
REVSTAT – Statistical Journal
Volume 18, Number 2, April 2020, 165–176

VARIANCE ESTIMATION USING
RANDOMIZED RESPONSE TECHNIQUE

Authors: Sat Gupta
– Department of Mathematics and Statistics, University of North Carolina at

Greensboro, North Carolina, USA
sngupta@uncg.edu

Badr Aloraini
– Department of Mathematics and Statistics, University of North Carolina at

Greensboro, North Carolina, USA
boalorai@uncg.edu

Muhammad Nouman Qureshi
– National College of Business Administration and Economics,

Lahore, Pakistan
nqureshi633@gmail.com

Sadia Khalil
– Department of Statistics, Lahore College for Women University,

Lahore, Pakistan
sadia_khalil@hotmail.com

Received: January 2019 Revised: August 2019 Accepted: September 2019

Abstract:

• Variance estimation is a well-studied topic in survey sampling but not much work has been done in
this area in the context of Randomized Response Technique (RRT) models. We propose here some
variance estimators for sensitive variables using auxiliary information. We examine the performance
of the proposed estimators through a simulation study and through a numerical example.

Key-Words:

• auxiliary information; Mean Square Error; Randomized Response Technique; respondent privacy;
variance estimation.

AMS Subject Classification:

• 62D05.

mailto:sngupta@uncg.edu
mailto:boalorai@uncg.edu
mailto:nqureshi633@gmail.com
mailto:sadia_khalil@hotmail.com


166 S. Gupta, B. Aloraini, M.N. Qureshi and S. Khalil

1. INTRODUCTION

When conducting surveys, it is sometimes difficult to make a direct observation on
the variable of interest. This is more so in the case where the research involves a topic
that is a taboo in nature. In surveys on such topics, some of the respondents might give
false responses. To offer a solution to this, a Randomized Response Technique (RRT) was
developed by Warner [7]. The technique allows respondents to provide a response while
maintaining their privacy.

The problem of mean and variance estimation is a topic that has been explored very
well by researchers, although less so the problem of variance estimation. This is particularly
the case in the context of RRT models. This is the main focus of this study where we examine
variance estimation of a sensitive study variable using a highly correlated but non-sensitive
auxiliary variable. According to Collins et al. [1], the auxiliary variables when combined with
the main study variable help to achieve more efficient estimators.

In this paper, three variance estimators have been proposed under RRT using one
auxiliary variable and two scrambling variables. In Section 2, some of the variance estimators
in literature are reviewed. In Section 3, we propose a new class of variance estimators under
RRT and derive their Bias as well as their MSE. We provide a comparison of the proposed
estimators in Section 4. A numerical study is conducted in Section 5 based on real data.
Some concluding remarks are given in Section 6.

2. ESTIMATORS IN LITERATURE

Let a simple random sample of size n be extracted without replacement from a finite
population U = {U1, U2, ..., UN}. Let Y be a sensitive variable of interest and X be a pos-
itively correlated auxiliary variable. Let (xi, yi) be the observed (X,Y ) values for the i-th
population unit Ui. Let (x̄, ȳ) and (X̄, Ȳ ) be the sample and population means, and (s2x, s

2
y)

and (σ2
x, σ

2
y) be the sample and population variances respectively. Let

s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 , s2x =
1

n− 1

n∑
i=1

(xi − x̄)2 ,

σ2
y =

1
N − 1

N∑
i=1

(Yi − Ȳ )2 , σ2
x =

1
N − 1

N∑
i=1

(Xi − X̄)2 ,

X̄ =
1
N

N∑
i=1

Xi , Ȳ =
1
N

N∑
i=1

Yi , x̄ =
1
N

N∑
i=1

xi , ȳ =
1
N

N∑
i=1

yi .

An unbiased estimator for the finite population variance is the sample variance given
by:

t0 = s2y .
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Up to the first degree of approximation, its variance is given by

V (t0) = θσ4
y(λ40 − 1) ,

where

λrs =
µrs

µ
r
2
20 µ

s
2
02

, µrs =
1

N − 1

N∑
i=1

(Yi − Ȳ )r (Xi − X̄)s , and θ =
1
n

.

Also ‘r’ and ‘s’ are non-negative integers, µ20 and µ02 are the second order moments and λrs

is the moment ratio.

Isaki [4] proposed the following ratio estimator of population variance using auxiliary
information:

t1 = s2y

(
σ2

x

s2x

)
.

The expressions for Bias and Mean Square Error (MSE) of the estimator, up to the
first order of approximation, are given by

B(t1) = θσ2
y (λ04 − 1) [1− f04]

and
MSE(t1) = θσ4

y (λ40 − 1) + (λ04 − 1) [1− 2f04] ,

where

f04 =
(λ22 − 1)
(λ04 − 1)

.

The regression estimator of population variance was also proposed by Isaki [4] as

t2 = s2y + α(σ2
x − s2x) , where α =

(
σ2

y

σ2
x

)
f04 .

The MSE of t2 is given by

MSE(t2) = θσ4
y (λ40 − 1) (1− p2) , where p = (λ22 − 1)/

√
(λ40 − 1) (λ04 − 1) .

3. PROPOSED ESTIMATORS

Since Y is sensitive in nature, and hence subject to social desirability bias, we observe
only a scrambled version of Y as given by Diana and Perri [2]. This is given by Z = TY + S,
where T and S are scrambling variables. We also assume that Y , T and S are mutually
uncorrelated. We also assume E(S) = 0 and E(T ) = 1.

To obtain the Bias and MSE expressions for the proposed estimators, we define the
following error terms:

s2z = σ2
z(1 + δz) and z̄ = Z̄(1 + ez) ,
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where

δz =
s2z − σ2

z

σ2
z

and ez =
z̄ − Z̄

Z̄

such that

E(δz) = E(ez) = 0, E(δ2z) = θ(λ40 − 1) , and E(e2z) = θC2
z ; and E(δzez) = θλ30Cz

where

C2
z = C2

y σ
2
T +

(
σ2

S

Ȳ 2

)
.

We now propose several population variance estimators under RRT.

3.1. A basic variance estimator under RRT

Based on the RRT model Z = TY + S, we have σ2
z as

σ2
z = σ2

TY +S = σ2
TY + σ2

S

=
(
σ2

T ∗ σ2
Y + σ2

T ∗
(
E[Y ]

)2 +
(
E[T ]

)2 ∗ σ2
Y

)
+ σ2

S

=
(
σ2

T ∗ σ2
Y + σ2

T ∗ (µY )2 + σ2
Y

)
+ σ2

S

= σ2
T ∗ σ2

Y + σ2
T ∗ µ2

Y + σ2
Y + σ2

S .

Rearranging, we get

σ2
y =

σ2
z − σ2

S − (σ2
T ∗ Z̄2)

σ2
T + 1

.

Estimating σ2
z by its unbiased estimator s2z, we have our first proposed estimator given by

(3.1) t0(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

.

Rewriting (3.1), we have

t0(R) =
σ2

z(1 + δz)− σ2
S − σ2

T

[
Z̄(1 + ez)

]2

σ2
T + 1

.

Subtracting σ2
y on both sides, we obtain

(3.2)
(
t0(R)− σ2

y

)
=

σ2
z δz − 2σ2

T Z̄
2ez − σ2

T Z̄
2e2z

σ2
T + 1

.

By taking the expectation on both sides of (3.2), the Bias of t0(R) is obtained as

Bias
(
t0(R)

)
= −θ

(
σ2

T Z̄
2

σ2
T + 1

)
C2

z .

By squaring both sides of (3.2) and using the first order approximation, the MSE is obtained
as

(3.3) MSE
(
t0(R)

)
= θ

(
1

(σ2
T + 1)2

) (
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

z σ
2
T Z̄

2λ30Cz

)
.
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3.2. The ratio estimator under RRT

Isaki [4] proposed the classical ratio estimator t1 = s2y

(
σ2

x
s2
x

)
. The RRT version of t1 is

(3.4) t1(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

∗
(
σ2

x

s2x

)
.

To obtain the Bias and MSE, we define the following error terms:

s2x = σ2
x(1 + δx) , where δx =

s2x − σ2
x

σ2
x

,

such that

E(δx) = 0 , E(δ2x) = θ(λ04 − 1) and E(δxez) = θλ12Cz .

Rewriting (3.4), we have

t1(R) =
σ2

z − σ2
S − σ2

T Z̄
2

σ2
T + 1

+
2σ2

T Z̄
2ez δx − σ2

z δz δx − σ2
T Z̄

2e2z
σ2

T + 1
.

Subtracting σ2
y and taking the expectation on both sides, the Bias of t1(R) is obtained as

(3.5) Bias
(
t1(R)

)
= θ

(
2σ2

T Z̄
2λ12Cz − σ2

z(λ22 − 1)− σ2
T Z̄

2C2
z

σ2
T + 1

)
.

For MSE, we have

t1(R) =
σ2

z + σ2
z δz − σ2

S − σ2
T Z̄

2 − 2σ2
T Z̄

2ez − σ2
T Z̄

2e2z
σ2

T + 1
−σ2

zδx − σ2
zδzδx + σ2

S δx + σ2
T Z̄

2δx + 2σ2
T Z̄

2ezδx + σ2
T Z̄

2e2zδx
σ2

T + 1
.

Simplifying and ignoring second and higher order terms,

t1(R) =
σ2

z − σ2
SW − σ2

T Z̄
2

σ2
T + 1

+
σ2

zδz − 2σ2
T Z̄

2ez − σ2
zδx + σ2

S δx + σ2
T Z̄

2δx
σ2

T + 1
.

Squaring and taking the expectation on both sides, we have

MSE
(
t1(R)

)
= E

(
σ2

zδz
σ2

T + 1
−

2σ2
T Z̄

2ez
σ2

T + 1
− σ2

yδx

)2

.

After some simplifications, the MSE of t1(R) is obtained as

MSE
(
t1(R)

)
= θ

1
(σ2

T +1)2

[
σ4

z(λ40−1)− 2σ2
zσ

2
y(λ22−1)(σ2

T +1) + σ4
y(λ04−1)(σ2

T +1)2

+ 4Cz

(
σ4

T Z̄
4Cz − σ2

zσ
2
T Z̄

2λ30 + σ2
T σ

2
yZ̄

2λ12(σ2
T + 1)

)]
.

(3.6)
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3.3. A generalized variance estimator under RRT

We now propose the following class of generalized population variance estimators:

(3.7) tp(R) =

[((
s2z−σ2

S−σ2
T ∗ z̄2

σ2
T + 1

)
+ (σ2

x−s2x)
)
∗
(

(ασ2
x + β)

ω(αs2x+β) + (1−ω)(ασ2
x+β)

)g
]

,

where g, α, β and ω are suitably chosen constants. We would choose g = 1 for positive
correlation between Y and X, and −1 for negative correlation. α and β are known parameters
associated with the auxiliary variable and ω is obtained from optimality consideration.

Using Taylor series approximation, we obtain the bias of the generalized estimator tp(R)
as

(3.8) Bias
(
tp(R)

)
=

−θσ2
T Z̄

2

σ2
T + 1

C2
z − (gωψi) θ

(
σ2

z(λ22−1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

− σ2
x(λ04−1)

)
,

where ψi = ασ2
x

ασ2
x+β

.

The mean square error is given by

MSE
(
tp(R)

)
= θ

[(
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

zσ
2
T Z̄

2λ30Cz

(σ2
T + 1)2

)
+

(
(σ2

x +Qσ2
y)

2 (λ04 − 1)
)

− 2
(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)
(σ2

x +Qσ2
y)

]
,

(3.9)

where Q = gωψi.

Differentiate (3.9) w.r.t Q:

2σ2
y(σ

2
x +Qσ2

y) (λ04 − 1) = 2σ2
y

(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)
,

Qopt =
1
σ2

y

[(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

σ2
T + 1

)(
1

(λ04 − 1)

)
− σ2

x

]
.

The MSE at this optimum value is given by

MSE
(
tp(R)

)
opt

=
θ

(σ2
T + 1)2

[(
σ4

z(λ40 − 1) + 4σ4
T Z̄

4C2
z − 4σ2

zσ
2
T Z̄

2λ30Cz

)

− 1
(λ04 − 1)

(
σ2

z(λ22 − 1)− 2σ2
T Z̄

2λ12Cz

)2
]

.

(3.10)
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4. SIMULATION STUDY

In this section, we use a simulation study to evaluate how efficient the generalized esti-
mator tp(R) is as compared to both the basic estimator t0(R) and the ratio estimator t1(R).
We first consider samples of size N = 1000 each from three bivariate normal populations
determined by the following means and covariance matrices:

Population I: µ =
[
6
4

]
, Σ =

[
4 1.6

1.6 1

]
, ρyx = 0.80 ;

Population II: µ =
[
6
4

]
, Σ =

[
4 2.25

2.25 2

]
, ρyx = 0.80 ;

Population III: µ =
[
6
4

]
, Σ =

[
4 1.2

1.2 1

]
, ρyx = 0.60 .

(4.1)

These 1000 observations are treated as our finite populations. For the 1000 values
generated from these distributions, the means, variances, covariances, and correlations are
given by

Population I: µx = 6.029 , µy = 4.007 , σ2
x = 3.8862 , σ2

y = 0.9450 ,
σxy = 1.5284 , ρyx = 0.7975389 ;

Population II: µx = 6.021 , µy = 3.9836 , σ2
x = 3.9467 , σ2

y = 1.9998 ,
σxy = 2.2382 , ρyx = 0.7967094 ;

Population III: µx = 5.962 , µy = 3.971 , σ2
x = 4.1149 , σ2

y = 0.9560 ,
σxy = 1.2442 , ρyx = 0.5927674 .

For each population, we consider samples of sizes 200 and 500. The scrambling variables
S and T are assumed to have normal distributions with E(S) = 0 and E(T ) = 1. We have
used different values for Var(S) and Var(T ).

Before presenting the simulation results, we would like to note that in most studies,
researchers have compared estimators only with respect to the Percent Relative Efficiency
which is defined as

PRE =
MSE

(
t0(R)

)
MSE

(
ti(R)

) × 100 , where i = 0, 1 and p .

However, for estimators based on RRT methodology, one needs to also consider the Privacy
Protection offered by the RRT model. With that in mind, Gupta et al. [3] introduced a
unified measure of estimator quality (δ) given by

δ =
Theoretical MSE

∆DP
, where ∆DP = E(Z − Y )2 = σ2

T (µ2
y + σ2

y) + σ2
s

is the privacy level for the model Z = TY + S, as per Yan et al. [8]. A smaller value of (δ)
is to be preferred. Khalil et al. [6] used this unified measure to compare the performance of
various mean estimators under RRT.
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Table 1: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population I with σ2

T = 0.5, σ2
y = 1 and ρyx = 0.80.

Var(S) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.018416
0.4593715 100

0.052801
0.4629093 100

t1(R) 0.9873038
0.4166811 110.2453

0.04789438
0.4137594 111.8788

tp(R) 0.9708478
0.3685766 124.6339

0.04236513
0.3689481 125.4673

500

t0(R) 1.021572
0.1995375 100

0.02293534
0.2100302 100

t1(R) 0.9846944
0.1430092 139.5277

0.01643784
0.146612 143.2558

tp(R) 0.9999683
0.0946721 210.7669

0.01088185
0.0957580 219.3343

0.5

200

t0(R) 1.034554
0.5512713 100

0.06125237
0.5593184 100

t1(R) 0.9986482
0.4943552 111.5131

0.05492836
0.5045654 110.8515

tp(R) 0.9854447
0.4320352 127.5987

0.04800391
0.4187965 133.5537

500

t0(R) 1.023019
0.2022691 100

0.02247434
0.1991505 100

t1(R) 0.9816713
0.1866725 108.3550

0.02074139
0.182478 109.1367

tp(R) 1.00232
0.1686173 119.9575

0.01873526
0.1685935 118.1246

1

200

t0(R) 1.032376
0.6313128 100

0.06645398
0.6288249 100

t1(R) 0.9967019
0.5716984 110.4275

0.06017878
0.5582806 112.6359

tp(R) 0.9682892
0.494106 127.7686

0.05201116
0.5058227 124.3172

500

t0(R) 1.040029
0.2705931 100

0.02848348
0.2652877 100

t1(R) 0.9968461
0.212635 127.2570

0.02238263
0.2254085 117.6919

tp(R) 0.9791635
0.1965888 137.6442

0.02069356
0.204013 130.0347

Tables 1, 2 and 3 show the values of the theoretical MSEs and empirical MSEs. The
values from the table confirm that the basic estimator t0(R) and the ratio estimator t1(R)
are less efficient as compared to the generalized estimator tp(R). Also, while comparing the
generalized estimator tp(R) with the ratio estimator t1(R) and basic estimator t0(R), we note
that as the variance of T or variance of S increase, the MSEs increase. This is expected since
adding more noise makes the MSE increase. However, if we look at the unified measure (δ),
we find that it does not always increase as variance of T or variance of S increase, or at
least not to the same extent as does the MSE. For example, for the generalized estimator
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tp(R), theoretical MSE for Population II, with sample size 500, is 0.09227229 for σ2
T = 0.2

but increases to 0.3790013 for σ2
T = 1. In contrast, the (δ) value decreases from 0.023659

to 0.020499. Admittedly, this is not a big drop in (δ) value but at least it is not going up.
The important point here is that the 310% increase in MSE (from 0.09227229 to 0.3790013)
is more than offset by the significant increase in privacy level in using σ2

T = 1 as compared
to σ2

T = 0.2. In another example, for the generalized estimator tp(R), theoretical MSE for
Population III, with sample size 500, is 0.1877209 for σ2

T = 0.5 but increases to 0.3634541 for
σ2

T = 1. In contrast, the (δ) value decreases from 0.021453 to 0.021069.

Table 2: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population II with σ2

s = 0.5, σ2
y = 2 and ρyx = 0.80.

Var(T) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.961504
0.3353948 100

0.085998
0.3330506 100

t1(R) 1.938223
0.3086746 108.6564

0.079147
0.310405 107.2955

tp(R) 1.97547
0.2604031 128.7983

0.066770
0.2696629 123.5062

500

t0(R) 1.984015
0.1299197 100

0.033312
0.1273284 100

t1(R) 1.999045
0.1057879 122.8114

0.027125
0.1067183 119.3126

tp(R) 1.985764
0.09227229 140.8003

0.023659
0.09218931 138.1162

0.5

200

t0(R) 1.997112
0.8036853 100

0.084651
0.7958328 100

t1(R) 1.988183
0.7195406 111.6942

0.075788
0.694571 114.5790

tp(R) 1.98627
0.624445 128.7039

0.065772
0.6421061 123.9410

500

t0(R) 1.991561
0.2858802 100

0.030111
0.2751116 100

t1(R) 1.982515
0.2471334 115.6784

0.026030
0.232594 118.2797

tp(R) 1.968053
0.1816638 157.3677

0.019134
0.1885275 145.9265

1

200

t0(R) 1.981875
1.170947 100

0.063335
1.167372 100

t1(R) 2.002721
1.014171 115.4585

0.054855
0.5582806 112.8290

tp(R) 1.988997
0.955732 122.5183

0.051694
0.969496 120.4101

500

t0(R) 1.979819
0.5567679 100

0.030114
0.531363 100

t1(R) 1.998328
0.4837988 115.0825

0.026168
0.4790216 110.9267

tp(R) 1.971607
0.3790013 146.9039

0.020499
0.3843118 138.2635
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Table 3: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population III with σ2

s = 0.25, σ2
y = 1 and ρyx = 0.60.

Var(T) n Estimator Mean(bσ2
y) MSE PRE δ

0.2

200

t0(R) 1.021512
0.2249759 100

0.061637
0.223441 100

t1(R) 1.037037
0.1962207 114.6545

0.053759
0.1958733 114.0742

tp(R) 0.979563
0.1733191 129.8044

0.047484
0.1752187 127.5212

500

t0(R) 0.99568
0.09192312 100

0.025184
0.09384772 100

t1(R) 1.035195
0.08558669 107.4035

0.023448
0.08575554 109.4363

tp(R) 0.995747
0.06216159 147.8776

0.017030
0.06279393 149.4534

0.5

200

t0(R) 0.9830188
0.6333537 100

0.072383
0.6304459 100

t1(R) 1.039288
0.5491218 115.3393

0.062756
0.5699384 110.6164

tp(R) 0.971143
0.4907475 129.0589

0.056085
0.5044131 124.9860

500

t0(R) 0.9941702
0.2469968 100

0.028228
0.2442127 100

t1(R) 0.9846135
0.2070803 119.2758

0.023666
0.2115374 115.4465

tp(R) 0.9992722
0.1877209 131.5766

0.021453
0.1827657 133.6206

1

200

t0(R) 0.9571123
1.166476 100

0.067621
1.148805 100

t1(R) 0.9954355
1.092394 106.7816

0.063327
1.087534 105.6339

tp(R) 0.9794743
0.9463649 123.2585

0.054861
0.9256485 124.1081

500

t0(R) 1.009706
0.5152219 100

0.029867
0.4923866 100

t1(R) 0.9918212
0.4304643 119.6898

0.024954
0.458314 107.4343

tp(R) 0.9856029
0.3634541 141.7570

0.021069
0.3569531 137.9415

5. APPLICATION

In this section, we use a real data to show the performance of the generalized estimator
tp(R) in comparison to other estimators. For this data which can be obtained from James
et al. [5], the population size is (N = 777). The study variable Y is the reported percent of
alumni who donate. The auxiliary variable X is the student to faculty ratio. The scrambling
variable S is taken to be a normal random variable with mean equal to zero and variance
equal to 0.5. The scrambling variable T is taken to be a normal random variable with mean
equal to 1 and variance equal to 0.2, 0.5, and 1.
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Population Characteristics are given by

N = 777, n = 200, µX = 14.08, µY = 22.74 ,

σX = 3.95, σY = 12.39, σXY = 19.7641, ρyx = 0.40 .

From the Table 4, it can be observed that the generalized estimator tp(R) performs
better than the other estimators t0(R) and t1(R). Also, we can observe that the unified
measure (δ) does not always increase as variance of T increases, or at least not to the same
extent as does the MSE. For example, for the generalized estimator tp(R), theoretical MSE
is 301.0716 for σ2

T = 0.2 but increases to 1196.559 for σ2
T = 1. In contrast, the (δ) value

decreases from 2.23565474 to 1.78234135.

Table 4: Theoretical (bold) and empirical MSEs and PREs of the estimators.

n Var(T) Estimator MSE PRE δ

500

0.2

t0(R)
519.1796 100

3.85525016
490.2126 100

t1(R)
435.4705 119.2226

3.23365501
437.4432 112.0631

tp(R)
301.0716 172.4438

2.23565474
297.7625 164.6320

0.5

t0(R)
896.6322 100

2.66917897
888.2846 100

t1(R)
643.4997 139.3368

1.91563036
620.5305 143.1492

tp(R)
596.1386 150.4066

1.77464139
570.0859 155.8159

1

t0(R)
1805.427 100

2.68928418
1876.467 100

t1(R)
1618.569 111.5446

2.41094877
1650.915 113.6622

tp(R)
1196.559 150.8849

1.78234135
1105.511 169.7375

6. CONCLUSION

We propose here some variance estimators under RRT. These are the basic estimator
t0(R), ratio estimator t1(R) and the generalized estimator tp(R). The simulation study
reveals that the generalized estimator tp(R) is more efficient than the other estimators t0(R)
and t1(R). We also examine the efficiency of the estimators relative to not just the MSE
values, but also with respect to the unified measure of estimators quality (δ) and observe
that while MSE always increases as the noise level increases, the (δ) value does not necessary
follow this pattern. This highlights the significance of respondent under privacy.
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