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Abstract:

• In this paper, distribution-free, affine invariant, signed-rank test statistics are proposed for the
hypothesis that a bivariate distribution is centrally symmetric about an arbitrary specified point.
The proposed tests are based on the concept of data depth. However, our tests are inherently
orthogonal invariant, an affine invariant version of them is provided by using Tyler’s estimator
of scatter. The limiting null distribution of proposed tests is derived and the performance of the
proposed tests is evaluated through a Monte Carlo study. This study demonstrates that the tests
always detect asymmetry and they are convenient to determine small departures from the null
hypothesis with high power. Also it shows that the tests perform well comparing other procedures
in the literature.
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1. INTRODUCTION

Let X1, ...,Xn denote independent copies of the bivariate random vector X = (X1, X2)
T

from a continuous bivariate population. One problem which has been considered in the litera-
ture is to test whether the distribution is symmetric about an unknown center against the alter-
native that the symmetry is lost (Heathcote et al. [16], Koltchinskii and Li [22], Neuhaus and
Zhu [33], Manzotti et al. [30] and Henze et al. [17]). Moreover, in the univariate case, we can
mention to Cassart et al. [6]. Unlike the univariate case, there are several concepts of multivari-
ate symmetry including spherical, elliptical, central and angular symmetry. It is worth noting
that the mentioned arrangement of the multivariate symmetry concepts are ordered in increas-
ing generality. To read more about different types of multivariate symmetry see Serfling [38].

A different problem is the testing of the hypothesis that the bivariate distribution is
symmetric about a known center µ0 against the alternative that the distribution is symmetric
about µ 6= µ0. There is a substantial literature for this problem. Under the multivariate
normality assumption, it is common to use Hotelling’s T 2 test [20]. A multivariate affine-
invariant sign test based on counts called interdirections has been presented by Randles
[35]. In the sequence, Peter and Randles [41] based on the notion of interdirection, provided
affine invariant signed rank test and signed sum test, respectively. Optimal affine invariant
tests based on interdirections and pseudo-Mahalanobis ranks have been developed by Hallin
and Paindaveine [12]. Hallin and Paindaveine [11] also presented an alternative version of
these procedures in which interdirections are replaced by angles between the observations
standardized via Tyler’s estimator of scatter [40]. Mottonen and Oja [32] developed the
tests based on spatial signs and ranks. Hettmansperger et al. [18] and Hettmansperger et

al. [19] extended the bivariate tests of Brown and Hettmansperger [5] to the multivariate
case. An affine invariant sign test by applying the Tyler’s transformation on data points
has been presented by Randles [36]. The affine invariant signed rank test, modified from
sign test of Randles [36], was suggested by Mahfoud and Randles [29]. The tests described in
preceding paragraph can serve as important preliminaries before applying these corresponding
location tests. Moreover, there are several tests for testing of the hypothesis that the bivariate
distribution is symmetric against not only location parameter but also regression and serial
dependence alternatives e.g. Hallin and Paindaveine [13], [14] and [15].

Another problem that has received attention is to test whether the distribution is sym-
metric about known center µ0 against the alternative that either the symmetry is lost or the
location parameter is changed. Our paper deals with the latter problem. Indeed, the purpose
of this paper is to develop affine invariant tests for testing the central symmetry of the bivari-
ate distribution about a known center µ0. Baringhaus [4] introduced the rotation invariant
tests, for testing the spherical symmetry of the multivariate distribution about known center.
For central symmetry that it is a weaker assumption than spherical and elliptical symmetry,
the tests have been developed employing the empirical characteristic functions by Ghosh and
Ruymgaart [10]. Aki [1] proposed a rotation invariant test based on the empirical distribution
function. An extension of McWilliams’ univariate run test (Mcwilliams [31]) into a test of
bivariate central symmetry based on the depth function have been presented by Dyckerhoff et

al. [8]. Although, this test is affine invariant, it suffers from low power in distinguishing most
of the alternative hypotheses to central symmetry. Recently Einmahl and Gan [9] proposed
two versions of a rotation invariant test based on empirical measures of opposite regions.
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In this paper, we aim to propose test statistics for central symmetry in such a way that
they would be affine invariant, distribution-free and have good power against alternatives to
the null hypothesis. The test statistics are created based on sum of the signed-ranks where
the sign and rank functions are determined through the depth function. Based on a given
depth function, this procedure results in an orthogonal invariant test statistic. An affine
invariant version of this test is provided by applying Tyler’s transformation (Tyler [40]) on
data points. The affine invariance property ensures that the performance of the test does not
depend on the underlying coordinate system.

The word of depth has been used for the first time by Tukey [39] to introduce the
halfspace depth function. In the sequence, different depth functions have been introduced
and the multivariate data have been ordered as center-outward based on them. This center-
outward ranking has been widely applied in multivariate nonparametric inference. Liu and
Singh [27] presented a quality index and provided some multivariate rank tests for difference
between two independent distributions based on it. In the following, a distribution-free test
was presented based on both the depth function and the principal components by Rousson
[37] for the multivariate two-sample location-scale model. Based on DD plots (depth vs.
depth plots) introduced by Liu et al. [26], two tests have been provided by Li and Liu
[24] for location difference between two multivariate distributions. In addition, Liu and
Singh [28] introduced some rank tests for multivariate scale difference between two or more
independent populations. Depth-based run tests for bivariate central symmetry is introduced
by Dyckerhoff et al. [8].

The remainder of this paper is organized as follows. In Section 2, we review briefly
the concept of depth function and ranking based on it. The proposed test statistics will be
described in Section 3 and the asymptotic properties of those are also investigated. Finally, in
Section 4, a Monte Carlo study evaluates the finite sample performance of the proposed test
statistics in accordance with other tests. All technical proofs are deferred to the Appendix.

2. DEPTH FUNCTION

Let X be a p-dimensional random vector defined on a probability space (Ω,F , P ).
We denote F as a distribution function corresponding to P . A depth function associated
with a distribution function F on Rp is defined to provide a center-outward ordering of
points of Rp relative to F . Based on depth function, a corresponding notion of center or
multidimensional median could be defined. The higher depth values refer to the points near
to the center, whereas the lower values refer to the outer points of the center. A formal
definition of “statistical depth function” is presented by Zuo and Serfling [42] as a function
D( · , F ) : Rp → R satisfying the following properties:

P1. Affine invariance: for any nonsingular p×p matrix A and p-vector b, D(Ax + b,

FAx+b) = D(x, F ).

P2. Maximality at center: if F is symmetric about θ in some sense, then D(θ, F ) =
supx∈Rp D(x, F ).

P3. Monotonicity relative to deepest point: if D(θ,F )≥D(x,F ) for any x∈Rp then
D(θ + α(x− θ), F ) ≥ D(x, F ) for each α ∈ [0, 1] and x ∈ Rp.

P4. Vanishing at infinity: as ‖x‖ → ∞, D(x, F ) → 0.
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Let X1, ...,Xn be a random sample from p-dimensional distribution function F . The sam-
ple version of the depth function D( · , F ) will be obtained by replacing F with the sample
distribution Fn.

Remark 2.1. If the sample depth function D( · , Fn) satisfies property P1, then it will
also be invariant under data-dependent nonsingular transformations.

Different depth functions have been proposed by some authors, which the definition of
some of them that we deal with in this paper are given as follows.

Definition 2.1 (Tukey [39]). The halfspace depth of x ∈ Rp with respect to F is
defined as

HD (x, F ) = inf
H

{
P (H) : H is a closed halfspace in Rp and x ∈ H

}
and the sample halfspace depth function is

HD (x, Fn) =
min‖u‖=1 #

{
i : uTXi ≤ uTx, i =1, ..., n

}
n

.

Definition 2.2 (Liu [25]). The simplicial depth of x with respect to F is defined as

SD (x, F ) = PF

(
x ∈ S [X1, ...,Xp+1]

)
,

where S [X1, ...,Xp+1] is a closed simplex with X1, ...,Xp+1 vertics. The sample version of
SD(x, F ) is given by the fraction of the sample random simplices containing the point x.

Definition 2.3 (Liu [27]). The Mahalanobis depth of x with respect to F is given by

MD (x, F ) =
1

1 + (x− µ)T Σ−1(x− µ)
,

where µ and Σ are the mean vector and dispersion matrix of F distribution, respectively.
The sample version of Mahalanobis depth is provided by replacing µ and Σ with their sample
estimates.

Additionally, some other depth functions have been introduced such as Oja depth (Oja
[34]) and zonoid depth (Koshevoy and Mosler [23]). A more recent proposal for data depth
is the Monge–Kantorovich depth (Chernozhukov et al. [7]) based on the Monge–Kantorovich
theory of measure transportation.

Now, we present the definition of center-outward ranking of data points.

Definition 2.4. Assume that X1, ...,Xn is a random sample from distribution func-
tion F in Rp. The center-outward rank Xi within the sample X1, ...,Xn is

#
{

Xj ∈ {X1, ...,Xn} : D(Xj , Fn) ≥ D(Xi, Fn)
}

,

where Fn is the sample distribution function.

Thus, the center-outward ranking is defined in such a way that a larger rank is assigned
to a more outlying point w.r.t. X1, ...,Xn. If there are no ties, rank 1 and rank n are assigned
to the deepest point and the most outlying point, respectively.
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3. THE PROPOSED TESTS

Let X1, ...,Xn be independently and identically distributed as X = (X1, X2)
T, where

X has an arbitrary bivariate continuous distribution F . The null hypothesis of interest is
that, the random vector X has a distribution centrally symmetric about the known point µ0.
The random vector X is centrally symmetric around µ0 provided X − µ0 and µ0 −X have
the same distribution. Since it is assumed that the symmetry point is known, it is possible to
take µ0 = 0, without loss of generality. So, the hypothesis that the probability distribution

is centrally symmetric about µ0, reduces to the hypothesis H0 : X
d=−X, where

d= denotes
“equal in distribution”. We now describe the procedure for defining affine invariant tests. Let
us look at tests that they are only invariant with respect to orthogonal transformations of
the data in Subsection 3.1, and then proceed to provide our main affine-invariant tests in
Subsection 3.2.

3.1. The orthogonal invariant tests

Let D( · , F ) be a depth function on R2 associated with a distribution function F . Now,
under the given depth function D( · , F ), we derive a test statistic using depth-based ranks
and signs of X1, ...,Xn. To define the proposed test statistic, we need to order the points
X1, ...,Xn in terms of the evidence they provide against the null hypothesis. To this end,
we order the points X1, ...,Xn as center-outward, such that the larger ranks correspond to
the closer points to the null symmetry center and the smaller ranks correspond to the outer
ones. Let Fn and F s

n denote the sample distribution function of random sample X1, ...,Xn

and the symmetrized sample (±X1, ...,±Xn), respectively. Employing property P2 of the
depth function, to obtain center-outward rank of points relative to the null symmetry center
instead of the median of X1, ...,Xn, the points are ordered based on D( · , F s

n) rather than
D( · , Fn). More precisely, define

Ri = #
{

Xj ∈ {X1, ...,Xn} : D(Xj , F
s
n) ≥ D(Xi, F

s
n)
}

, i = 1, ..., n .(3.1)

If ties occur in this ranking, the ranks within each ties-class have been assigned based on
increasing values at the corresponding index set of that. This assignment is allocated to
induce invariance property on proposed test statistic.

The test statistic is sum of the signed-ranks of points. The sign of each bivariate point
can be determined as the sign of the first or second component of it. Specifically, the sign of
a bivariate point is equal to 1 if its first (or second) component is nonnegative and otherwise
is equal to −1. This definition of sign, leads to a test statistic which is not only noninvariant,
but also it is not able to detect all different types of departures from the null hypothesis.
Moreover, the sign of Xi, i = 1, ..., n, could be defined as the spatial sign vector Xi/‖Xi‖
with ‖ · ‖ denoting the Euclidean norm in R2. By this definition of sign, the resulted test
statistic is not strictly distribution-free. To overcome these limitations, we will determine sign
of points based on a data-dependent line passing through the origin instead of the horizontal
or vertical axis of the coordinate plane. In what follows, we will describe how to obtain this
line.
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Let sample median Mn be a point among X1, ...,Xn with maximum sample depth
D( · , F s

n). If there is more than one sample point with the highest depth value D( · , F s
n),

Mn will be the point with minimum index among those data points. Let

θMn = − arctan
(

Mn1

Mn2

)
+

π

2

be the angle between the bivariate vector Mn = (Mn1,Mn2)T and the horizontal-axis. Note
that θMn ∈ [0, π). Related point Zni = (Zni1, Zni2)

T is given by rotating Xi counter-clockwise
by angle

π

2
− θMn , for all i = 1, ..., n. Based on the sample depth function D( · , Fn), the

proposed test statistic is defined as

(3.2) Tn,D =
6

n (n + 1) (2n + 1)

(
n∑

i=1

δniRi

)2

,

where Ri is expressed in (3.1) and the random variable δni is defined as

δni =

{
1 , Zni2 ≥ 0 ,

−1 , Zni2 < 0 ,
(3.3)

for all i = 1, ..., n. The large values of the test statistic Tn,D reject H0 in favor of alternative
hypothesis.

Note that the sign of bivariate points is determined based on a data-dependent line
passing through the origin that is perpendicular to depth based median. Indeed, the reason
for restricting to dimension two is that this procedure is employed to divide plane R2 into
two unique halfspaces based on two points (the origin and the depth based median), whereas
by this procedure dividing hyperplane Rp (p > 2) into two unique halfspaces would not be
possible.

In what follows, we present the desirable property of orthogonal invariance of Tn,D

and asymptotic distribution of Tn,D under the null hypothesis is developed. The proofs are
provided in the Appendix.

Theorem 3.1. If the sample depth function D( · , Fn) satisfies property P1, then the

test statistic Tn,D will be invariant under orthogonal transformations; that is,

Tn,D (X1, ...,Xn) = Tn,D (AX1, ...,AXn)

for any 2×2 orthogonal matrix A.

Theorem 3.2. If the sample depth function satisfies property P1, then under the

null hypothesis of centrally symmetric about 0, Tn,D converges in distribution to a chi-square

random variable with 1 degree of freedom.

By applying this theorem, the null hypothesis will be rejected at level α when

Tn,D ≥ χ2
1,1−α ,

where χ2
1,1−α denotes the 1−α quantile of the chi-square distribution with 1 degree of freedom.
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As mentioned in Theorem 3.2, the asymptotic null distribution of the test statistics
presented here is chi-square with one degree of freedom. One would expect, for location
alternatives, a chi-square with two degrees of freedom (the dimension of the information
matrix for location). It should be remembered that the main object of this paper is proposing
several test statistics for testing that the distribution is symmetric about a specified value
against the alternative that either the symmetry is lost or the location parameter is changed.
Indeed, this alternative is different from location alternatives.

In our proof of Theorem 3.2 we show that Ri’s, i = 1, ..., n, are identically and uniformly
distributed on the set {1, 2, ..., n} and δni’s, i = 1, ..., n, are i.i.d. random variables as dis-
tributed independently of Ri and taking the values 1 and −1 each with probability 1/2. These
traits immediately imply that under the null hypothesis and the conditions of Theorem 3.2,
our test statistic Tn,D is strictly distribution-free.

3.2. The affine invariant tests

As shown, Theorem 3.1 indicates that Tn,D is orthogonal invariant. In this subsection,
we would extend Tn,D to be affine invariant, preserving the asymptotic behavior of Tn,D.
To achieve the affine invariant version of the proposed test statistics, we can apply the
Tyler’s auxiliary transformation (Tyler [40]) on data points. Tyler [40] proposed the data-
dependent p×p scatter matrix Vn, that is a positive definite and symmetric matrix, satisfying
trace(Vn) = p and

1
n

n∑
i=1

(
ΓnXi

‖ΓnXi‖

)(
ΓnXi

‖ΓnXi‖

)T
=

1
p

Ip ,(3.4)

where Xi, i = 1, ..., n, is a random vector in Rp, ΓT
n Γn = V −1

n such that Γn is an upper trian-
gular nonsingular matrix with 1 on the first element on the diagonal and Ip is the p-dimen-
sional identity matrix. This scatter matrix is unique up to multiplication by a positive con-
stant if the sample comes from a continuous p-dimensional distribution and n > p(p− 1)
(Tyler [40]). An iterative computation scheme has been developed to compute this matrix
by Randles [36].

We define Wni = ΓnXi, i =1, ...,n, and F s
wn

as the sample distribution of the symmetrized
sample (±Wn1, ...,±Wnn). Let

Rni = #
{

Wnj ∈ {Wn1, ...,Wnn} : D(Wnj , F
s
wn

) ≥ D(Wni, F
s
wn

)
}

, i = 1, ..., n ,(3.5)

and
θMwn

= − arctan
(

Mwn1

Mwn2

)
+

π

2
,

where Mwn = (Mwn1,Mwn2)T refers to the sample median among Wn1, ...,Wnn based on
D( · , F s

wn
). In the following, points Wn1, ...,Wnn are rotated counter-clockwise by angle

π

2
− θMwn

, which we call them as Vn1, ...,Vnn.

Now, based on D( · , Fn), the affine invariant test statistic is defined as

(3.6) T ∗n,D =
6

n (n + 1) (2n + 1)

(
n∑

i=1

γniRni

)2

,

where γni is specified in the same way as δni, through Vni instead of Zni, for all i = 1, ..., n.
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It is worth to note that, the test statistic T ∗n,D is also distribution-free. The affine
invariance property and asymptotic null distribution of T ∗n,D are presented in the following
Theorems.

Theorem 3.3. If the sample depth function D( · , Fn) satisfies property P1 and n > 2,

the test statistic T ∗n,D will be affine invariant; that is,

T ∗n,D (X1, ...,Xn) = T ∗n,D (AX1, ...,AXn)

for any 2×2 nonsingular matrix A.

Theorem 3.4. If the sample depth function satisfies property P1, then under the

null hypothesis of centrally symmetric about 0, T ∗n,D converges in distribution to a chi-square

random variable with 1 degree of freedom.

4. SIMULATION STUDY

In this section, an extensive simulation study is conducted to evaluate the finite sample
behavior of the proposed test procedure. Two characteristics of interest are the empirical
level and power of the proposed testing procedure. To assess the effects of different depth
rankings on the performance of our test statistic, we determined three versions of Tn,D,
derived from the simplicial, halfspace, and Mahalanobis depth functions as Tn,SD , Tn,HD and
Tn,MD , respectively. In the same way, T ∗n,SD , T ∗n,HD , T ∗n,MD will be defined corresponding to
T ∗n,D. The performance of our test statistics is compared with the affine invariant run test
based on the simplicial depth function that we refer to Rn,SD hereafter (Dyckerhoff et al. [8])
and the two rotation invariant tests Q1

n and Q2
n proposed by Einmahl and Gan [9]. Q1

n refers
to their main test, and Q2

n is given by Q1
n adding a weight function to it (we avoid presenting

the details of these test statistics).

To illustrate the effect of the sample size on the finite sample behavior of our proposed
test statistics, we set the sample sizes as n = 100 and 200. Moreover, the nominal level was
set at 0.05 throughout. In each setting, 2000 independent random samples were generated to
calculate the proportion of replications for which the null hypothesis is rejected. To examine
the finite sample behavior of test statistics under the null and alternative hypotheses, we
have simulated samples from several bivariate distribution families, including Azzalini’s skew-
normal distribution (Azzalini and Dalla Valle [3]), Azzalini’s skew-t distribution (Azzalini and
Capitanio [2]), perturbed symmetric beta distribution (Azzalini and Capitanio [2]) and sinh–
arcsinh distribution (Jones and Pewsey [21]). Indeed, we consider different types of skewness
over very light-tailed distributions to very heavy-tailed ones. In what follows, we provide an
overview of these families.

• Bivariate skew-normal distribution: Let X be defined as

X =

{
Y , if Z > ∆TY ,

−Y , if Z ≤ ∆TY ,

where Y ∼ N2(0,Σ), ∆ = (∆1,∆2)T is the shape parameter, and Z is distributed
independently of Y according to N(0, 1). The random vector X is known as bivari-
ate skew-normal random vector and it may be written as X ∼ SN2(0,Σ,∆).
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• Bivariate skew-t distribution: Let T = V − 1
2 X, where the random vector X follows

the distribution SN2(0,Σ,∆) and νV is distributed independently of X according
to a chi-squared distribution with ν degrees of freedom. We will say that T has a
bivariate skew-t distribution and write T ∼ ST2(0,Σ,∆, ν).

• Bivariate perturbed symmetric beta distribution: Let Y = (2B1−1, 2B2−1)T, where
B1 and B2 have beta distributions B(a, a) and B(b, b), respectively. The random
vector Y can be treated as a central and non-elliptical symmetric random vector.
Define the random vector X as

X =

{
Y , if Z < w(Y ) ,

−Y , if Z > w(Y ) ,

where Z (independently of Y ) has distribution function G( ·). The distribution
function G( ·) and function w( ·) are given as

G(z) =
ez

1 + ez
and w(y) =

sin(p1y1 + p2y2)
1 + cos(q1y1 + q2y2)

,

where p1, p2, q1 and q2 are additional parameters. Then, we will say that X has a
perturbed symmetric beta distribution.

• Bivariate sinh–arcsinh distribution: This family is generated by sinh–arcsinh trans-
formation on a primary symmetric distribution. We consider the bivariate normal
distribution as the primary distribution. The desirable property of this transfor-
mation is to induce skewness on the primary distribution and distributions with
heavier/lighter tails than the primary one. Suppose random vector Z = (Z1, Z2)T

follows N2(0,Σ). Define the bivariate vector X = (X1, X2)T as

Xj = sinh
[

1
δj

(
sinh−1(Zj) + ∆j

)]
, j = 1, 2 ,(4.1)

where ∆j and δj denote the measure of skewness and tail weight in direction of j-th
component of Z, respectively. Amount of skewness increases with increasing positive
∆j or decreasing negative ∆j . Additionally, distributions with heavier and lighter
tails than the bivariate normal distribution are generated by taking 0 < δj < 1 and
δj > 1, respectively.

In this study, we generate samples from the aforementioned distribution families with
Σ = (1− ρ)I2 + ρJ2 with ρ = −0.5, 0 and 0.5, and J2 denoting the 2×2 matrix with all
entries equal 1 and ∆i = kη, i =1,2, with η = (0.15, 0.15)T and k = 0, 1, 2 and 3. We consider
ν = 1, 3, 6, 10 and 20 for bivariate skew-t distribution and δi = 0.5, 0.75, 1, 2 and 5, i =1, 2,
for bivariate sinh–arcsinh distribution.

Table 1 and Figures 1 and 2 provide the empirical rejection probabilities for sample size
n = 100 and for bivariate skew-normal, skew-t and sinh–arcsinh distribution, respectively.
Inspection of the table and figures confirms that the performance of our test statistics is
not affected by different depth ranking. In all of them, the empirical rejection probabilities
corresponding to k = 0 represents the proportion of rejection under the null hypothesis. These
results demonstrate that all the tests would be accurate in estimating the nominal level,
except Rn,SD which it has been underestimated in some cases. Since the performance of test
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statistics, even affine invariant test statistics are affected by correlation structure of primary
distribution, we provide three possibilities for ρ as −0.5, 0 and 0.5. From the represented
results in Table 1 and Figure 1, it is obvious that all empirical powers will be increased by
increasing the value of ρ for bivariate skew-normal and skew-t distributions. This situation
is reversed for bivariate sinh–arcsinh distribution in Figure 2 except for Tn,D.

Table 1: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-
normal distribution with n = 100, ρ = −0.5, 0 and 0.5, and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Test
ρ = −0.5 ρ = 0 ρ = 0.5

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T ∗
n,SD 0.046 0.105 0.294 0.520 0.046 0.175 0.488 0.694 0.046 0.245 0.607 0.763

T ∗
n,HD 0.047 0.107 0.295 0.518 0.047 0.169 0.484 0.692 0.047 0.244 0.602 0.766

T ∗
n,MD 0.048 0.103 0.291 0.511 0.048 0.177 0.486 0.688 0.048 0.241 0.604 0.760

Tn,SD 0.047 0.072 0.175 0.282 0.043 0.171 0.469 0.658 0.047 0.336 0.779 0.877
Tn,HD 0.044 0.074 0.169 0.280 0.044 0.171 0.462 0.644 0.044 0.340 0.779 0.881
Tn,MD 0.049 0.076 0.172 0.282 0.048 0.172 0.466 0.648 0.049 0.337 0.774 0.876
Rn,SD 0.043 0.048 0.081 0.159 0.043 0.057 0.135 0.320 0.043 0.070 0.190 0.460
Q1

n 0.049 0.098 0.269 0.544 0.050 0.155 0.439 0.783 0.049 0.182 0.572 0.883
Q2

n 0.054 0.080 0.173 0.355 0.048 0.098 0.250 0.507 0.053 0.127 0.342 0.657
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Figure 1: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-t
distribution with n = 100, ρ = −0.5, 0 and 0.5, ν = 1, 6, 20 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.
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Table 1 shows that T ∗n,D outperforms Rn,SD and Q2
n in all cases, performs virtually

as well as Q1
n for k = 1 and 2 and has slightly lower power than Q1

n for k = 3. Moreover,
Tn,D outperforms Rn,SD in all cases, Q2

n when ρ = 0 and 0.5 and Q1
n when ρ = 0.5. Figure 1

indicates that T ∗n,D and Tn,D outperform Rn,SD for all values of ν and ρ. In addition T ∗n,D has
higher power than Q2

n except when ν = 1, and Tn,D overcomes Q2
n except when ν = 1 and

ρ = −0.5. In comparison on Q1
n, T ∗n,D performs better when k = 1, 2, v = 6, 20 and all values

of ρ, and Tn,D performs better when k = 1 and 2, v = 6, 20 and ρ = 0 and 0.5. Indeed, the
empirical power of our tests increases as degrees of freedom increases. In Figure 2, superiority
of our affine invariant tests is clear in most cases especially for ρ = 0.5 and k = 1 and 2.

ρ = − 0.5

P
ow

er
 , 

δ 1
=

0.
75

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ρ = 0

0 1 2 3

0.
0

0.
5

1.
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

ρ = 0.5

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

P
ow

er
 , 

δ 1
=

1

0 1 2 3

0.
0

0.
5

1.
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

k

P
ow

er
 , 

δ 1
=

5

0 1 2 3

0.
0

0.
5

1.
0

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

k

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

k

0 1 2 3

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ●TnSD
* TnHD

* TnMD
* TnSD TnHD TnMD RnSD Qn

1 Qn
2

Figure 2: Empirical rejection probabilities (out of 2000 replications) for bivariate sinh–arcsinh
distribution with n = 100, ρ = −0.5, 0 and 0.5, δi = 0.75, 1, 5 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Table 2 provide the empirical rejection probabilities for sample size n = 200 and for
bivariate skew-normal distribution. In Figures 3 and 4, we plot the empirical rejection prob-
abilities against k corresponding to some values of parameters of the same populations and
tests with Figures 1 and 2 respectively, for sample size n = 200. Note that, as expected, the
empirical powers increase with the sample size. These simulations lead to almost the same
conclusions as in n = 100.

These simulations demonstrate that our tests are more powerful for small and moder-
ate departures from the null hypothesis and for light-tailed distributions. As expected, the
performance of affine invariant tests T ∗n,D is less affected by changing the value of ρ rather
than the orthogonal invariant tests Tn,D. The results show that, compared to T ∗n,D test, Tn,D

performs better when ρ = 0.5, is comparable when ρ = 0 and performs worse when ρ = −0.5.



120 S. Dehghan and M.R. Faridrohani

Table 2: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-
normal distribution with n = 200, ρ = −0.5, 0 and 0.5, and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Test
ρ = −0.5 ρ = 0 ρ = 0.5

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T ∗
n,SD 0.052 0.204 0.486 0.690 0.052 0.317 0.681 0.813 0.052 0.414 0.747 0.834

T ∗
n,HD 0.047 0.200 0.486 0.692 0.047 0.313 0.678 0.808 0.047 0.419 0.740 0.828

T ∗
n,MD 0.052 0.206 0.488 0.696 0.052 0.319 0.680 0.804 0.052 0.420 0.748 0.832

Tn,SD 0.050 0.122 0.276 0.387 0.053 0.311 0.652 0.776 0.050 0.554 0.888 0.921
Tn,HD 0.048 0.121 0.283 0.391 0.050 0.305 0.645 0.770 0.048 0.560 0.879 0.918
Tn,MD 0.052 0.125 0.279 0.391 0.051 0.313 0.645 0.769 0.052 0.559 0.886 0.920
Rn,SD 0.049 0.061 0.117 0.250 0.049 0.076 0.218 0.519 0.049 0.093 0.347 0.754
Q1

n 0.054 0.162 0.506 0.850 0.053 0.257 0.766 0.984 0.054 0.318 0.875 0.998
Q2

n 0.056 0.130 0.342 0.665 0.053 0.156 0.500 0.856 0.056 0.212 0.647 0.942
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Figure 3: Empirical rejection probabilities (out of 2000 replications) for bivariate skew-t
distribution with n = 200, ρ = −0.5, 0 and 0.5, ν = 1, 6, 20 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Finally, to complete our simulations, for sample sizes n = 100 and 200, we generate
samples from bivariate perturbed symmetric beta distribution with several choices of the
parameters such that different situations of asymmetry can be considered. A thorough in-
vestigation of Table 3 and 4 indicated that our tests overcome Rn,SD and Q2

n in all cases and
Q1

n in some cases.
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Figure 4: Empirical rejection probabilities (out of 2000 replications) for bivariate sinh–arcsinh
distribution with n = 200, ρ = −0.5, 0 and 0.5, δi = 0.75, 1, 5 and ∆i = kη, i =1, 2,
with η = (0.15, 0.15)T and k = 0, 1, 2, 3.

Table 3: Empirical rejection probabilities (out of 2000 replications) for bivariate
perturbed symmetric beta distribution with n = 100, a, b = 0.5, 1 and 3,
p1 = q1 = 1 and p2 and q2 = 0.5, 1 and 2.

a, b p2 q2

Test

T ∗
n,SD T ∗

n,HD T ∗
n,MD Tn,SD Tn,HD Tn,MD Rn,SD Q1

n Q2
n

2 0.5 0.194 0.194 0.194 0.175 0.184 0.175 0.060 0.170 0.112
3, 3 1 1 0.147 0.149 0.147 0.134 0.145 0.137 0.048 0.110 0.078

0.5 2 0.165 0.168 0.164 0.147 0.158 0.154 0.051 0.098 0.073

2 0.5 0.238 0.237 0.205 0.355 0.349 0.332 0.069 0.319 0.232
3, 0.5 1 1 0.284 0.290 0.270 0.364 0.351 0.340 0.077 0.265 0.177

0.5 2 0.598 0.604 0.619 0.636 0.632 0.618 0.163 0.415 0.216

2 0.5 0.241 0.244 0.244 0.221 0.215 0.222 0.076 0.320 0.223
1, 1 1 1 0.305 0.315 0.323 0.300 0.297 0.306 0.077 0.277 0.165

0.5 2 0.581 0.593 0.606 0.558 0.573 0.585 0.165 0.397 0.201

2 0.5 0.222 0.214 0.218 0.200 0.192 0.191 0.069 0.381 0.301
0.5, 0.5 1 1 0.470 0.474 0.486 0.445 0.453 0.464 0.113 0.505 0.324

0.5 2 0.815 0.838 0.869 0.779 0.807 0.833 0.353 0.835 0.563
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Table 4: Empirical rejection probabilities (out of 2000 replications) for bivariate
perturbed symmetric beta distribution with n = 200, a, b = 0.5, 1 and 3,
p1 = q1 = 1 and p2 and q2 = 0.5, 1 and 2.

a, b p2 q2

Test

T ∗
n,SD T ∗

n,HD T ∗
n,MD Tn,SD Tn,HD Tn,MD Rn,SD Q1

n Q2
n

2 0.5 0.310 0.303 0.310 0.300 0.299 0.300 0.087 0.329 0.204
3, 3 1 1 0.252 0.250 0.250 0.235 0.237 0.233 0.083 0.194 0.120

0.5 2 0.279 0.278 0.279 0.268 0.265 0.266 0.089 0.173 0.098

2 0.5 0.399 0.399 0.338 0.624 0.619 0.595 0.111 0.611 0.471
3, 0.5 1 1 0.469 0.472 0.444 0.631 0.627 0.608 0.112 0.491 0.310

0.5 2 0.791 0.810 0.808 0.896 0.893 0.875 0.283 0.729 0.400

2 0.5 0.370 0.369 0.380 0.364 0.363 0.365 0.105 0.578 0.411
1, 1 1 1 0.509 0.520 0.531 0.499 0.499 0.505 0.117 0.512 0.315

0.5 2 0.793 0.816 0.819 0.788 0.801 0.812 0.262 0.694 0.378

2 0.5 0.352 0.350 0.352 325 0.336 0.339 0.101 0.656 0.559
0.5, 0.5 1 1 0.700 0.738 0.747 0.686 0.725 0.733 0.175 0.804 0.592

0.5 2 0.916 0.935 0.931 0.913 0.934 0.943 0.594 0.993 0.891

A second Monte Carlo study is provided in order to evaluate the performance of our
tests for pure location alternatives. In this study the performance of tests considered in
first Monte Carlo study compared with the Hotelling’s T 2 and the tests due to Hallin and
Paindaveine [12] computed with the sign score function, van der Waerden score function and
Wilcoxson score function and denoted by HSn, HNn and HRn, respectively.

We set the sample size as n = 50. In each setting, 2000 independent random sam-
ples were generated to calculate the proportion of replications for which the null hypothesis
is rejected. For each replication, the all tests were performed at the significance level α = 0.05.
To examine the finite sample behavior of test statistics under the null and alternative
hypotheses, we have simulated samples from the t family of distributions and the exponential
power family of distributions. In what follows, we provide an overview of these families.

A p-dimensional random vector X has a multivariate t-distribution with ν degree of
freedom if its density function has the form

fµ,Σ(x) =
Γ
(
(p + υ)/2

)
Γ(υ/2) (πυ)p/2

|Σ|−1/2

[
1 +

1
υ

(x− µ)T Σ−1(x− µ)
]−(p+υ)/2

,

where µ = (µ1, ..., µp)T ∈ Rp and Σ is a symmetric p×p positive definite matrix.

The density function of a p-dimensional random vector X from the exponential power
family of distributions is

fµ,Σ(x) =
υ Γ(p/2)

Γ(p + 2υ) (πc0)
p/2

|Σ|−1/2 exp
{
−(x− µ)T Σ−1(x− µ)

c0

}υ

,

where
c0 =

p Γ(p/2υ)
Γ
(
(p + 2)/2υ

)
and µ and Σ are defined as above.
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We generate samples from the aforementioned distribution families with Σ = I and
µ = k∆ with ∆ = (0.2, 0.2)T and ∆ = (0.1, 0.1)T for the t family of distributions and the
exponential power family of distributions, respectively and k = 0, 1, 2, 3. We consider ν = 1,
6 and 10 for t-distribution family and ν = 0.5, 1 and 2 for the exponential power family of
distributions.

Inspection of Tables 5 and 6 demonstrated that the performance of our tests is com-
parable to the other tests. The proposed tests overcome Rn,SD and Q2

n in most cases and
Q1

n in some cases. It worth to note that all tests which are defined in the similar way of our
proposed test e.g. Rn,SD , Q1

n and Q2
n are not expected to perform as well as T 2, HSn, HNn

and HRn. In other hand, the results confirm that the performance of our test statistics is not
affected by different depth ranking.

Table 5: Empirical rejection probabilities (out of 2000 replications) for bivariate t-distribution
with n = 50, Σ = I, ν = 1, 6, 20 and µ = k∆ with ∆ = (0.2, 0.2)T and k = 0, 1, 2, 3.

Test
ν = 1 ν = 6 ν = 20

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T 2 0.015 0.033 0.084 0.164 0.058 0.287 0.809 0.987 0.056 0.374 0.911 1
HSn 0.050 0.203 0.634 0.902 0.053 0.285 0.805 0.993 0.054 0.322 0.851 1
HNn 0.040 0.122 0.351 0.622 0.048 0.270 0.801 0.988 0.049 0.345 0.894 1
HRn 0.044 0.120 0.343 0.599 0.049 0.279 0.804 0.988 0.057 0.354 0.901 1
T ∗

n,SD 0.042 0.085 0.150 0.431 0.050 0.212 0.542 0.757 0.056 0.236 0.601 0.7715
T ∗

n,HD 0.040 0.083 0.146 0.425 0.053 0.204 0.541 0.750 0.056 0.223 0.592 0.768
T ∗

n,MD 0.039 0.093 0.156 0.432 0.051 0.205 0.526 0.724 0.060 0.234 0.593 0.762
Tn,SD 0.052 0.100 0.171 0.429 0.046 0.188 0.523 0.749 0.047 0.219 0.570 0.762
Tn,HD 0.050 0.104 0.173 0.435 0.047 0.182 0.520 0.746 0.048 0.216 0.575 0.761
Tn,MD 0.051 0.090 0.155 0.389 0.045 0.183 0.510 0.722 0.048 0.223 0.567 0.749
Rn,SD 0.038 0.073 0.105 0.342 0.040 0.085 0.229 0.569 0.040 0.090 0.287 0.650
Q1

n 0.057 0.223 0.450 0.937 0.066 0.203 0.671 0.945 0.058 0.197 0.661 0.946
Q2

n 0.039 0.160 0.338 0.862 0.049 0.121 0.412 0.791 0.038 0.106 0.386 0.787

Table 6: Empirical rejection probabilities (out of 2000 replications) for bivariate power family
of distributions with n = 50, Σ = I, ν = 0.5, 1, 2 and µ = k∆ with ∆ = (0.1, 0.1)T

and k = 0, 1, 2, 3.

Test
ν = 0.5 ν = 1 ν = 2

k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3

T 2 0.044 0.161 0.515 0.867 0.048 0.392 0.940 1 0.043 0.468 0.981 1
HSn 0.043 0.203 0.633 0.930 0.044 0.311 0.873 1 0.047 0.317 0.868 0.999
HNn 0.036 0.158 0.528 0.864 0.038 0.348 0.917 1 0.036 0.447 0.978 1
HRn 0.040 0.155 0.519 0.849 0.044 0.361 0.922 1 0.038 0.467 0.982 1
T ∗

n,SD 0.053 0.127 0.355 0.601 0.054 0.241 0.619 0.782 0.048 0.282 0.669 0.793
T ∗

n,HD 0.056 0.133 0.363 0.605 0.057 0.240 0.612 0.775 0.051 0.282 0.671 0.779
T ∗

n,MD 0.054 0.130 0.349 0.570 0.055 0.248 0.618 0.761 0.044 0.289 0.685 0.793
Tn,SD 0.049 0.118 0.344 0.583 0.047 0.214 0.605 0.777 0.036 0.273 0.646 0.784
Tn,HD 0.046 0.120 0.343 0.596 0.046 0.210 0.604 0.772 0.041 0.268 0.648 0.772
Tn,MD 0.048 0.123 0.335 0.565 0.048 0.222 0.600 0.758 0.035 0.273 0.660 0.786
Rn,SD 0.044 0.057 0.133 0.322 0.038 0.095 0.288 0.676 0.042 0.090 0.362 0.763
Q1

n 0.049 0.179 0.524 0.854 0.045 0.185 0.640 0.949 0.059 0.141 0.533 0.935
Q2

n 0.035 0.118 0.366 0.670 0.037 0.099 0.350 0.763 0.041 0.070 0.233 0.683
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5. CONCLUSION

This paper concerns with the problem of detecting central symmetry of a bivariate
distribution. To this end, based on depth function, we introduced a family of signed-rank
test which is orthogonal invariant and distribution-free. Affine invariant tests were obtained
by applying our proposed test to the standardized data with Tyler’s matrix. The proposed
orthogonal and affine invariant tests have the same asymptotic properties. In simulation
study, the finite sample behavior of the proposed test procedure was evaluated over distribu-
tions family from very light to very heavy-tailed distributions with different kinds of skewness.
The simulations confirmed that our affine invariant tests successfully can distinguish different
asymmetries and shifting the location parameter. Moreover, we observed that they performed
as good as their competitors and actually in many cases they even outperform them.

A. APPENDIX

Proof of Theorem 3.1: According to the construction of Zni, it is clear that Zni =
BXnXi, i = 1, ..., n, where

BXn =

[
cos
(

π
2 − θMn

)
− sin

(
π
2 − θMn

)
sin
(

π
2 − θMn

)
cos
(

π
2 − θMn

) ] .(A.1)

Let A be an arbitrary 2×2 orthogonal matrix. Define Z̃ni = BAXnAXi for all i = 1, ..., n,
where

BAXn =

[
cos
(

π
2 − θ

eMn

)
− sin

(
π
2 − θ

eMn

)
sin
(

π
2 − θ

eMn

)
cos
(

π
2 − θ

eMn

) ] ,

with θ
eMn
∈ [0, π), as the angle between horizontal-axis and the sample median M̃n that is ob-

tained in the same way as Mn, through AXi’s instead of Xi’s, i = 1, ..., n. The orthogonality
of matrix A implies that there exists an angle α ∈ [0, 2π) such that

A =

[
cos (α) − sin (α)

sin (α) cos (α)

]
or A =

[
cos (α) sin (α)

sin (α) − cos (α)

]
.(A.2)

Property P1 of the sample depth function shows that

M̃n = AMn .(A.3)

Let matrix A be defined as the left side of (A.2), then (A.3) results in

θ
eMn

=


α + θMn , 0 ≤ α + θMn < π ,
α + θMn − π , π ≤ α + θMn < 2π ,
α + θMn − 2π , 2π ≤ α + θMn < 3π .

Using the trigonometric relationships, it is straightforward to verify that BAXnA = BXn , or
BAXnA = −BXn . Thus

Z̃ni = Zni or Z̃ni = −Zni , i = 1, ..., n .(A.4)
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Now, let matrix A be according to the right side of (A.2), similarly we have

θ
eMn

=


α− θMn + π , −π < α− θMn < 0 ,
α− θMn , 0 ≤ α− θMn < π ,
α− θMn − π , π ≤ α− θMn < 2π ,

and

BAXnA =
[
−1 0
0 1

]
BXn or BAXnA =

[
1 0
0 −1

]
BXn .

Hence

Z̃ni = (−Zni1,Zni2)
T or Z̃ni = (Zni1,−Zni2)T , i = 1, ..., n .(A.5)

The proof of affine invariance of Tn,D will be completed by using (A.4), (A.5) and property P1
of the sample depth function.

Proof of Theorem 3.2: Under the null hypothesis, X1, ...,Xn are i.i.d. from F ,
where F ( ·) is centrally symmetric distribution about the origin. Hence, we have

(X1, ...,Xn)
d= (η1X1, ..., ηnXn) ,(A.6)

where ηi’s, i = 1, ..., n, are i.i.d. random variables taking the values 1 and −1 each with
probability 1/2. It is clear that

(±X1, ...,±Xn) = (±η1X1, ...,±ηnXn) .(A.7)

Additionally, Mn ≡M(X1, ...,Xn) is considered as a point with maximum sample depth
with respect to the symmetrized sample (±X1, ...,±Xn) (if there is more than one sample
point with the highest depth value, Mn will be defined as the point with minimum index
among those data points). By this definition of Mn, there exists i ∈ {1, ..., n} such that

M(X1, ...,Xn) = Xi .(A.8)

From property P1 and equation (A.7),

M(η1X1, ..., ηnXn) = ηiXi .(A.9)

Hence from (A.8) and (A.9), we have

M(X1, ...,Xn) = ηM(η1X1, ..., ηnXn) ,(A.10)

where η = 1 or −1. Thus BXn where is defined as (A.1) will be same whether it is obtained
from either X1, ...,Xn or η1X1, ..., ηnXn. Hence (A.6) implies that

(BXnX1, ...,BXnXn)
d= (η1BXnX1, ..., ηnBXnXn) .(A.11)

This yields that δni’s, i = 1, ..., n, are independent and identically distributed random variables
that take the values 1 and −1 with probability 1/2. Let Zni = δniYni, where Yni = (Yni1, Yni2)T
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for all i = 1, ..., n. (A.11) denotes that Zn1, ...,Znn distributed as centrally symmetric random
vectors about origin. Thus, for y = (y1, y2)T ∈ R2 and i = 1, ..., n,

PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1

)
= PH0

(
δniYni1≤ y1, δniYni2 ≤ y2, δni = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, δni = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0

)
= PH0

(
Zni1≤ y1, 0 < Zni2 ≤ y2

)
= PH0

(
−Zni1≤ y1, 0 <−Zni2 ≤ y2

)
= PH0

(
Zni1≥−y1, −y2 ≤Zni2 < 0

)
= PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0

)
= PH0

(
−Zni1≤ y1, −Zni2 ≤ y2, δni =−1

)
= PH0

(
δniZni1≤ y1, δniZni2 ≤ y2, δni =−1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1

)
and, for j 6= i,

PH0

(
Yni1≤ y1, Yni2 ≤ y2, δnj = 1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1, δnj = 1

)
+ PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1, δnj = 1

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0, Znj2 > 0

)
+ PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0, Znj2 > 0

)
= PH0

(
Zni1≤ y1, Zni2 ≤ y2, Zni2 > 0, Znj2 < 0

)
+ PH0

(
Zni1≥−y1, Zni2 ≥−y2, Zni2 < 0, Znj2 < 0

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni = 1, δnj =−1

)
+ PH0

(
Yni1≤ y1, Yni2 ≤ y2, δni =−1, δnj =−1

)
= PH0

(
Yni1≤ y1, Yni2 ≤ y2, δnj =−1

)
.

Hence these imply that δni, for i = 1, ..., n, is independent of Yn1, ...,Ynn. Now, suppose that
F s

Zn
and F s

Yn
be the sample distribution functions of {±Zn1, ...,±Znn} and {±Yn1, ...,±Ynn},

respectively. Since {±Zn1, ...,±Znn}= {±Yn1, ...,±Ynn}, it is clear that F s
Zn

= F s
Yn

. This equal-
ity, along with D(Zni, F

s
Zn

) = D(−Zni, F
s
Zn

) (resulted from property P1 by considering A=
−I2 and b = 0) conclude that D(Zni, F

s
Zn

) = D(Yni, F
s
Yn

), for all i = 1, ..., n. Additionally,
from property P1 of the sample depth function and Remark 2.1, we see that D(Xi, F

s
n) =

D(Zni, F
s
Zn

). Hence D(Xi, F
s
n) = D(Yni, F

s
Yn

). This shows that Ri is a function of Yn1, ...,Ynn

and thus is independent of δni, i=1,2, ...,n. Under null hypothesis, R1, ...,Rn have the discrete
uniform distribution on {1, ..., n}. Then the expectation and variance of T

1/2
n,D are given as

E
(
T

1/2
n,D

)
=

√
6

n(n + 1) (2n + 1)
E

(
n∑

i=1

δinRi

)
= 0

and

Var
(
T

1/2
n,D

)
=

6
n(n +1) (2n +1)

n∑
i=1

E(Ri
2) +

6
n(n +1) (2n +1)

n∑
i=1

n∑
j=1
i 6=j

E(δni δnj RiRj) = 1 ,

respectively. Because of the dependency between summands in T
1/2
n,D, the central limit theory
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is not applied. In the other hand, T
1/2
n,D is equal in distribution to

Kn =

√
6

n(n + 1) (2n + 1)

n∑
i=1

δi i ,

where δi’s, i =1, ..., n, are independent random variables with probability 1/2 of being 1 or −1.
Since Kn is sum of independent random variables and the Lyapunov’s condition

lim
n→∞

(√
6

n(n + 1) (2n + 1)

)(2+δ) n∑
i=1

(
E |δi i|

)(2+δ) = lim
n→∞

(
n3

3

)−(2+δ)/2 n∑
i=1

i2+δ = 0

is satisfied for δ = 1, then the asymptotic null distribution is obtained by Lyapunov’s central
limit theorem.

Proof of Theorem 3.3: It is clear that Vni = BWnWni, i = 1, ..., n, where

BWn =

[
cos
(

π
2 − θMWn

)
− sin

(
π
2 − θMWn

)
sin
(

π
2 − θMWn

)
cos
(

π
2 − θMWn

) ] .(A.12)

Let A be an arbitrary 2×2 nonsingular matrix and define Ṽni = BAWnW̃ni, where

BAWn =

 cos
(

π
2 − θ

eMWn

)
− sin

(
π
2 − θ

eMWn

)
sin
(

π
2 − θ

eMWn

)
cos
(

π
2 − θ

eMWn

)
 ,

with θ
eMWn

∈ [0, π), as the angle between horizontal-axis and the sample median M̃Wn that is

obtained in the same way as MWn , through W̃ni’s instead of Wni’s, i = 1, ..., n. Moreover,
W̃ni = ΓAXnAXi, where ΓAXn is Tyler’s matrix defined in terms of the transformed data
points AXi, for all i = 1, ..., n.

If n > 2, Randles [36] indicated that Γn satisfies the condition

(A.13) AT ΓT
AXn

ΓAXnA = k ΓT
n Γn ,

where k is a positive scalar that may depends on A and the data. This equation clearly shows
that there exists an orthogonal matrix H = k−1/2 ΓAXnAΓ−1

n such that

(A.14)
√

k H Γn = ΓAXnA .

It follows easily that

W̃ni = ΓAXnAXi =
√

k H ΓnXi =
√

k H Wni .(A.15)

Additionally, property P1 of the sample depth function along with Remark 2.1 and equation
(A.15) show that M̃Wn =

√
k HMWn . Thus, the result follows from Theorem 3.1.

Proof of Theorem 3.4: The Tyler’s matrix Γn ≡ Γ(X1, ...,Xn) is invariant under
sign changes among the Xi’s (Randles [36]), that is

Γ(X1, ...,Xn) = Γ(η1X1, ..., ηnXn) .(A.16)

Hence, by (A.6) we have(
BWnΓnX1, ..., BWnΓnXn

) d=
(
η1BWnΓnX1, ..., ηnBWnΓnXn

)
.(A.17)

where BWn is defined as (A.12). Additionally, from property P1 of the sample depth function
and Remark 2.1, it is straightforward to verify that Rni = Ri for all i = 1, ..., n. The rest of
the proof proceeds as in Theorem 3.2.



128 S. Dehghan and M.R. Faridrohani

REFERENCES

[1] Aki, S. (1993). On nonparametric tests for symmetry in Rm, Annals of the Institute of Sta-
tistical Mathematics, 45(4), 787–800.

[2] Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of sym-
metry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 65(2), 367–389.

[3] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution,
Biometrika, 83(4), 715–726.

[4] Baringhaus, L. (1991). Testing for spherical symmetry of a multivariate distribution, Annals
of Statistics, 19(2), 899–917.

[5] Brown, B.M. and Hettmansperger, T.P. (1987). Affine invariant rank methods in the
bivariate location model, Journal of the Royal Statistical Society. Series B (Methodological),
301–310.

[6] Cassart, D.; Hallin, M. and Paindaveine, D. (2011). A class of optimal tests for sym-
metry based on local Edgeworth approximations, Bernoulli, 17(3), 1063–1094.

[7] Chernozhukov, V.; Galichon, A.; Hallin, M. and Henry, M. (2017). Monge–
Kantorovich depth, quantiles, ranks and signs, The Annals of Statistics, 45(1), 223–256.

[8] Dyckerhoff, R.; Ley, C. and Paindaveine, D. (2015). Depth-based runs tests for bivariate
central symmetry, Annals of the Institute of Statistical Mathematics, 67(5), 917–941.

[9] Einmahl, J.H. and Gan, Z. (2016). Testing for central symmetry, Journal of Statistical
Planning and Inference, 169, 27–33.

[10] Ghosh, S. and Ruymgaart, F.H. (1992). Applications of empirical characteristic functions
in some multivariate problems, Canadian Journal of Statistics, 20(4), 429–440.

[11] Hallin, M. and Paindaveine, D. (2002a). Multivariate Signed Ranks: Randles’ Interdirec-
tions or Tyler’s Angles, Statistical Data Analysis Based on the L1-Norm and Related Methods,
271–282.

[12] Hallin, M. and Paindaveine, D. (2002b). Optimal tests for multivariate location based on
interdirections and pesudo-mahalanobis ranks, The Annals of Statistics, 30(4), 1103–1133.

[13] Hallin, M. and Paindaveine, D. (2002). Optimal procedures based on interdirections and
pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA depen-
dence, Bernoulli, 8(6), 787–815.

[14] Hallin, M. and Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an
elliptic VARMA model, Annals of Statistics, 32, 2642–2678.

[15] Hallin, M. and Paindaveine, D. (2005). Affine-invariant aligned rank tests for the mul-
tivariate general linear model with VARMA errors, Journal of Multivariate Analysis, 93(1),
122–163.

[16] Heathcote, C.R.; Rachev, S.T. and Cheng, B. (1995). Testing multivariate symmetry,
Journal of Multivariate Analysis, 54(1), 91–112.

[17] Henze, N.; Klar, B. and Meintanis, S.G. (2003). Invariant tests for symmetry about
an unspecified point based on the empirical characteristic function, Journal of Multivariate
Analysis, 87(2), 275–297.

[18] Hettmansperger, T.P.; Nyblom, J. and Oja, H. (1994). Affine invariant multivariate
one-sample sign tests, Journal of the Royal Statistical Society. Series B (Methodological),
221–234.

[19] Hettmansperger, T.P.; Mottonen, J. and Oja, H. (1997). Affine-invariant multivari-
ate one-sample signed-rank tests, Journal of the American Statistical Association, 92(440),
1591–1600.



Depth-Based Signed-Rank Tests 129

[20] Hotelling, H. (1931). The generalization of Student’s ratio, Annals of Mathematical Statis-
tics, 2(3), 360–378.

[21] Jones, M.C. and Pewsey, A. (2009). Sinh–arcsinh distributions, Biometrika, 96(4),
761–780.

[22] Koltchinskii, V.I. and Li, L. (1998). Testing for spherical symmetry of a multivariate
distribution, Journal of Multivariate Analysis, 65(2), 228–244.

[23] Koshevey, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions,
The Annals of Statistics, 1998–2017.

[24] Li, J. and Liu, R.V. (2004). New nonparametric tests of multivariate locations and scales
using data depth, Statistical Science, 19(4), 686–696.

[25] Liu, R.Y. (1988). On a notion of simplicial depth, Proceedings of the National Academy of
Sciences, 85(6), 1732–1734.

[26] Liu, R.Y.; Parelius, J.M. and Singh, K. (1999). Multivariate analysis by data depth:
descriptive statistics, graphics and inference (with discussion and a rejoinder by Liu and Singh),
Annals of Statistics, 27(3), 783–858.

[27] Liu, R.Y. and Singh, K. (1993). A quality index based on data depth and multivariate rank
tests, Journal of the American Statistical Association, 88(421), 252–260.

[28] Liu, R.Y. and Singh, K. (2006). Rank tests for multivariate scale difference based on data
depth, DIAMCS Series in Discrete Mathematics and Theoretical Computer Science, 72, 17–35.

[29] Mahfoud, Z.R. and Randles, R.H. (2005). On multivariate signed-rank tests, J. Nonpara-
metric Statistics, 17, 201–216.

[30] Manzotti, A.; Perez, F.J. and Quiroz, A.J. (2002). A statistic for testing the null hy-
pothesis of elliptical symmetry, Journal of Multivariate Analysis, 81(2), 274–285.

[31] McWilliams, T.P. (1990). A distribution-free test for symmetry based on a runs statistic,
Journal of the American Statistical Association, 85(412), 1130–1133.

[32] Mottonen, J. and Oja, H. (1995). Multivariate Spatial Sign and Rank Methods, Journal
of Nonparametric Statistics, 5, 201–213.

[33] Neuhaus, G. and Zhu, L.X. (1998). Permutation tests for reflected symmetry, Journal of
Multivariate Analysis, 67(2), 129–153.

[34] Oja, H. (1983). Descriptive statistics for multivariate distributions, Statistics & Probability
Letters, 1(6), 327–332.

[35] Randles, R.H. (1989). A distribution-free multivariate sign test based on interdirections,
J. Amer. Statist. Assoc., 84, 1045–1050.

[36] Randles, R.H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test,
Journal of the American Statistical Association, 95(452), 1263–1268.

[37] Rousson, V. (2002). On distribution-free tests for the multivariate two-sample location-scale
model, Journal of Multivariate Analysis, 80(1), 43–57.

[38] Serfling, R.J. (2006). Multivariate symmetry and asymmetry, Encyclopedia of Statistical
Sciences.

[39] Tukey, J.W. (1975). Mathematics and the picturing of data. In Proceedings of the Interna-
tional Congress of Mathematicians, 2, 523–531.

[40] Tyler, D.E. (1987). A distribution-free M -estimator of multivariate scatter, Annals of Statis-
tics, 15(1), 234–251.

[41] Peters, D. and Randles, R.H. (1990). A multivariate signed-rank test for the one-sample
location problem, J. Amer. Statist. Assoc., 85, 552–557.

[42] Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function, Annals of
Statistics, 28(2), 461–482.


	"DEPTH-BASED SIGNED-RANK TESTS FOR BIVARIATE CENTRAL SYMMETRY"
	1 INTRODUCTION
	2 DEPTH FUNCTION
	3 THE PROPOSED TESTS
	3.1 The orthogonal invariant tests
	3.2 The affine invariant tests

	4 SIMULATION STUDY
	5 CONCLUSION
	A APPENDIX
	REFERENCES

