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Abstract:

• This study considers prediction intervals for time series and applies the results to portfolio selection.
The dynamics of the high and low underlying returns are depicted by time series models, which lead
to a prediction interval of future returns. We propose an innovative criterion for portfolio selection
based on the prediction interval. A new concept of coherent risk measures for the interval of returns
is introduced. An empirical study is conducted with the stocks of the Dow Jones Industrial Average
Index. A self-financing trading strategy is established by daily reallocating the holding positions
via the proposed portfolio selection criterion. The numerical results indicate that the proposed
prediction interval has promising coverage, efficiency and accuracy for prediction. The proposed
portfolio selection criterion constructed from the prediction intervals is capable of suggesting an
optimal portfolio according to the economic conditions.
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1. INTRODUCTION

We propose to obtain prediction intervals of a time series by constructing interval-
valued time series (ITS) models. The proposed method is used to integrate the information
of the daily high, low and closing prices of a stock and is applied to the problem of portfolio
selection. Optimal portfolio selection has been extensively discussed in the fields of financial
investment and risk management. Markowitz [22, 23] introduced a mean-variance portfo-
lio optimization procedure by using the standard deviation of a portfolio as the measure of
risk and assuming that the returns of the underlying assets are independent and identically
distributed (i.i.d.). During the past decade, risk measures other than the standard devia-
tion have been considered for selecting investment portfolios. For example, the value-at-risk
(VaR), conditional VaR (CVaR) and spectral risk measure (SRM) are commonly used risk
measures by market practitioners and analysts in the recent literature on portfolio selection
(Rockafellar and Uryasev [25, 26], Acerbi [1], Krokhmal et al. [20] and Adam et al. [2]).
However, many empirical findings indicate that the return processes of the underlying assets
in financial markets usually exhibit autocorrelation, negative skewness, kurtosis, conditional
heteroscedasticity and tail dependence (Tsay [30]). To reflect these features, time series mod-
els are used to depict the dynamics of the underlying asset returns for portfolio selection
(Harris and Mazibas [16]). However, the development of the above portfolio selection issue
uses only information about the closing prices of the underlying assets. The daily high and
low prices of a stock are public information and can be observed in the market. The main
purpose of this study is to apply daily high and low price information to portfolio selection
by ITS models.

One of the main techniques for analyzing ITS is to fit univariate time series models
to the interval bounds (Teles and Brito [28]). Maia et al. [21] proposed fitting univariate
ARIMA models to the midpoints and ranges of the observed interval process and used these
models to forecast the interval bounds. Recently, many more complicated ITS models have
been proposed and applied to solve problems in various fields. For example, He and Hu [17]
used the interval computing approach to forecast the annual and quarterly variability of the
stock market. Arroyo et al. [3, 4] discussed financial applications based on forecasting with
ITS data. Garćıa-Ascanio and Maté [13] used vector autoregressive (VAR) models to forecast
electric power demand. Yang et al. [32] proposed autoregressive conditional interval-valued
models with exogenous explanatory interval variables to forecast crude oil prices. Rodrigues
and Salish [27] used threshold models to analyze and forecast ITS and applied their model
to a weekly sample of S&P500 index returns. Fischer et al. [12] predicted stock return
volatility using regression models for return intervals. The results of these studies showed
that the interval forecasts obtained by ITS perform better than those obtained by the classic
approach based on fitting a single time series model to closing prices.

Following Markowitz’s [22, 23] approach, the basic idea of various portfolio selection
criteria is to determine asset allocations by maximizing the expected investment returns sub-
ject to a risk limit of the investment. In addition to daily high and low prices, we also
consider the closing prices of a stock. Subsequently, the daily high (low) log returns should
be defined as the differences between the logarithms of the daily high (low) price and the
last closing price. Therefore, we propose fitting time series models to the daily high and
low log returns rather than fitting ITS models directly to the interval bounds of stock prices.
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Furthermore, an innovative criterion for portfolio selection is proposed based on the predicted
interval of the log returns. Specifically, we maximize the expected high log returns of a port-
folio subject to a limitation on the predicted low log returns. We also introduce the concept
of a coherent risk measure for the interval of returns, which extends the axioms of the coher-
ent risk measure proposed by Artzner et al. [6] for classic financial risk management. In the
empirical investigation, we employ the stocks of the companies on the Dow Jones Industrial
Average Index (DJIA Index) during the financial crisis period (from July 2, 2007 to
June 24, 2009) and under improved market conditions (from July 1, 2014 to June 23, 2016).
For each time period, the first 250 daily data are used to fit a time series model to deter-
mine the initial trading strategy. A self-financing trading strategy is constructed by daily
reallocating the holding weights of the optimal portfolio via the proposed scheme, where a
rolling scheme is employed and the time series model is updated with the previous 250 daily
historical data. The numerical results indicate that the proposed interval estimation has
promising coverage, efficiency and accuracy for predicting high and low prices. Moreover,
the proposed portfolio suggests conservative investments during 2008–2009 but aggressive
investments during 2015–2016.

The rest of this paper is organized as follows. Section 2 introduces the model assump-
tions and the prediction interval for ITS. The proposed criterion for portfolio selection using
the prediction intervals is introduced in Section 3. Section 4 presents a study to compare the
coverage, efficiency and accuracy of the proposed interval estimation for ITS data with those
of various approaches in the literature. An empirical study to assess the performance of the
self-financing trading strategy constructed by the proposed criterion of portfolio selection is
presented in Section 5. Conclusions are given in Section 6.

2. THE PROPOSED INTERVAL TIME SERIES MODEL

Let PC
m,t be the daily closing price of the m-th underlying stock price at time t, and let

PH
m,t and PL

m,t be the intraday high and low stock prices, respectively, m = 1, ..., p. Denote the
set of information up to time t by Ft. To obtain a one-step-ahead prediction interval of the
price of the m-th underlying stock for a given Ft, a classic approach is to fit a time series model
for the historical closing prices, PC

m,s, s = 1, ..., t, and then derive a 95% prediction interval,
for example, for PC

m,t+1, from the fitted model. Recently, many studies have proposed fitting
ITS models for interval observations [PL

m,s, P
H

m,s], s = 1, ..., t, and then obtaining an interval
estimation of [PL

m,t+1, P
H

m,t+1] from the fitted ITS model (see Arroyo et al. [3, 4], Teles and
Brito [29] and the references therein).

We propose an alternative approach to obtain an estimate of [PL
m,t+1, PH

m,t+1] conditional
on Ft based on the following daily low and high log returns at time t:

(2.1) X
(CL)
m,t = log

(
PL

m,t/PC
m,t−1

)
and X

(CH)
m,t = log

(
PH

m,t/PC
m,t−1

)
.

The definitions of X
(CL)
m,t and X

(CH)
m,t are similar to the classic daily log returns, Xm,t =

log(PC
m,t/PC

m,t−1) discussed widely in the literature of finance and statistics. X
(CL)
m,t and

X
(CH)
m,t are capable of depicting realistic investment characteristics. Suppose that an investor

buys a given stock on the previous day with closing price PC
m,t−1 and sells it on day t.
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Then, the investor’s return belongs to the interval
[
X

(CL)
m,t , X

(CH)
m,t

]
depending on when he/she

sells the stock during day t. According to the definitions of X
(CL)
m,t and X

(CH)
m,t in (2.1), we

have the following inequality

(2.2) X
(CL)
m,t ≤st X

(CH)
m,t

since PL
m,t ≤st PH

m,t, for all t = 0, 1, ..., and m = 1, ..., p, where the notation A ≤st B means that

random variable A is stochastically less than or equal to random variable B. Hence, X
(CI)
m,t =[

X
(CL)
m,t , X

(CH)
m,t

]
, t = 1, 2, ..., also form an ITS, and the prediction interval of [PL

m,t+1, P
H

m,t+1]
can be obtained. For example, let

[
P̂L

m,t+1, P̂
H

m,t+1

]
denote the prediction of [PL

m,t+1, P
H

m,t+1]
conditional on Ft. By using (2.1), our proposed scheme is to model the interval observations,[
X

(CL)
m,s , X

(CH)
m,s

]
, s = 1, ..., t, and then estimate

[
P̂L

m,t+1, P̂
H

m,t+1

]
by[

PC
m,t exp

{
X̂

(CL)
m,t+1

}
, PC

m,t exp
{
X̂

(CH)
m,t+1

}]
,

where X̂
(CL)
m,t+1 and X̂

(CH)
m,t+1 are the predictions of X

(CL)
m,t+1 and X

(CH)
m,t+1, respectively, which can

be obtained from the time series models defined below. Traditionally, ITS data are formed by
only the high and low prices (Arroyo et al. [3, 4] and Maia et al. [21]). This study includes
the closing prices in the model and investigates whether this additional information can
improve the interval prediction.

To jointly model X
(h)
m,t, h =CL,CH, we need to capture the features inherent in the data.

For example, X
(h)
m,t, h = CL,CH could be conditionally heteroscedastic and auto- and cross-

correlated. To characterize these features, a two-stage procedure is proposed to model the
dynamics of X

(h)
m,t, h = CL,CH. The first stage is to adjust the conditional heteroscedasticity

of X
(h)
m,t marginally for h = CL,CH. The second stage is to simultaneously model the auto-

and cross-correlation of the adjusted time series.

In the first stage, we propose to de-GARCH X
(h)
m,t to obtain volatility-adjusted returns.

De-GARCHing is a widely used technique for modeling multivariate time series. For exam-
ple, Engle [10, 11] proposed a dynamic conditional correlation (DCC) model to capture time-
varying correlations. The first step of their scheme is to de-GARCH the data. Härdle et al. [15]
also used de-GARCHing with a GARCH(1,1) model to analyze the multi-dimensional de-
pendencies of time series data with a hidden Markov model for hierarchical Archimedean
copulae. Grigoryeva et al. [14] proposed a method based on various state space models to
extract global stochastic (GST) financial trends from non-synchronous financial data. They
mentioned that de-GARCHing is commonly used for GST. In this study, we propose to fit
X

(h)
m,t with a univariate ARMA-GARCH model and let

(2.3) X̃
(h)
m,t =

(
X

(h)
m,t − µ(h)

m

)/
σ

(h)
m,t

be the de-GARCHed process of X
(h)
m,t, h = CL,CH, where µ

(h)
m is the stationary (uncon-

ditional) mean of X
(h)
m,t and σ

(h)
m,t is the conditional standard deviation of X

(h)
m,t, which is

estimated from the univariate GARCH-type model

(2.4) σ
(h)
m,t = g

(h)
m,t−1

(
X(h)

m,s, σ
(h)
m,s, s<t

)
,

which is Ft−1-measurable. This type of model (2.4) is capable of describing many features
of financial data, for example, conditional heteroscedasticity, volatility clustering and asym-
metry. It also includes various univariate financial time series models that are widely used
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by practitioners in economics, statistics and finance (see Engle [9], Bollerslev [8], Nelson [24],
Tsay [30] and the references therein). In particular, we employ the stationary mean (not the
conditional mean) to define the proposed de-GARCHed process in (2.3). The main reason
for this design is to retain the autocorrelation in X̃

(h)
m,t, h = CL,CH and to model the auto-

and cross-correlation of X̃
(h)
m,t, h = CL,CH simultaneously in the second stage of the proposed

procedure.

In the second stage, we employ the following vector autoregressive-moving-average
model of orders p and q, denoted by VARMA(p,q), to depict the dynamics of the two
de-GARCHed processes,

{
X̃

(h)
m,t, t = 1, ..., T

}
, h = CL,CH, X̃

(CL)
m,t

X̃
(CH)
m,t

 =
p∑

i=1

(
φLL

m,i φLH
m,i

φHL
m,i φHH

m,i

) X̃
(CL)
m,t−i

X̃
(CH)
m,t−i


+

 ε
(CL)
m,t

ε
(CH)
m,t

+
q∑

j=1

(
θLL
m,j θLH

m,j

θHL
m,j θHH

m,j

) ε
(CL)
m,t−j

ε
(CH)
m,t−j

,

(2.5)

for m=1, ..., p, where
(
ε
(CL)
m,t , ε

(CH)
m,t

)T, t=1, ...,T , are uncorrelated random vectors of a bivariate

normal distribution with mean zero and covariance matrix Σ. In addition,
(
ε
(CL)
m,t , ε

(CH)
m,t

)T,

t = 1, ..., T , are assumed to be independent of
(
X̃

(CL)
m,s , X̃

(CH)
m,s

)T, s < t.

Denote the 1-step-ahead predictions of X
(h)
m,t+1 conditional on Ft by X̂

(h)
m,t(1)=Et(X

(h)
m,t+1

)
,

h = CL,CH, where Et(X) denotes the conditional expectation of X given Ft. From (2.3)–
(2.5), we have

X̂
(CL)
m,t (1) = Et

(
X

(CL)
m,t+1

)
= µ(CL)

m + σ
(CL)
m,t+1Et

(
X̃

(CL)
m,t+1

)
= µ(CL)

m + σ
(CL)
m,t+1

{
p∑

i=1

(
φLL

m,i X̃
(CL)
m,s−i + φLH

m,i X̃
(CH)
m,s−i

)
+

q∑
j=1

(
θLL
m,j ε

(CL)
m,s−j + θLH

m,j ε
(CH)
m,s−j

)}(2.6)

and

X̂
(CH)
m,t (1) = Et

(
X

(CH)
m,t+1

)
= µ(CH)

m + σ
(CH)
m,t+1Et

(
X̃

(CH)
m,t+1

)
= µ(CH)

m + σ
(CH)
m,t+1

{
p∑

i=1

(
φHL

m,i X̃
(CL)
m,s−i + φHH

m,i X̃
(CH)
m,s−i

)
+

q∑
j=1

(
θHL
m,j ε

(CL)
m,s−j + θHH

m,j ε
(CH)
m,s−j

)}
.

(2.7)

To guarantee the mathematical coherence X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in their predictions, let

X̂
(CL)
m,t+1 = min

{
X̂

(CL)
m,t (1), X̂(CH)

m,t (1)
}

and
X̂

(CH)
m,t+1 = max

{
X̂

(CL)
m,t (1), X̂(CH)

m,t (1)
}

,
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and
[
X̂

(CL)
m,t+1, X̂

(CH)
m,t+1

]
forms a prediction interval of Xt+1 conditional on Ft. In our empirical

study, there are 250(days)× 30(companies)× 2(time periods) = 15,000 prediction intervals,
and the situation of X̂

(CL)
m,t (1) > X̂

(CH)
m,t (1) occurs only 8 times. The numerical results indicate

that the proposed scheme is capable of guaranteeing X̂
(CL)
m,t+1 ≤st X̂

(CH)
m,t+1 in most cases.

3. APPLICATION OF THE ITS PREDICTION
TO PORTFOLIO SELECTION

In this section, we propose an innovative portfolio selection scheme on the basis of the
ITS prediction with models (2.6) and (2.7). The literature contains many different models
from models (2.6) and (2.7) for analyzing ITS. Nevertheless, the proposed portfolio selection
scheme is not restricted to our considered model.

The classic portfolio optimization problem is represented as follows:

(3.1) max
ct

Et

(
p∑

m=1

cm,tXm,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1 and ρt ≤ L ,

where ct = (c1,t, ..., cp,t)T, cm,t denotes the holding position of Xm,t at time t, ct ≥ 0 is the no
short-selling constraint,

∑p
m=1 cm,t ≤ 1 is the budget constraint, ρt is the value of a prede-

termined risk measure at time t, and L is a pre-specified upper bound of the investment risk.
The main objective is to select the holding positions ct at time t. In the portfolio selection
literature, when Xm,t, t = 1, 2, ..., are assumed to be i.i.d. for each m = 1, ..., p, Markowitz
[22, 23] used the standard deviation of a portfolio, Rockafellar and Uryasev [25, 26] and
Krokhmal et al. [20] employed the CVaR, and Adam et al. [2] considered the SRM as the
risk measure to determine ct. Recently, Harris and Mazibas [16] and Huang et al. [18] fur-
ther considered fitting time series models for the underlying asset returns, Xm,t, m = 1, ..., p,
t = 1, 2, ..., with the CVaR and SRM to solve (3.1).

In this study, we determine the allocations of the underlying assets with the following
criterion:

max
ct

Et

(
p∑

m=1

cm,tX
(CH)
m,t+1

)
subject to ct ≥ 0,

p∑
m=1

cm,t ≤ 1

and −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣X(CL)
m,t+1≤ qα,m,t+1

)
≤ L ,

(3.2)

where X
(h)
m,t+1 = µ

(h)
m + σ

(h)
m,t+1X̃

(h)
m,t+1, h = CH,CL, follows models (2.3)–(2.5), and qα,m,t+1

is the α-th quantile of X
(CL)
m,t+1 conditional on Ft. In practice, since the expected values

of daily stock returns are usually very close to 0, one can select a sufficiently small α

such that qα,m,t+1 < 0. The main concept behind (3.2) is to maximize the potential high
portfolio returns subject to a predetermined limitation, L, on the corresponding potential
low and nonpositive returns. In contrast to (3.1), we use Et

(∑p
m=1 cm,tX

(CH)
m,t+1

)
to replace

Et

(∑p
m=1 cm,tXm,t+1

)
and use

(3.3) −
p∑

m=1

cm,tEt

(
X

(CL)
m,t+1

∣∣∣X(CL)
m,t+1≤ qα,m,t+1

)
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as the risk measure ρt in (3.1). In addition, the values of Et

(
X

(CH)
m,t+1

)
and Et

(
X

(CL)
m,t+1

)
,

m = 1, ..., p, are estimated by the models defined in (2.5). Moreover, the optimal allocations
cm,t, m = 1, ..., p, are in linear forms in the objective function and constraints in (3.2). Con-
sequently, the optimal allocations in (3.2) can be obtained by linear programming, which is a
popular technique for various portfolio selection criteria (Markowitz [22, 23], Rockafellar and
Uryasev [25, 26], Adam et al. [2] and Huang et al. [18]).

In the following, we introduce the concept of a coherent risk measure for the intervals
of returns, which provides economic and financial reasons to use (3.3) as a risk constraint in
(3.2). In financial risk management, Artzner et al. [6] introduced the following concept of
the coherent risk measure for classic portfolio selection. Let G be the set of random portfolio
returns, ρ be a risk measure, which is a mapping from G into R, and X denote the return of
an asset. A risk measure is called coherent if it satisfies the following properties:

(A1) Translation invariance: If A is a deterministic portfolio with guaranteed return α,
then for all X ∈ G, we have ρ(X + A) = ρ(X)−α.

(A2) Subadditivity: For all X and Y ∈ G, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(A3) Positive homogeneity: For all λ ≥ 0 and all X ∈ G, ρ(λX) = λρ(X).

(A4) Monotonicity: For all X and Y ∈ G with X ≤ Y , we have ρ(Y ) ≤ ρ(X).

The economic explanations of these four properties are as follows. Translation invariance
implies that the addition of a definite amount of capital reduces the risk by the same amount.
Subadditivity implies that diversification is beneficial. Positive homogeneity implies that the
risk of a position is proportional to its size. Monotonicity implies that a portfolio with greater
future returns has less risk.

In this study, we consider an interval of returns denoted by XI = [XL,XH ], where XL

and XH are the low and high returns of an asset, respectively. To extend the concepts of
(A1)–(A4) from random variables to random intervals, we propose the following properties
for a risk measure of the interval of returns. Let G1 be the set of random intervals of portfolio
returns and ρI : G1 → R be a corresponding risk measure.

(A1′) Translation invariance for the interval of returns: If A is a deterministic portfolio
with guaranteed return α, then for all XI∈ G1, we have ρI(XI+A) = ρI(XI)−α,
where we use XI +A to denote [XL+A,XH +A].

(A2′) Subadditivity for the interval of returns: For all XI and Y I ∈ G1, ρI(XI +Y I) ≤
ρI(XI)+ ρI(Y I), where XI +Y I = [XL +Y L,XH +Y H ]. In addition, one can
also use the Cartesian join of XI and Y I , denoted by XI⊕Y I =

[
min(XL,Y L),

max(XH ,Y H)
]
, to define the subadditivity, that is, ρI(XI⊕Y I) ≤ ρI(XI) +

ρI(Y I).

(A3′) Positive homogeneity for the interval of returns: For all λ ≥ 0 and all XI ∈ G1,
ρI(λXI) = λρI(XI).

(A4′) Monotonicity for the interval of returns: For all XI and Y I ∈ G1 with XI ≤
Y I , where XI ≤ Y I if and only if XL ≤ Y L and XH ≤ Y H , we have ρI(Y I) ≤
ρI(XI).
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The economic explanations of (A1′)–(A4′) are similar to those of (A1)–(A4). Specifically, the
monotonicity for the interval of returns (A4′) implies only that a portfolio with greater future
interval of returns has less risk. For the case of XI ⊂ Y I , the relationship between ρI(Y I)
and ρI(XI) is not clear. If a risk measure for the interval of returns satisfies (A1′)–(A4′),
we call it a coherent risk measure for the interval of returns. In the following proposition, a
coherent risk measure for the interval of returns is proposed.

Proposition 3.1. Let XI = [XL,XH ] be an interval of returns, and let

ρI(XI) = −E
(
X(L) |X(L)≤ qα

)
,

where qα is the α-th quantile of X(L). Then, ρI(·) is a coherent risk measure for the interval

of returns.

Proof: Note that for a random variable XL, −E(XL |XL≤ qα) is the so-called ex-
pected shortfall, which is a coherent risk measure. Therefore, it is straightforward to obtain
that ρI(XI) = −E(XL |XL≤ qα) satisfies (A1′), (A2′), (A3′), and (A4′), where the interval
addition in (A2′) is defined by the usual way XI+Y I = [XL+Y L,XH +Y H ]. In the following,
we prove that ρI(XI) also satisfies ρI(XI⊕Y I) ≤ ρI(XI) + ρI(Y I).

Let qα,0, qα,X and qα,Y be the α-th quantile of min(XL,Y L), XL and Y L, respec-
tively. Apparently, qα,0 ≤ min(qα,X , qα,Y ) for any α ∈ (0,1). Let α be small enough such that
max(qα,X , qα,Y ) < 0. Consequently, for all XI and Y I ∈ G1, we have

ρI(XI⊕Y I) = −E
[
min(XL,Y L)

∣∣ min(XL,Y L)≤ qα,0

]
= − 1

α
E
[
min(XL,Y L) I

(
min(XL,Y L)≤ qα,0

)]
≤ − 1

α

{
E
[
XLI

(
XL≤ qα,X

)]
+ E

[
Y L I

(
Y L≤ qα,Y

)]}
= −

{
E
(
XL |XL≤ qα,X

)
+ E

(
Y L | Y L≤ qα,Y

)}
= ρI(XI) + ρI(Y I) ,

where I(·) is an indicator function and the inequality holds by using the facts that

−min(XL,Y L) I
(
min(XL,Y L)≤ qα,0

)
≤ −XL I(XL≤ qα,X) − Y L I(Y L≤ qα,Y ) ,

almost surely, for qα,0 ≤ min(qα,X , qα,Y ) ≤ max(qα,X , qα,Y ) < 0. Thus, (A2′) with the Carte-
sian join also holds and the proof is complete.

By Proposition 3.1, the measurement defined in (3.3) can be rewritten as

p∑
m=1

cm,t ρI

(
X

(CI)
m,t+1 | Ft

)
,

which is a linear combination of coherent risk measures for the interval of returns, where

(3.4) ρI

(
X

(CI)
m,t+1 | Ft

)
= −Et

(
X

(CL)
m,t+1

∣∣X(CL)
m,t+1≤ qα,m,t+1

)
.
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Due to the convexity of the coherent risk measure, we have

(3.5) ρI

(
p∑

m=1

cm,tX
(CI)
m,t+1| Ft

)
≤

p∑
m=1

cm,t ρI

(
X

(CI)
m,t+1 | Ft

)
.

For a portfolio with allocations cm,t, m = 1, ...,p, set up at time t, the left side of (3.5)
represents the risk of the worst case occurring at time t + 1 since each underlying return
reaches the bottom of the corresponding prediction interval. However, if a limitation is set
on ρI

(∑p
m=1 cm,tX

(CI)
m,t+1 | Ft

)
in the portfolio selection criterion (3.2), the optimal allocations

cm,t, m = 1, ...,p, are difficult to obtain directly using linear programming since ρI( · |Ft) is
a nonlinear function of cm,t, m = 1, ...,p. A similar situation is encountered in the classic
portfolio selection problem shown in (3.1) when using the expected shortfall as the risk
measure. Rockafellar and Uryasev [25, 26] proposed a method to overcome this difficulty by
considering more latent variables, but the computational cost also increased. Therefore, we
set a limitation on the right side of (3.5), and the optimal allocations can be obtained directly
using linear programming.

In the following sections, we consider several scenarios to investigate the coverage, effi-
ciency and accuracy of the proposed interval estimation and the performance of the proposed
criterion for portfolio selection.

4. EVALUATION OF THE PROPOSED INTERVAL ESTIMATION METHOD

Let Yt = [PL
t ,PH

t ] denote the realized ITS of the stock prices and Ŷt be an estimation
of Yt, t = 1, ...,T . In this section, we use the four measures to evaluate the performance of the
proposed interval estimation (He and Hu [17], Rodrigues and Salish [27] and Xiong et al. [31]).
The first measure is the coverage rate

RC =
1
T

T∑
t=1

w(Yt ∩ Ŷt)
w(Yt)

,

where w(·) denotes the width of the interval, RC indicates what part of the realized ITS of
the stock prices is covered by its forecast.

The second measure is the efficiency rate

RE =
1
T

T∑
t=1

w(Yt ∩ Ŷt)

w(Ŷt)
,

which provides information about what part of the forecast covers the realized ITS. It should
be noted that RC and RE must be considered simultaneously; otherwise, incorrect conclusions
may be drawn. For example, if Yt is a subinterval of Ŷt, then RC will be 1, but RE might
be much less than 1, which indicates that the predicted interval is much wider than the
realized ITS. Therefore, we only conclude that the forecast is satisfactory when RC and RE

are reasonably high and the difference between them is small.

The third measure is the accuracy ratio

RA =
1
T

T∑
t=1

w(Yt ∩ Ŷt)

w(Yt ∪ Ŷt)
.
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A prediction with a larger RA performs better than a prediction with a smaller one.

The fourth measure is the UI criterion

UI =

√√√√ ∑T
t=1

(
PH

t −P̂H
t

)2 +
∑T

t=1

(
PL

t −P̂L
t

)2∑T
t=1

(
PH

t −PH
t−1

)2 +
∑T

t=1

(
PL

t −PL
t−1

)2 ,

which is derived from Theil’s U statistic and compares the performance of an estimated
method with a näıve estimate [PL

t−1,P
H
t−1] of [PL

t ,PH
t ]. The UI statistic is less than one if the

predictor performs better than the näıve predictor.

In addition to the proposed interval estimation Ŷ
(p)
t , three commonly used interval

predictors are considered in our comparison studies. One is fitting time series models to the
log return process Xt = log(PC

t /PC
t−1) and then deriving the corresponding 95% confidence

interval of PC
t+1. We denote this estimation of Yt by Ŷ

(1)
t .

The second estimation of Yt is the popular center-range prediction interval, which is
obtained by separately fitting time series models to the processes of the center, PM

t = (PH
t +

PL
t )/2, and the range, PR

t = (PH
t −PL

t )/2, of the price intervals and then deriving an interval
estimation of [PL

t+1,P
H
t+1] conditional on Ft. We denote the second estimation by Ŷ

(2)
t .

The third alternative estimation of Yt is derived from a linear interval-data model
motivated from Fischer et al. [12]. The center-range-representation of interval data can also
be expressed as the following regression model

Yt = β0 + β1Y
C
t−1 + β2Y R

t−1 + δt ,(4.1)

where Y C
t = [PM

t ,PM
t ], Y R

t = [−PR
t ,PR

t ], δt is an interval-valued random error, and β0 = [a,a]
and (a,β1,β2) are unknown parameters. Blanco-Fernández et al. [7] derived the estimation
procedures for (4.1), and the obtained predictor is denoted as Ŷ

(3)
t .

We conduct the comparison study using the stock prices of the 30 companies of the
DJIA Index during the financial crisis period (from July 2, 2007 to June 24, 2009) and
under improved market conditions (from July 1, 2014 to June 23, 2016). The 1-step-
ahead prediction intervals during the two time periods (from June 27, 2008 to June 24,
2009 and from June 29, 2015 to June 23, 2016) are obtained with the previous 250 daily
historical high and low returns. We adopt an ARMA(p,q)-GARCH(p0,q0) model, where
p, q ∈ {0,1,2,3,4,5} and p0, q0 ∈ {0,1}, to obtain the de-GARCHed process defined in (2.3)
for h = CL and CH, separately. The multivariate portmanteau test (Tsay [30], Chapter 8)
is used for testing the auto- and cross-correlation in

{(
X̃

(CL)
m,t , X̃

(CH)
m,t

)
, t =1, ...,T

}
. If the

de-GARCHed processes have significant auto- and cross-correlation, we model the vector
time series

(
X̃

(CL)
m,s , X̃

(CH)
m,t

)T with VARMA(p1, q1) defined in (2.5), where (p1, q1) are selected
from

{
(1,0), (0,1) and (u,v), u,v = 1,2,3

}
based on the Bayesian information criterion (BIC).

Table 1 summarizes the p-values of the multivariate portmanteau test for the de-GARCHed
processes and the residual processes

{(
ε
(CL)
m,t ,ε

(CH)
m,t ), t=1, ...,T

}
. In Table 1, all the de-GARCHed

processes have significant auto- and cross-correlation during 2008–2009, and most (around
96.2%) of the de-GARCHed processes have significant auto- and cross-correlation during
2015–2016. More than 99.4% of the p-values of the fitted residual processes during the
two time periods are greater than 0.01, which indicates that the above scheme is capa-
ble of removing most of the auto- and cross-correlation of the de-GARCHed processes.
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Table 1: The proportions of the p-values of the multivariate portmanteau test for testing auto-
and cross-correlation in the de-GARCHed processes

{(
X̃

(CL)
m,t , X̃

(CH)
m,t

)
, t = 1, ...,T

}
(shown in rows) and the residual processes

{(
ε
(CL)
m,t , ε

(CH)
m,t ), t =1, ...,T

}
(shown in columns).

(a) 2008–2009

``````````````̀de-GARCHed

residual
p-value < 0.01 p-value ≥ 0.01

p-value < 0.01 0.001 0.999
p-value ≥ 0.01 0.000 0.000

(b) 2015–2016

``````````````̀de-GARCHed

residual
p-value < 0.01 p-value ≥ 0.01

p-value < 0.01 0.011 0.951
p-value ≥ 0.01 0.000 0.038

Figure 1 summarizes the proportions of selected orders (p1, q1) in the two time periods,
where the 3.8% de-GARCHed processes without significant auto- and cross-correlation during
2015–2016 are denoted by VARMA(0,0). VARMA(1,1) is the most commonly selected model
during the financial crisis period, whereas VARMA(1,0) and VARMA(1,1) are frequently
selected under improved market conditions.

Table 2: The average values of RC , RE , RA and UI of Ŷ
(1)
t , Ŷ

(2)
t , Ŷ

(3)
t and Ŷ

(p)
t in

June 27, 2008 – June 24, 2009 and June 29, 2015 – June 23, 2016, in the top panel.
The bottom panel presents the improvement of Ŷ

(p)
t for each Ŷ

(i)
t , i = 1,2,3, by

calculating
(
Ŷ

(p)
t −Ŷ

(i)
t

)
/Ŷ

(i)
t for RC , RE , and RA, and

(
Ŷ

(i)
t −Ŷ

(p)
t

)
/Ŷ

(i)
t for UI .

Average values

2008–2009 2015–2016

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(p)
t

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(p)
t

RC 0.57 0.96 0.61 0.63 0.53 0.96 0.55 0.60
RE 0.55 0.34 0.53 0.60 0.51 0.30 0.51 0.56
RA 0.42 0.33 0.41 0.46 0.39 0.30 0.39 0.44
UI 0.98 1.70 0.99 0.87 0.99 1.82 0.97 0.88

Improvement of bY
(p)

t for each bY
(i)

t , i = 1,2,3

2008–2009 2015–2016

bY
(1)

t
bY

(2)
t

bY
(3)

t
bY

(1)
t

bY
(2)

t
bY

(3)
t

RC 10.4% −35.0% 1.7% 14.6% −37.3% 9.4%
RE 8.5% 75.5% 13.0% 9.0% 85.6% 10.5%
RA 9.8% 38.5% 12.3% 12.4% 47.3% 10.9%
UI 9.8% 47.9% 10.99% 10.5% 51.4% 9.2%
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Figure 1: Summaries of the selected orders of VARMA for 15,000 prediction intervals in the
two time periods (June 27, 2008 to June 24, 2009 and June 29, 2015 to June 23, 2016).

Table 2 presents the average values of RC , RE , RA and UI of Ŷ
(p)
t and Ŷ

(i)
t , i = 1,2,3,

in the top panel. In the bottom panel, we present the improvement of Ŷ
(p)
t for each Ŷ

(i)
t ,

i = 1,2,3, by calculating (Ŷ (p)
t −Ŷ

(i)
t )/Ŷ

(i)
t for RC , RE , and RA and (Ŷ (i)

t −Ŷ
(p)
t )/Ŷ

(i)
t for UI .

The numerical results indicate that Ŷ
(p)
t performs better than Ŷ

(i)
t , i = 1,2,3, in terms

of RE , RA and UI . Although Ŷ
(2)
t has a larger RC than Ŷ

(p)
t , the improvement of Ŷ

(p)
t

in RE is much greater than the loss of Ŷ
(p)
t in RC . In particular, the popular center-range

prediction interval Ŷ
(2)
t has UI greater than 1, which indicates that the proposed predic-

tion interval Ŷ
(p)
t is more reliable than Ŷ

(2)
t . By contrast, Ŷ

(p)
t outperforms Ŷ

(1)
t and Ŷ

(3)
t ,

especially in 2015–2016, with an improvement in the 4 measures of at least 9.0%.
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Figure 2 presents the average values of RC ,RE ,RA and UI for the four prediction intervals for the
30 companies of the DJIA Index from June 27, 2008 to June 24, 2009. The results of the time
period from June 29, 2015 to June 23, 2016 are given in Figure 3. These figures reveal similar
findings as those in Table 2. The proposed prediction interval Ŷ

(p)
t has the best performance

with respect to RA and UI and performs robustly in RC and RE , especially in 2015–2016.
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Figure 2: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line), Ŷ

(1)
t (dashed line), Ŷ

(2)
t

(dotted line) and Ŷ
(3)
t (dash-dotted line) for 30 different time series from June 27, 2008

to June 24, 2009.
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Figure 3: The average values of RC , RE , RA and UI of Ŷ
(p)
t (solid line), Ŷ

(1)
t (dashed line), Ŷ

(2)
t

(dotted line) and Ŷ
(3)
t (dash-dotted line) for 30 different time series from June 29, 2015

to June 23, 2016.

The main reason for the good performance of Ŷ
(p)
t is that Ŷ

(p)
t uses more information than the

other predictors. All the other predictors involve (traditional) ITS, that is, they are formed
exclusively with the high and low returns and do not consider past closing prices. Therefore,
the predictors Ŷ

(i)
t , i = 1,2,3, have a clear disadvantage relative to Ŷ

(p)
t ; consequently, the

latter should show much better performance.
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5. EMPIRICAL STUDY

In this section, an empirical study is designed to investigate the performance of the
proposed criterion for selecting the optimal portfolio using the stock prices of the companies
of the DJIA Index. The DJIA Index was launched on October 29, 2002. This Index covers
the top 30 companies by total market capitalization and is reviewed quarterly in January,
April, July and October every year. Suppose that a self-financing trading strategy, which
daily reallocates the holding weights of the portfolio, is employed from the beginning of
each period. The proposed criterion is used to reallocate the optimal portfolios daily during
the financial crisis period and under improved market conditions by fitting the time series
models defined in (2.5) with the previous 250 daily historical high and low returns for each
underlying asset. Then, the corresponding 250 one-day-ahead returns of the optimal portfolios
are computed and compared with the DJIA Index. In the following, we illustrate the details
of the construction of the self-financing trading strategy during the financial crisis period:

1. Let DJt be the value of the DJIA Index at time t, where t = 0 stands for the date
of June 27, 2008.

2. Let Vt denote the value of the self-financing portfolio at time t. Further, let V0

be the value of the DJIA Index on June 27, 2008. The initial allocations of the
underling assets, cm,0, are obtained by solving (3.2), where the high and low return
processes of each underlying asset are fitted by model (2.5) based on X

(CH)
m,t and

X
(CL)
m,t for t = −250, ...,−1, m = 1, ...,p and p = 30. Moreover, since

∑p
m=1 cm,0 can

be less than 1, the amount V0
∑p

m=1 cm,0 is invested in risky assets and the rest of
the portfolio value, denoted by C0 = V0(1−

∑p
m=1 cm,0), is invested in the risk-free

market.

3. At time t = 1, the value of the portfolio is

V1− = b(0)
p∑

m=1

cm,0 PC
m,1 + erdC0 ,

prior to the adjustment of the holding portfolio, where

b(0) =
V0
∑p

m=1 cm,0∑p
m=1 cm,0 PC

m,0

and rd is the daily risk-free interest rate. We reestimate the dynamic models of
each return process using the data Pm,t, t = −249, ...,0, and compute the updated
optimal allocations, which are proportional to cm,1 obtained by solving (3.2), where
the value of the updated portfolio, denoted by V1, is the same as V1− to satisfy self-
financing. That is,

V1 = V1− = b(1)
p∑

m=1

cm,1PC
m,1 + C1 ,

where

b(1) =
V1−

∑p
m=1 cm,1∑p

m=1 cm,1PC
m,1

and C1 = V1−(1−
∑p

m=1 cm,1) denotes the amount invested in the risk-free market
after reallocation.

4. Repeat Step 3 until June 24, 2009.
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In addition to adjusting the allocations of the above self-financing trading strategy
daily, we proposed dynamic adjustment of the risk limitation L in (3.2) by considering

(5.1) L =
k

p

p∑
m=1

ρI

(
X

(CI)
m,t+1 | Ft

)
at time t, where k is a positive constant and ρI

(
X

(CI)
m,t+1 | Ft

)
is defined in (3.4). The L

defined in (5.1) is a special case of (3.3) with cm,t = 1/p, for m = 1, ...,p, multiplied by k.
In other words, we set the limitation of the investment risk in (3.2) by considering the
trading strategy of an equally weighted portfolio. Moreover, conditional on Ft and by (2.3)–
(2.5), X

(CL)
m,t+1 = µ

(CL)
m +σ

(CL)
m,t+1 X̃

(CL)
m,t+1 is normally distributed with conditional mean X̂

(CL)
m,t (1)

defined in (2.6) and conditional standard deviation σ
(CL)
m,t+1. Consequently, (3.4) yields

ρI

(
X

(CI)
m,t+1 | Ft

)
= −Et

(
X

(CL)
m,t+1

∣∣X(CL)
m,t+1≤ qα,m,t+1

)
= −X̂

(CL)
m,t (1) + σ

(CL)
m,t+1 φ

((
qα,m,t+1− X̂

(CL)
m,t (1)

)
/σ

(CL)
m,t+1

)/
α ,

where φ(·) is the density function of the standard normal distribution.

The numerical results are presented in Figures 4 and 5 with α = 0.05, 0.20 and 0.35
and rd = 0. Figure 6 presents the values of L in 2008–2009 and 2015–2016 with different
settings of α and k = 1. Figure 6 shows that a portfolio constructed by (3.2) with a large
α is more conservative than a portfolio constructed with a small α since the values of L

with α = 0.35 are smaller than their counterparts. In Figure 4, the solid, dashed and dash-
dotted lines denote the ratios of the capitals of the proposed trading strategy with k = 0.75,
1 and 1.25, respectively, to the DJIA Index in 2008–2009, and the results for 2015–2016 are
presented in Figure 5. For a fixed α, a portfolio with a small k is more conservative than one
with a large k. In Figure 4, the proposed portfolio selection criterion (3.2) with L defined in
(5.1) suggests a conservative portfolio during the financial crisis in 2008–2009 since the case
with k = 0.75 performs better than the others for each α. In particular, the portfolio with
(α,k) = (0.35,0.75) has the best performance among all scenarios. For 2015–2016, compared
with the portfolios selected in 2008–2009, the results presented in Figure 5 indicate that
(3.2) suggests aggressive portfolios, decreasing α from 0.35 to 0.05 or 0.20 with k = 0.75 or
increasing k from 0.75 to 1.00 with α = 0.35. In view of the results in Figures 4 and 5, the
proposed portfolio selection criterion (3.2) is capable of adjusting its suggestions according
to the economic conditions.
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Figure 4: The ratios of the capitals of different trading strategies to
the Dow Jones Industrial Average Index in 2008–2009.
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Figure 5: The ratios of the capitals of different trading strategies to
the Dow Jones Industrial Average Index in 2015–2016.
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Figure 6: The values of L in 2008–2009 and 2015–2016.

6. CONCLUSION

In this study, we propose a prediction interval for future stock prices by fitting time
series models to the high and low return processes. The proposed interval estimator is shown
to have promising coverage, efficiency and accuracy. In particular, the numerical results of
the UI index indicate that the proposed interval estimator reduces the prediction error of the
näıve interval predictor more remarkably than three popular interval estimators discussed in
the literature. Consequently, an innovative criterion for portfolio selection is proposed on
the basis of our interval estimator. The allocations of the underlying assets in the proposed
optimal criterion are determined by maximizing the potential high portfolio returns subject
to a predetermined limitation on the corresponding potential low and nonpositive returns.
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An empirical study is conducted to investigate the investment returns of the proposed optimal
portfolio. A dynamic self-financing trading strategy is established by investing in the stocks
of the 30 companies of the DJIA Index and adjusting the asset allocations by the proposed
method daily during the financial crisis period and a period with improved market conditions.
The numerical results indicate that the proposed portfolio selection criterion constructed from
the prediction intervals is capable of suggesting an optimal portfolio according to the economic
conditions.

This study demonstrates that ITS data, including daily closing, high, and low prices,
are capable of improving the performance of investment decisions and risk management by
means of the proposed scheme. Additionally, better prediction performance is expected if
intra-daily ITS data are available. This is an interesting direction for future studies.
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