫ x

0
3f(3y)

d

dx

[
F 2(x− y)

]
dy

= 6
∫ x

0
f(3y) F (x− y) f(x− y) dy .

(5.5)

For the pdf of the right-hand side of (5.3), we have

(5.6) fX3:3(x) = 3F 2(x) f(x) = 6f(x)
∫ x

0
F (y) f(y) dy .

Let G(x) := F (x)f(x). It follows from (5.5) and (5.6) that (5.3) is equivalent to

(5.7)
∫ x

0
f(3y) G(x− y) dy = f(x)

∫ x

0
G(y) dy .

Differentiating the left-hand side of (5.7) n times with respect to x, we obtain

dn

dxn

∫ x

0
f(3y) G(x− y) dy =

n∑
i=1

f (n−i)(3x) G(i−1)(0) +
∫ x

0
f(3y) G(n)(x− y) dy .

Applying the Leibniz rule for the n-th derivative of a product of two functions to the right-
hand side of (5.7), we obtain

dn

dxn

[
f(x)

∫ x

0
G(y) dy

]
=

n∑
i=1

(
n

i

)
f (n−i)(x) G(i−1)(x) + f (n)(x)

∫ x

0
G(y) dy .

In the last two equations letting x = 0, we have

(5.8)
n∑

i=1

3n−if (n−i)(0)G(i−1)(0) =
n∑

i=1

(
n

i

)
f (n−i)(0)G(i−1)(0) .

Since G(0) = 0 and G′(0) = f2(0), the above equation is equivalent to

(5.9)
[
3n−2 −

(
n

2

)]
f (n−2)(0) f2(0) =

n∑
i=3

[(
n

i

)
− 3n−i

]
f (n−i)(0)G(i−1)(0) ,

where n ≥ 4. We will prove that (5.9) implies (5.2). Equation (5.2) is trivially true for m = 1.
To proceed by induction, assume (5.2) holds true for all 1 ≤ m ≤ n− 3, where n ≥ 4.
We need to prove it for m = n− 2. Using the induction assumption, it is not difficult to
obtain for j = 1, 2, ..., n− 2

G(j)(0) =
j∑

i=0

(
j

i

)
F (i)(0) f (j−i)(0) = f2(0)

[
f ′(0)
f(0)

]j−1

(2j − 1) .
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Therefore, using the induction assumption again, we have for i = 3, 4, ..., n− 1

(5.10) f (n−i)(0)G(i−1)(0) =
[
f ′(0)
f(0)

]n−3

f ′(0) f2(0) (2i−1−1) .

Substituting this in the right-hand side of (5.9) yields[
3n−2 −

(
n

2

)]
f (n−2)(0) =

[
f ′(0)
f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
− 3n−i

]
(2i−1 − 1) .

To complete the proof of (5.2), it is sufficient to show that

3n−2 −
(

n

2

)
=

n∑
i=3

[(
n

i

)
− 3n−i

]
(2i−1−1) ,

which can be easily verified. This proves (5.2). The claim in (i) follows from (5.2) and the
lemma.

Proof: (ii). Equation (5.4) is equivalent to

(5.11) 6
∫ z

0
f(y)

∫ z−y

0
f(2x) f

(
3(z − y − x)

)
dx dy = 6f(z)

∫ z

0
F (y) f(y) dy .

Denoting

(5.12) H(z − y) :=
∫ z−y

0
f(2x) f

(
3(z − y − x)

)
dx ,

we write (5.11) as

(5.13)
∫ z

0
f(y) H(z − y) dy = f(z)

∫ z

0
G(y) dy .

Similarly to the proof of (i), differentiating n times both sides of (5.13) with respect to z and
setting z = 0, we have

n−1∑
i=1

f (n−1−i)(0)H(i)(0) =
n−1∑
i=1

(
n

i+1

)
f (n−1−i)(0)G(i)(0) .

Since H ′(0) = G′(0) = f2(0), the last equation can be written for k = n− 1 as

(5.14)
[
1−

(
k+1

2

)]
f (k−1)(0) f2(0) =

k∑
i=2

[(
k+1
i+1

)
G(i)(0)−H(i)(0)

]
f (k−i)(0) .

Now we are in a position to prove (5.2) by induction. (5.2) holds true for m = 1, 2, ..., k−2.
Differentiating (5.12) with respect to z and setting z = y, we have

(5.15) H(n)(0) =
n∑

i=1

2n−if (n−i)(0) 3i−1f (i−1)(0) .
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Under the induction assumption, (5.15) implies for j = 1, 2, ..., n−2

H(j)(0) =
[
f ′(0)
f(0)

]j−1

f2(0) (3j − 2j) .

Using the induction assumption again, we have for i = 3, 4, ..., n−1

f (n−i)(0)H(i−1)(0) =
[
f ′(0)
f(0)

]n−3

f ′(0) f2(0) (3i−1− 2i−1) .

Recalling (5.10) from the proof of (i), we rewrite (5.14) as (note that i = n corresponds to a
0 term)[

1−
(

n

2

)]
f (n−2)(0) =

[
f ′(0)
f(0)

]n−3

f ′(0)
n∑

i=3

[(
n

i

)
(2i−1−1)− (3i−1− 2i−1)

]
.

Thus, to prove (5.2) for k = n− 2 it is sufficient to show that

1−
(

n

2

)
=

n∑
i=3

[(
n

i

)
(2i−1−1)− (3i−1− 2i−1)

]
,

which verifies. This proves (5.2), which referring to the lemma, completes the proof of (ii).

6. EXAMPLE

We will illustrate a possible application of Theorem 5.1 with an example (see also [4]).
Assume we have a simple random sample X1, X2, ..., Xn for n ≥ 6. Let us randomly divide
the data set into six subsets, relabeled as

U1, U2, ..., Un/6 , V1, V2, ..., Vn/6 , W1,W2, ...,Wn/6 ,

X1, X2, ..., Xn/6 , Y1, Y2, ..., Yn/6 , Z1, Z2, ..., Zn/6 .

Define for i = 1, 2, ..., n/4

Ri := Ui +
1
2

Vi +
1
3

Wi , Si := max{Ui, Vi}+
1
3

Wi and Ti := max{Xi, Yi, Zi} .

Then, according to Theorem 5.1, the R’s, the S’s, and the T ’s will have a common distribution
if and only if the original X’s follow an exponential distribution.

Let us simulate a sample of size n = 180 from a parent variable with exp(1) distribution.
The values of Ri, Si, and Ti for i = 1, 2, ..., 30 are presented in Table 1.

Using the non-parametric two-sample Wicoxon rank test, we compare the sample dis-
tribution functions of the R’s and T ’s on one hand and the S’s and T ’s on another. The
test results provide evidence supporting an exponential underlying distribution. Namely, the
hypothesis that the distributions of the R’s and the T ’s are the same cannot be rejected with
p-value 0.7635 (W = 471). The hypothesis that the distributions of the S’s and the T ’s are
the same cannot be rejected with p-value 0.9357 (W = 444).
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Table 1: Values Ri, Si, and Ti for i = 1, 2, ..., 30.

R 3.56 0.70 0.62 3.33 0.30 0.78 2.29 0.97 1.59 0.50

0.83 2.27 0.69 2.95 0.32 4.12 0.74 0.91 2.66 0.48

2.87 2.19 2.32 1.08 3.69 1.98 1.13 1.32 3.37 2.73

S 2.98 1.23 0.77 2.75 0.44 0.75 1.97 1.08 1.43 0.50

0.76 1.65 0.58 2.39 0.27 3.41 0.73 0.89 2.63 0.40

2.22 1.87 4.25 1.07 2.72 1.74 1.07 1.11 2.71 3.87

T 2.07 0.60 0.97 0.47 2.84 0.84 1.02 1.84 0.57 2.88

1.39 1.92 8.46 1.77 2.60 1.42 1.50 0.47 0.26 2.17

1.92 1.67 2.87 1.06 2.24 6.63 0.52 1.09 1.33 1.07

7. CONCLUDING REMARKS

In this paper we proved characterizations of the exponential distribution conjectured
by Arnold and Villaseñor in [4]. Furthermore, under the assumptions of Theorem 2.1 and
using the same technique of proof, it can be seen that if X1 + 1

2X2 + 1
3X3 has as its density

any one of the following seven forms, then Xi’s are exponential:

3f(x)− 6f(2x) + 3F̄ (3x) , 3f(x)− 6F̄ (2x) + 3f(3x) ,

3F̄ (x)− 6f(2x) + 3f(3x) , 3f(x)− 6F̄ (2x) + 3F̄ (3x) ,

3F (x)− 6f(2x) + 3F̄ (3x) , 3F̄ (x)− 6F̄ (2x) + 3f(3x) ,

3F̄ (x)− 6F̄ (2x) + 3F̄ (3x) .

Likewise, under the assumptions of Theorem 3.1 and using the same technique of proof, it
can be obtained that if X3:3 has as its density any one of the preceding seven forms, then
Xi’s are exponential.

The results presented here can be extended in several directions. Naturally, one would
like to explore the general case of samples of size n for any n ≥ 4. As we mentioned earlier,
generalizations of Theorem 5.1 for arbitrary sample size are proved in [9]. Here we would
like to propose as open problems the following two characterizations, which would extend
Theorem 2.1 and Theorem 3.1, respectively.

Proposition 7.1. Let X1, X2, ..., Xn be i.i.d. random variables, where n ≥ 4. Assume

ϕ(t) is finite for all t in a neighbourhood of zero. If for x > 0

n∑
j=1

1
j

Xj has pdf

n∑
j=1

(
n

j

)
(−1)j−1j f(j x) ,

then X1∼ exp(λ) for some λ > 0.
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Proposition 7.2. Let X1, X2, ..., Xn be i.i.d. random variables, where n ≥ 4. Assume

the cdf F has a power series representation in a neighborhood of zero. If for x > 0

Xn:n has pdf
n∑

j=1

(
n

j

)
(−1)j−1j F̄ (j x) ,

then X1∼ exp(1).
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