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Abstract:

e Variance estimation is a well-studied topic in survey sampling but not much work has been done in
this area in the context of Randomized Response Technique (RRT) models. We propose here some
variance estimators for sensitive variables using auxiliary information. We examine the performance
of the proposed estimators through a simulation study and through a numerical example.
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1. INTRODUCTION

When conducting surveys, it is sometimes difficult to make a direct observation on
the variable of interest. This is more so in the case where the research involves a topic
that is a taboo in nature. In surveys on such topics, some of the respondents might give
false responses. To offer a solution to this, a Randomized Response Technique (RRT) was
developed by Warner [7]. The technique allows respondents to provide a response while
maintaining their privacy.

The problem of mean and variance estimation is a topic that has been explored very
well by researchers, although less so the problem of variance estimation. This is particularly
the case in the context of RRT models. This is the main focus of this study where we examine
variance estimation of a sensitive study variable using a highly correlated but non-sensitive
auxiliary variable. According to Collins et al. [1], the auxiliary variables when combined with
the main study variable help to achieve more efficient estimators.

In this paper, three variance estimators have been proposed under RRT using one
auxiliary variable and two scrambling variables. In Section 2, some of the variance estimators
in literature are reviewed. In Section 3, we propose a new class of variance estimators under
RRT and derive their Bias as well as their MSE. We provide a comparison of the proposed
estimators in Section 4. A numerical study is conducted in Section 5 based on real data.
Some concluding remarks are given in Section 6.

2. ESTIMATORS IN LITERATURE

Let a simple random sample of size n be extracted without replacement from a finite
population U = {Uy, Us,...,Un}. Let Y be a sensitive variable of interest and X be a pos-
itively correlated auxiliary variable. Let (z;,y;) be the observed (X,Y’) values for the i-th
population unit U;. Let (z,7) and (X,Y) be the sample and population means, and (s2, s%)
and (o2, ag) be the sample and population variances respectively. Let

An unbiased estimator for the finite population variance is the sample variance given

2

tOZSy.
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Up to the first degree of approximation, its variance is given by
V(to) = 0oy (Ao — 1),

where

1
Apg = 8 Mrs:mZ(Yi_Y)T(Xi_X)“g7 and 0=

1
2 2 ; n '
Moo o2 i=1

Also ‘r’ and ‘s’ are non-negative integers, po9 and po2 are the second order moments and A4
is the moment ratio.

Isaki [4] proposed the following ratio estimator of population variance using auxiliary

2
g

t1 = S; <§> .
SQZ

The expressions for Bias and Mean Square Error (MSE) of the estimator, up to the

information:

first order of approximation, are given by

B(t1) = 00, (Aos — 1) [1 — fou]

and
MSE(t1) = 00y (Ao — 1) 4+ (Aos — 1) [1 — 2 foa] ,
where
Jos = Qo2 = 1)
(Aoa — 1)

The regression estimator of population variance was also proposed by Isaki [4] as

2
g,

to = 8?3 + O[(O'z — 5;%«)7 where o = <0'g>f04 .
z

The MSE of t5 is given by

MSE(tQ) = 90‘;1 (/\40 — 1) (1 —p2), where P = ()\22 — 1)/\/(}\40 — 1) ()\04 — 1) .

3. PROPOSED ESTIMATORS

Since Y is sensitive in nature, and hence subject to social desirability bias, we observe
only a scrambled version of Y as given by Diana and Perri [2]. This is given by Z =TY + S,
where T and S are scrambling variables. We also assume that Y, T" and S are mutually
uncorrelated. We also assume F(S) =0 and E(T) = 1.

To obtain the Bias and MSE expressions for the proposed estimators, we define the
following error terms:

52203(1—}—52) and z=7(1+e,),
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where

and e, =

AN

o2
such that

E(,)=E(e.) =0, E(2) =000 —1), and FE(e?)=00?; and E(d.e.) = 0A30C,

o2
C2=Clot + (Yg) :

We now propose several population variance estimators under RRT.

3.1. A basic variance estimator under RRT

Based on the RRT model Z = TY + S, we have 0?2 as
0 = ofy4s = Ofy +0%
= (a% * 0% 4 0% * (E[Y])2 + (E[T])2 * 032/) + 0%
= (h w0} + ot (uy)+ 0} ) + 03
= U%*U%—FJ%*M%—FO’%—FO’%.
Rearranging, we get -
o _ 0205~ (0727

% = 02 +1

Estimating o2 by its unbiased estimator s, we have our first proposed estimator given by

2 — 0% — 02 % 72
3.1 to(R) = 2—5 T
(3.1) o(R) o211

Rewriting (3.1), we have

o2(1+0.) — 0% — o2 [Z(1 +e.)]’

to(R) = J% +1

Subtracting 05 on both sides, we obtain

028, —2027%, — 0% Z%€2

(3.2) (to(R) — 02) = |

Y

By taking the expectation on both sides of (3.2), the Bias of ¢o(R) is obtained as

2 72
VA
Bias(to(R)) = —0( —— ) C2.
s(to(R) = =0 5 )
By squaring both sides of (3.2) and using the first order approximation, the MSE is obtained
as

1

(3.3)  MSE(to(R)) = 9<(U%+1)2

) (aﬁ(m —1)+4072'C2 — 40207 2% g0 CZ) :
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3.2. The ratio estimator under RRT

K

Isaki [4] proposed the classical ratio estimator t; = s2 (U ) The RRT version of ¢; is

Y\ s2

2 2 92 22 2

(3.4) h(R) = 252022 (U>
or+1 5%

To obtain the Bias and MSE, we define the following error terms:

2

2
r — O

X
)

52 = 02(1+6,), where ¢, = i

xT

2
0z

such that

E(6,)=0, E(2)=60MNs—1) and  E(6ze.) =60A:2C..

Rewriting (3.4), we have

0’2—0’%—0’%22 20%22€Z5x—03525x—0%2262

t1(R) = +
1() U%—l—l J%—i—l

Subtracting 05 and taking the expectation on both sides, the Bias of ¢;(R) is obtained as

202 22X15C;s — 02(Agy — 1) — 0222 c§>

(3.5) Bias(t1(R)) = 9< o2t 1

For MSE, we have

02+ 020, — 0% —02.2% —202. 7%, — 02.7%c?
J%—l— 1
—0361 — Jgézém + J%éx + 0%22590 + 20% Z2e,6, + 0%2262595
U%—l— 1 )

t1(R) =

Simplifying and ignoring second and higher order terms,

R — O'E—O'%W—O’%ZQ U§5Z—20%2262—025I+0§5x+0'%22(5x
f(R) = 02 +1 o2 +1 '

Squaring and taking the expectation on both sides, we have

et 202 7% 2
MSE(t1(R)) = E<02z+”1 - 02T+ T 03596) :
T T

After some simplifications, the MSE of ¢1(R) is obtained as

1

MSE(#1(R)) = Pow

(3.6)

0';1()\40—1) — 20305()\22—1) (U%-i-l) + U;(A(M—l) (0'%4-1)2

+ 4C, (a%Z“Cz — 0207 2% N30 + 070, 2% Ma(0F + 1)>
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3.3. A generalized variance estimator under RRT

We now propose the following class of generalized population variance estimators:

<<SE—U%—U%*22>+(02_82)>*< (aag—i—ﬂ) >g
oF+1 v w(ass+p6) + (1-w) (ao2+0)

where ¢, «, 3 and w are suitably chosen constants. We would choose g =1 for positive
correlation between Y and X, and —1 for negative correlation. o and § are known parameters
associated with the auxiliary variable and w is obtained from optimality consideration.

3.7)  (R) =

i

Using Taylor series approximation, we obtain the bias of the generalized estimator t,(R)

as
) —002.2% 02(Apa—1) — 2024 Z%\15C, 9

(3.8) Bias(tp(R)) = WCZ — (gwy) @ e —o;(Moa—1) ),

QO'Q
where ; = aagjrﬁ.

The mean square error is given by
4 -1 4424 2_42222 .
MSE(t,(R)) = | (=0 =D+ 207 27C; ~dozop 27 AnC
(07 +1)2
(3.9) + (02 + Q02 (haa - 1))
_2< U%—f—l >(0'9:+Q0y) ’

where QQ = gw);.

Differentiate (3.9) w.r.t Q:

02(/\22 — 1) — 20’%22)\1202>

2/ 2 2 _ 2
20y(0x+QUy) ()\04 — 1) = 20y< U%—I—l

1 (ag(m —1) - 20%2%2@) ( 1 ) 5
QOpt = ) 2 - Ugj .
o 02 +1 (Aoa — 1)

Y

The MSE at this optimum value is given by

MSE(1y(R)) = o

4 4 74 2 2 2 72
o= o | (o0 = D + 4042102 4ot} P

(3.10)

1 _ 2
_ m <O’§()\22 — 1) — 20’%Z2)\1202>
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4. SIMULATION STUDY

In this section, we use a simulation study to evaluate how efficient the generalized esti-
mator t,(R) is as compared to both the basic estimator to(R) and the ratio estimator t1(R).
We first consider samples of size N = 1000 each from three bivariate normal populations
determined by the following means and covariance matrices:

: [6] (4 16
Population I: W= nE = 16 1 } , pyz = 0.80;
: 6] [ 4 225
(4.1) Population II:  p = 4] Y= 225 2 ] , Pyz = 0.80;
: [6] (4 1.2
Population III:  p = nE Y= 12 1 } , pyz = 0.60.

These 1000 observations are treated as our finite populations. For the 1000 values
generated from these distributions, the means, variances, covariances, and correlations are
given by

Population I: pe = 6.029, p, = 4.007, 0323 = 3.8862, 05 = 0.9450,
Ozy = 1.5284,  py, = 0.7975389 ;

Population II: pz = 6.021, p, =3.9836, o2 =3.9467, o2 =1.9998,
Oy = 2.2382,  py, = 0.7967094 ;

Population III: fe =5.962, p, =3.971, 02 = 4.1149, 05 = 0.9560,
Opy = 1.2442,  py, = 0.5927674 .

For each population, we consider samples of sizes 200 and 500. The scrambling variables
S and T are assumed to have normal distributions with E(S) =0 and E(T) = 1. We have
used different values for Var(S) and Var(T').

Before presenting the simulation results, we would like to note that in most studies,
researchers have compared estimators only with respect to the Percent Relative Efficiency
which is defined as

MSE(to(R))

P = NisE (n(m)

x 100, where ¢=0,1and p.

However, for estimators based on RRT methodology, one needs to also consider the Privacy
Protection offered by the RRT model. With that in mind, Gupta et al. [3] introduced a
unified measure of estimator quality (J) given by

Theoretical MSE
5=
App

2
s

, where App=FE(Z-Y)? = U%(/LZ + 05) +o

is the privacy level for the model Z =TY + S, as per Yan et al. [8]. A smaller value of (J)
is to be preferred. Khalil et al. [6] used this unified measure to compare the performance of
various mean estimators under RRT.
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Table 1: Theoretical (bold) and empirical MSEs and PREs of the estimators
for Population I with o2 = 0.5, 05 =1 and py, = 0.80.
Var(S) n Estimator | Mean(c2) MSE PRE 4
to(R) 1.018416 gjjggggég’ }gg 0.052801
200 ti(R) 0.9873038 8212?2;}1 i}?gggg 0.04789438
. t,(R) 0.9708478 8%23312? ggjgggg 0.04236513
to(R) 1.021572 g;?ggggg 138 0.02293534
500 ti(R) 0.9846944 8}222?32 13235;; 0.01643784
b | osssss | 000212007660 [
W | vowsse | OIS 100 [T
200 ti(R) 0.9986482 8:3222?2 }}ég;?; 0.05492836
. tp(R) 0.9854447 gﬁggggg igggg; 0.04800391
w | tosers | Q202091 [ 100 T
500 t1(R) 0.9816713 81222;55 }gg?ggg 0.02074139
w | tomm | OUOOITS | LI00STS |
to(R) 1.032376 gggég;ig 138 0.06645398
200 ti(R) 0.9967019 gggégggg 1}22%;3 0.06017878
1 t,(R) 0.9682892 09';09548120267 gﬂ?gg 0.05201116
to(R) 1.040029 gggggg?% 133 0.02848348
500 t1(R) 0.9968461 gg;ggggs }%;ggzg 0.02238263
t,(R) 0.9791635 géggg?ga ggjgg:? 0.02069356

Tables 1, 2 and 3 show the values of the theoretical MSEs and empirical MSEs. The
values from the table confirm that the basic estimator to(R) and the ratio estimator ¢1(R)
are less efficient as compared to the generalized estimator ¢,(R). Also, while comparing the
generalized estimator ¢,(R) with the ratio estimator ¢;(R) and basic estimator ¢o(R), we note
that as the variance of T" or variance of .S increase, the MSEs increase. This is expected since
adding more noise makes the MSE increase. However, if we look at the unified measure (4),
we find that it does not always increase as variance of 1" or variance of S increase, or at
least not to the same extent as does the MSE. For example, for the generalized estimator
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tp(R), theoretical MSE for Population II, with sample size 500, is 0.09227229 for O‘% =02
but increases to 0.3790013 for 0% = 1. In contrast, the (§) value decreases from 0.023659
to 0.020499. Admittedly, this is not a big drop in (4) value but at least it is not going up.
The important point here is that the 310% increase in MSE (from 0.09227229 to 0.3790013)
is more than offset by the significant increase in privacy level in using a% =1 as compared
to 02 = 0.2. In another example, for the generalized estimator t,(R), theoretical MSE for
Population III, with sample size 500, is 0.1877209 for U% = 0.5 but increases to 0.3634541 for

02 = 1. In contrast, the (§) value decreases from 0.021453 to 0.021069.

Table 2: Theoretical (bold) and empirical MSEs and PREs of the estimators

for Population II with o2 = 0.5, 05 =2 and py, = 0.80.
Var(T) n Estimator | Mean(c2) MSE PRE é

to(R) 1.961504 gggggggg }gg 0.085998

200 t1(R) 1.938223 gg?g%gﬁ }ggjgggg 0.079147

o | o | ST T

to(R) 1.984015 gjlégg;gz }gg 0.033312

500 t1(R) 1.999045 gﬁgg;%g ﬁgjggg 0.027125

| e | ST RS |

o | rsen | 030 |00

200 ti(R) 1.988183 82322;26 1}}12333 0.075788

Ny bR | 1987 | ggioer | 1a3aate | 0065772

w | voomsor | 02002 | M0 o

500 t1(R) 1.982515 ggg;égz‘l i}gg;gg 0.026030

| owoss | QSR I,

to(R) 1.981875 Hgggg }gg 0.063335

200 t1(R) 2.002721 éjgégg& ﬂgfgggg 0.054855

1 t,(R) 1.988997 gjgggzgg ggi}gf 0.051694

to(R) 1.979819 ggg?;g;g }gg 0.030114

500 t1(R) 1.998328 823382?2 }18322? 0.026168

o | o | 310
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Table 3: Theoretical (bold) and empirical MSEs and PREs of the estimators

for Population III with o2 = 0.25, 05 =1 and py; = 0.60.
Var(T) n Estimator | Mean(c2) MSE PRE é

| sz | 020979 [ 100 [

200 t1(R) 1.037037 gjiggﬁggg Eijggg 0.053759

| oo | Ut |

to(R) 0.99568 ggg;gi;%g }gg 0.025184

o0 | o) | vomies | D00SE0660 | 1074038 |

| o | SS0tSE iani |

to(R) 0.9830188 ggggzzgg }gg 0.072383

200 ti1(R) 1.039288 ggggég;g 1182?22 0.062756

) Wi | oo | 000MTS | 1a00smy |

wir | osvmror | 02469068 | 100 T

500 t1(R) 0.9846135 gg?{gggz }122222 0.023666

t,(R) 0.0002722 | 01877209 | 1315766 1 g 021453

to(R) 0.9571123 }122232 }gg 0.067621

200 ti(R) 0.9954355 132?233 13223;8 0.063327

| o | oo | SEse |1y

to(R) 1.009706 gi;gggég }gg 0.029867

500 ti1(R) 0.9918212 822g3?33 1(1)3161222 0.024954

tp(R) 0.9856029 gggggggi 1;%;2:2 0.021069

5. APPLICATION

In this section, we use a real data to show the performance of the generalized estimator
tp(R) in comparison to other estimators. For this data which can be obtained from James
et al. [5], the population size is (N = 777). The study variable Y is the reported percent of
alumni who donate. The auxiliary variable X is the student to faculty ratio. The scrambling
variable S is taken to be a normal random variable with mean equal to zero and variance
equal to 0.5. The scrambling variable T is taken to be a normal random variable with mean
equal to 1 and variance equal to 0.2, 0.5, and 1.
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Population Characteristics are given by

N =777, n=200, px=1408, py =22.74,
ox =395, oy =1239, oxy =19.7641, p,. =0.40.

From the Table 4, it can be observed that the generalized estimator ¢,(R) performs
better than the other estimators to(R) and ¢;(R). Also, we can observe that the unified
measure (6) does not always increase as variance of T increases, or at least not to the same
extent as does the MSE. For example, for the generalized estimator t,(R), theoretical MSE
is 301.0716 for 0% = 0.2 but increases to 1196.559 for o4 = 1. In contrast, the (&) value
decreases from 2.23565474 to 1.78234135.

Table 4: Theoretical (bold) and empirical MSEs and PREs of the estimators.

n Var(T) | Estimator MSE PRE o
to(R) ‘Z;gjggg }gg 3.85525016
02 | n | G | 120aa | 323365501
B | 077608 | lagaz | 22365ATH
ory | 8966322 1100 T ey
500 0.5 t1(R) gggggg; 122?282 1.91563036
WD | S700ses | 1saise | 177464130
oery | 18054211100 g
1| 60| Yesors | 113esas | 24104677
t(R) 1196.559 | 150.8849 1.78234135

1105.511 169.7375

6. CONCLUSION

We propose here some variance estimators under RRT. These are the basic estimator
to(R), ratio estimator t;(R) and the generalized estimator t,(R). The simulation study
reveals that the generalized estimator t,(R) is more efficient than the other estimators to(R)
and t1(R). We also examine the efficiency of the estimators relative to not just the MSE
values, but also with respect to the unified measure of estimators quality (6) and observe
that while MSE always increases as the noise level increases, the (4) value does not necessary
follow this pattern. This highlights the significance of respondent under privacy.
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