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Abstract:

• In most of the longitudinal studies, involving count responses, excess zeros are common in practice.
Usually, the current response measurement in a longitudinal sequence is a function of previous out-
comes. For example, in a study about acute renal allograft rejection, the number of acute rejection
episodes for a patient in current time is a function of this outcome at previous follow-up times.
In this paper, we consider a transition model for accounting the dependence of current outcome
on the previous outcomes in the presence of excess zeros. We propose the use of the generalized
Poisson distribution as a flexible distribution for considering overdispersion (or underdispersion).
The maximum likelihood estimates of the parameters are obtained using the EM algorithm. Some
simulation studies are performed for illustration of the proposed methods. Also, analysis of a real
data set of a kidney allograft rejection study illustrates the application of the proposed model.
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1. INTRODUCTION

In modeling many count longitudinal clinical studies, the excess of zero is a common
problem. For example, in a study about acute renal allograft rejection, many patients may
have no acute rejection episodes at some follow-up times or in an asthma-related study, if
the response variable is the number of asthma-related hospitalizations at each follow-up time,
many patients may report no asthma-related hospitalizations. In these examples, the response
variable for the patient can be considered as a count variable which may be recorded with
extra zeros. Useful models for describing these kinds of data sets are zero-inflated models.
In these models a special probability is allocated to zero observations (see Section 2 for more
details).

Several approaches are proposed for analyzing these data sets. For example, hurdle
model [25, 15, 16] and zero-inflated Poisson (ZIP) model [19, 12] are two well-known ap-
proaches for analysing zero-inflated (ZI) count data. Also, zero-inflated generalized Poisson
(ZIGP) and zero-inflated negative binomial (ZINB) models are two other well-known ap-
proaches for considering overdispersion of which ZIGP model can also consider underdisper-
sion to analyse inflated count data. [7] proposed a ZIGP model to analyse the data set of
outsourcing of patent applications.

The analysis of longitudinal ZI count data are discussed frequently in literature.
[4] proposed ZIP and ZINB models for analysing data of a study of growth. They describe
their approaches as mixture models with a proportion P of subjects not at risk, and a pro-
portion of 1–P at risk subjects who take on outcome values following a Poisson or negative
binomial distribution. [21] used the ZIP and ZINB models to analyze longitudinal studies
in epidemiology. [23] proposed a random effect model to analysis the ZI longitudinal count
data. [28] discussed application of the ZI and hurdle models for longitudinal studies concern-
ing vaccination safety. [14] used ZIP regression for analysing longitudinal data. [2] proposed a
two-part regression model for analysing ZI longitudinal count data. They used their proposed
approach for analysing an healthcare utilization data set. [26] discussed a Bayesian paradigm
for ZIP and ZINB model for analysing data set of a study of psychiatric outpatient service.
[27] provided a review of the literature and tests the Poisson, the ZIP, the negative binomial
(NB) and the ZINB models in the context of longitudinal count data. [3] give many examples
of the use of ZI distributions to model longitudinal data and consider this approach as a
conventional one. [22] described a mixed-effect hurdle model for ZI longitudinal count data,
where a baseline variable is included in the model specification. They used their proposed
approach to analyse a healthcare utilization data.

A common problem in the practice of studying count data is overdispersion or under-
dispersion. The use of Poisson distribution to analyze count data has a lack of fit because of
ignoring to consider these problems. To deal with overdispersion the use of NB distribution is
proposed. But, this distribution has a lack of fit for considering the possible underdispersion.
A distribution function which considers both the overdispersion and underdispersion is the
generalized Poisson distribution [6, 5]. Note that the zero-inflation generally involve overdis-
persion or underdispersion. Here, the use of ZIGP distribution is recommended to consider
both problems of underdispersion and overdispersion. Underdispersion is rarely occurred in
practice. Therefore, the most concern of this paper is on the overdispersion in zero-inflated
longitudinal data.
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Three main modeling families are introduced to model longitudinal data: marginal
models, subject-specified models and conditionally specified models [9, 24]. In a marginal
model, marginal distributions are used to describe the longitudinal outcomes vector given a
set of predictor variables. The correlation among the components of the longitudinal mea-
surements can be captured by a fully parametric approach or by modeling a limited number
of lower-order moments such as generalized estimating equations (GEE). In random effects
or subject-specified models the longitudinal outcome vector is modeled by a vector of random
effects. Several software and programs, for instance SAS and Mplus, make it possible to fit
ZIP and ZINB distributions to longitudinal ZI data using random effects models. Finally
in a conditionally specified model any response within the sequence of longitudinal measure-
ments is modeled conditional upon the outcome on the previous time or a subset of previous
outcomes. A particular relevant class of conditional models is the so-called autoregressive or
transition models. In a transition model a current measurement in a longitudinal study is
described as a function of the previous outcomes [9]. In this paper, our focus is on transition
models. For some applications of the transition models in repeated measurement outcomes
see [1, 18, 11]. Also, for reviews of transition models for analyzing the longitudinal data see
[9], [30] and [10].

In this paper, we use the ZIGP transition models to analyze longitudinal count data
with extra zeros. We use the usual EM algorithm for parameters estimation. The proposed
model is illustrated using some simulation studies, where the performance of the proposed
distributional assumption for transition model is compared with ZIP, ZINB, NB and GP
distributional assumptions. Also, the proposed method is used for analyzing a real data set
of a kidney allograft rejection study in application section where the best fitting model is
selected by using Akaike information criterion (AIC), Bayesian information criterion (BIC)
and Hannan–Quinn criterion (HQC).

This paper is organized as follows: Section 2 is a review on generalized Poisson and
zero-inflated generalized Poisson distributions and the relation of these distributions with
Poisson and zero-inflated Poisson distributions. Section 3 includes some notation, defini-
tions of models, likelihood functions, the EM algorithm and our illustration of the proposed
transition model for analyzing zero-inflated longitudinal data. In Section 4, some simulation
studies are performed. In this section four different structures are considered for generating
data and performance of ZIGP, ZINB, ZIP, NB and GP transition models are compared for
each structure. The description and the analysis of a real data set using the proposed model
are given and comparison of the performance of our approach with some other distributional
assumptions is given in Section 5. The last section includes some conclusions and discussions.

2. ZERO-INFLATED GENERALIZED POISSON DISTRIBUTION

The random variable Y is said to have a generalized Poisson distribution, if its proba-
bility mass function is given by

(2.1) f(y; ξ, ω) =
ξ(ξ + ωy)y−1

y!
e−(ξ+ωy) , y = 0, 1, 2, ...
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where ξ > 0 and max(−1,−ξ/4) < ω < 1 [13]. The mean and variance of this distribution
are given by

E(Y ) =
ξ

1− ω
, Var(Y ) =

ξ

(1− ω)3
=

1
(1− ω)2

E(Y ) ,

therefore, the term 1
(1−ω)2

plays the role of a dispersion factor. Clearly, when ω = 0, the
generalized Poisson distribution reduces to the usual Poisson distribution with parameter ξ.
Further, when ω > 0, we have overdispersion in the model; when ω < 0, we have underdis-
persion.

A parameterization of this distribution is given by setting λ = ξ
1−ω and φ = ω

ξ , denoted
by Y ∼ GP (λ, φ), and its probability mass function is given by

fGP (y;λ, φ) =
(

λ

1 + φλ

)y (1 + φy)y−1

y!
exp

(
−λ(1 + φy)

1 + φλ

)
, y = 0, 1, 2, ... , λ > 0 ,(2.2)

where φ is a real value parameter such that for all y, 1 + φy > 0 and 1 + φλ > 0. These
restrictions are confirmed by the restriction on the distribution (2.1). The generalized Pois-
son distribution (2.2) is a natural extension of the Poisson distribution. If φ = 0, then the
probability function (2.2) reduces to the Poisson distribution, denoted by Y ∼ P (λ). By the
above mentioned parameterization, the mean of Y is given by E(Y ) = λ and the variance
of Y is given by Var(Y ) = λ(1 + φλ)2. In the generalized Poisson distribution, the φ pa-
rameter is called dispersion parameter. When φ > 0, the overdispersion is presented in the
model, whereas when φ < 0, the underdispersion is included in the model. The generalized
Poisson distribution is a more flexible distribution than the negative binomial distribution
for considering possibility of underdispersion or overdispersion. This property is one of the
well-known properties of generalized Poisson distribution. [17] proved that the generalized
Poisson distribution, the same as negative binomial distribution, can be considered as a mix-
ture of the Poisson distribution. [17] show that there are some differences between the fits of
the generalized Poisson and negative binomial distributions. When the first two moments are
fixed, the negative binomial distribution have larger mass at zero than the generalized Pois-
son distribution. This means their zero-inflated variations tend to have larger discrepancy.
However, the fits of their zero-inflated variations may differ when there is a large zero fraction
[17]. For more details about generalized Poisson distribution see [6] and [5]. Also, VGAM
and HMMpa packages of R can be applied to use the generalized Poisson distribution.

A zero-inflated generalized Poisson distribution for a positive value π (0 ≤ π ≤ 1) is
defined as follows:

fZIGP (y;λ, φ, π) =

{
π + (1− π)fGP (0;λ, φ) , y = 0 ,

(1− π)fGP (y;λ, φ) , y > 0 ,
(2.3)

where fGP ( · ;λ, φ) is the probability mass function of (2.2). We will use the notation
Y ∼ ZIGP (λ, φ, π) to denote the distribution of (2.3). The mean and variance of this dis-
tribution are given by E(Y ) = (1− π)λ and var(Y ) = E(Y )[(1 + φλ)2 + πλ], respectively.
The variance of this distribution shows that for π > 0 and φ > 0 the distribution of Y ex-
hibits overdispersion. The distribution (2.3) reduced to the generalized Poisson distribution
when π = 0 and it reduced to zero-inflated Poisson distribution when φ = 0, denoted by
Y ∼ ZIP (λ, π). When π is allowed to be negative, the distribution (2.3) presents a zero-
deflated generalized Poisson distribution which rarely occurs in practice.
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3. ZERO-INFLATED TRANSITION MODELS FOR COUNT RESPONSES

Suppose N individuals are participated in a longitudinal study and for each individual
ni (i = 1, 2, ..., N) repeated measurements are recorded as response variables. Also, let Yij ,
i = 1, 2, ..., N and j = 1, 2, ..., ni be the longitudinal measurements for the ith individual at
jth time point and let Wij , i = 1, 2, ..., N and j = 1, 2, ..., ni be indicator variables as follows:

Wij =

{
1 , Yij is from the perfect state ,

0 , Yij is from the Poisson state .

where by perfect we means that the sample is from a degenerated distribution at 0. It is clear
that Wij is a latent variable. Also, let hij = (Yi1, ..., Yi,j−1) be the previous outcomes up to
time j or in other words history of outcomes for the ith individual.

In a transition model, the outcome Yij is modeled in term of hij [9]. The order of a
transition model is the number of the previous measurements that are considered for modeling
the measurement of the current time. We consider a first order zero-inflated transition model
as follows:

PZI

(
Yij = yij |πij , λij , φ,xij ,zij , yi,j−1

)
=

=

{
πij + (1− πij)P

(
Yij = yij |λij , φ,xij , yi,j−1

)
, yij = 0 ,

(1− πij)P
(
Yij = yij |λij , φ,xij , yi,j−1

)
, yij 6= 0 ,

(3.1)

where

log(λi1) = x′
i1β ,(3.2)

logit(πi1) = z′
i1α ,(3.3)

and, for j = 2, 3, ..., ni,

log(λij) = x′
ijβ + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) ,(3.4)

logit(πij) = z′
ijα + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2, ..., ni ,(3.5)

where πij = P (Yij = 0 |α,zij ,hij) = P (Yij = 0 |α,zij , yi,j−1) is the rate of zeros given some
covariates and the history of outcomes. In this model the effect of the previous zero response
on current measurement (γ1) and the effect of the non-zero previous response on current
mean (γ2) are separately considered. This is due to the fact that one expects to have the
current mean to be close to the previous values of responses.

We will use the notation Y ∼ ZIGP (λij , πij , φ) to denote model (3.1). Note that
(3.1) is reduced to zero-inflated Poisson model when φ = 0. We will use the notation Y ∼
ZIP (λij , πij) to denote model (3.1) when φ = 0. Let θ = (α,β,γ, τ , φ) be the vector of all
the unknown parameters in the model where α = (α1, α2)′ and γ = (γ1, γ2)′. The likelihood
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function of the model can be written as:

L(θ|y,x,z) =
N∏

i=1

f(yi1)×
ni∏

j=2

f(yij |yi,j−1)


=

N∏
i=1

ni∏
j=1

(
πij + (1− πij)P

(
Yij = 0 |λij , φ,xij ,hij

))I(yij=0)

×
(
(1− πij)P

(
Yij 6= 0 |λij , φ,xij ,hij

))1−I(yij=0)
,

where hi1 = 0 and it will not be considered in the model. This likelihood function can be
maximized using some numerical methods such as Newton–Raphson [20].

Another approach for obtaining parameter estimates is the use of the Expectation-
Maximization (EM) [8] algorithm. To obtain the EM estimates of the parameters, we use
the indicator variable, Wij , i = 1, 2, ..., N , j = 1, 2, ..., ni. As mentioned earlier Wij is a latent
variable for indicating the perfect state versus the Poisson state outcome. Therefore, the
log-likelihood function of (Y ,W ) as complete data is given by

`c(θ|y,w,x,z) =
N∑

i=1

ni∑
j=1

wij log(πij) +
N∑

i=1

ni∑
j=1

(1− wij) log(1− πij)

+
N∑

i=1

ni∑
j=1

(1− wij)
{
yij log(λij)− yij log(1 + φλij)

+ (yij − 1) log(1 + φyij)− log(yij !)− λij
1 + φyij

1 + φλij

}
.

The EM algorithm contains two steps: in the first step (E-step), the expectation of the
complete likelihood function (here `c(θ|y,w,x,z)) given the observed data (here Y ) and
the current value of the parameters in the rth step (called θ(r)) is calculated, by defining
Q(θ|θ(r)) = E

[
`c(θ|y,w,x,z) |y,x,z,θ(r)

]
. We have

Q(θ|θ(r)) =
N∑

i=1

ni∑
j=1

E[Wij |y,x,z,θ(r)] log(πij)

+
N∑

i=1

ni∑
j=1

(1− E[Wij |y,x,z,θ(r)]) log(1− πij)

+
N∑

i=1

ni∑
j=1

(1− E[Wij |y,x,z,θ(r)])
{
yij log(λij)− yij log(1 + φλij)

+ (yij − 1) log(1 + φyij)− log(yij !)− λij
1 + φyij

1 + φλij

}
.

For computing the EM algorithm, the following expectation is needed:

E[Wij |y,w,x,z,θ(r)] = P (Wij = 1|yi,j−1,x,z,θ
(r))

=


π

(r)
ij

π
(r)
ij +(1−π

(r)
ij )P (Yij=0|λ(r)

ij ,φ(r),xij ,yi,j−1)
, yij = 0 ,

0 , yij 6= 0 ,

where π(r)
ij = P (Yij = 0|zij ,θ

(r), yi,j−1) and λ(r)
ij is the current Poisson rate at the rth iteration.
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In the second step (M-step), we define

θ(r+1) = arg max
θ∈Θ

Q(θ|θ(r)) .

The algorithm is converged and is stopped when∥∥∥θ(r) − θ(r+1)
∥∥∥ < ε ,

where ‖·‖ is a pre-specified measure.

4. SIMULATION STUDIES

In this section some simulation studies are performed for investigating the performance
of the proposed approach. At first, the data are generated from ZIGP and the performance of
ZIGP, GP, ZINB, NB and ZIP are compared on analyzing these data. Two other simulated
data are generated under ZINB and ZIP where the performance of analyzing ZIGP, ZINB
and ZIP are investigated in each case. Note that ZIP model is a ZIGP model with φ = 0.
The last simulation study is used to examine the performance of ZIGP, ZINB and ZIP in the
presence of underdispersion.

4.1. Zero-inflated generalized Poisson model

In this simulation study the data set is generated from a transition model under ZIGP.
The simulation study contains two sample sizes N = 100 and 500 where M = 1000 iterations
are performed. For generating data, we consider a ZIGP model as follows:

Yij |λij , πij ∼ ZIGP (λij , πij , φ) ,(4.1)

where

log(λi1) = β0 + β1xi + β2t1 ,

logit(πi1) = α0 + α1xi + α2t1 ,

log(λij) = β0 + β1xi + β2tj + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2,3,4 ,

logit(πij) = α0 + α1xi + α2tj + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) , j = 2,3,4 .

(4.2)

For this simulation study, two sets of real values are considered as follows:

1) α0 = −1, α1 = 1, α2 = 0, β0 = −3, β1 = β2 = 1, γ1 = −1, γ2 = 0, τ1 = 0, τ2 = 1
and φ = 1.

2) α0 = −1, α1 = −1, α2 = 0, β0 = −3, β1 = β2 = 1, γ1 = 1, γ2 = −1, τ1 = 1, τ2 = −1
and φ = 0.5.

The results of these simulation studies are summarized in Tables 1 and 2, respectively.
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The simulated data set are analyzed using NB, GP, ZIP, ZINB and ZIGP models, such that

Yij |λij , φ ∼ NB

(
φ,

φ

φ+ λij

)
,

Yij |λij , φ ∼ GP
(
λij , φ

)
,

Yij |λij , πij ∼ ZIP
(
λij , πij

)
,

Yij |λij , πij , φ ∼ ZINB

(
φ,

φ

φ+ λij
, πij

)
,

Yij |λij , πij , φ ∼ ZIGP
(
λij , φ, πij

)
.

(4.3)

Note that Y∼NB(φ,κ) if theprobabilitymass function is givenby fNB(y;φ,κ)= Γ(y+φ)
Γ(φ)y! κ

φ(1−κ)y,
y = 0, 1, ..., r and r > 0. Also, Y ∼ ZINB(φ, κ, π) is a zero-inflated negative binomial distri-
bution which can be obtained by (2.3) by replacing fGP ( · ;λ, φ) by fNB( · ;φ, κ). In order to
compare the results, the mean of the estimated values, the standard errors, relative biases
and mean of square errors (MSEs) are used. The latter two criteria are defined as follows:

Bias(θ) =
1
M

M∑
k=1

(
θ̂k

θ
− 1

)
,

MSE(θ) =
1
M

M∑
k=1

(
θ̂k − θ

)2

,

where θ̂k is the estimate of θ for the kth sample, k = 1, 2, ...,M .

The results of Tables 1 and 2 show that the performance of the ZIGP in parameter
estimation is better than those of the other models. The performance of ZINB in estimating
parameters of the logistic model is not well while in estimating the other parameters is almost
good. The GP and NB models do not have good performances in this simulation study and
the ZIP has a good performance in estimating some parameters. The results of the simulation
study for ZIGP show that the increase in the sample size is an effective way of decreasing
biases and standard deviations of parameters estimates. As shown in these tables, relative
biases and MSEs are reduced by increasing the sample size. This suggests that the method
in finding estimates is consistent.

4.2. Zero-inflated Poisson model

In this simulation study, we simulate data from the following model:

Yij |λij , πij ∼ ZIP (λij , πij) ,(4.4)

such that the parameterizations and real values of parameters in λij and πij are the same as
the first set of real values and those described in equation (4.2). The results of this simulation
study are summarized in Table 3. The results show the well performance of the ZIP model.
Also, the results show that the performance of ZIGP is as good as ZIP model. The ZINB
model dose not have a good performance when the sample size is 100 while for N=500 has
a performance which is as good as the other two models. The overdispersion parameter φ
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is estimated zero in ZIGP model but it has a large value in ZINB (note that in negative
binomial distribution the dispersion index is proportion to φ−1 and overdispersion presents
in the data when the value of φ is very large). As a conclusion, this simulation study shows
that the use of ZIGP model is preferred to the use of ZINB model. The ZIGP has a similar
performance to ZIP and, for moderate sample size, a much better performance than ZINB
model.

Table 3: Results of simulation study for generated data under ZIP model, estimate (Est.),
standard error (S.E.), relative bias (Bias) and mean square error (MSE) for M=
1000 simulated data with sample sizes 100 and 500.

N Para. Real
ZIP ZIGP ZINB

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −1.06 (0.86) 0.06 0.74 −1.20 (0.98) 0.20 0.95 <−103 (>103) >103 >103

α1 1.00 1.03 (0.50) 0.03 0.24 1.23 (0.57) 0.23 0.55 >103 (>103) >103 >103

α2 0.00 0.02 (0.20) ∗ 0.04 −0.00 (0.19) ∗ 0.00 0.02 (0.20) ∗ 0.04
τ1 0.00 −0.07 (0.56) ∗ 0.32 −0.04 (0.61) ∗ 0.03 −0.09 (0.64) ∗ 0.42
τ2 1.00 −1.26 (0.91) 0.26 0.96 −1.05 (0.36) 0.05 0.01 −1.07 (0.37) 0.07 0.14

100 β0 −3.00 −3.00 (0.22) 0.00 0.05 −2.98 (0.33) −0.00 0.00 −3.04 (0.25) 0.01 0.06
β1 1.00 1.00 (0.08) 0.00 0.00 0.99 (0.14) −0.01 0.00 1.01 (0.08) 0.01 0.01
β2 −1.00 0.99 (0.05) −0.00 0.00 0.99 (0.06) −0.00 0.00 1.00 (0.05) 0.00 0.00
γ1 −1.00 −0.99 (0.08) −0.00 0.00 −0.99 (0.09) −0.00 0.00 −1.00 (0.09) 0.00 0.00
γ2 0.00 −0.00 (0.01) ∗ 0.00 0.00 (0.01) ∗ 0.00 −0.00 (0.01) ∗ 0.00
φ 0.00 — — — −0.00 (0.00) ∗ 0.00 >103 (>103) >103 >103

α0 −1.00 −1.02 (0.36) 0.02 0.13 −1.02 (0.36) 0.02 0.13 −1.03 (0.36) 0.03 0.13
α1 1.00 1.02 (0.21) 0.02 0.04 1.02 (0.21) 0.02 0.04 1.02 (0.21) 0.02 0.04
α2 0.00 0.00 (0.07) ∗ 0.00 0.00 (0.07) ∗ 0.00 0.00 (0.07) ∗ 0.00
τ1 0.00 −0.02 (0.24) ∗ 0.06 −0.02 (0.24) ∗ 0.06 −0.02 (0.24) ∗ 0.06
τ2 1.00 −1.01 (0.17) 0.01 0.02 −1.01 (0.17) 0.01 0.02 −1.02 (0.17) 0.02 0.06

500 β0 −3.00 −3.00 (0.11) 0.00 0.01 −3.00 (0.11) 0.00 0.01 −3.00 (0.11) 0.00 0.01
β1 1.00 1.00 (0.04) 0.00 0.00 1.00 (0.04) 0.00 0.00 1.00 (0.04) 0.00 0.00
β2 −1.00 0.99 (0.02) −0.00 0.00 0.99 (0.02) 0.00 0.00 1.00 (0.02) 0.00 0.00
γ1 −1.00 −1.00 (0.03) 0.00 0.00 −0.99 (0.03 0.00 0.00 −1.00 (0.03) 0.00 0.00
γ2 0.00 −0.00 (0.00) ∗ 0.00 −0.00 (0.00) ∗ 0.00 −0.00 (0.00) ∗ 0.00
φ 0.00 — — — −0.00 (0.00) ∗ 0.00 >103 (>103) >103 >103

4.3. Zero-inflated negative binomial model

In this simulation study, we simulate data from the following model:

Yij |λij , πij ∼ ZINB

(
φ,

φ

φ+ λij
, πij

)
,(4.5)

such that the parameterizations and real values of parameters in λij and πij are the same
as the first set of real values and those described in equation (4.2), also, we consider φ = 1.
The results of this simulation study are summarized in Table 4. The results show the well
performance of the ZINB model in large sample size. Also, the results show that the perfor-
mance of ZIGP is as good as ZINB model expect for estimating intercept and the overdis-
persion parameters. Also, in moderate sample size the performance of ZIGP model is better
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than those in ZINB model. The results show that the ZIP model dose not have a good
performance.

Table 4: Results of simulation study for generated data under ZINB model, estimate (Est.),
standard error (S.E.), relative bias (Bias) and mean square error (MSE) for M=
1000 simulated data with sample sizes 100 and 500.

N Para. Real
ZINB ZIGP ZIP

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −1.47 (1.29) 0.47 1.87 −0.20 (0.89) −0.79 1.41 0.69 (0.77) −1.69 3.47
α1 1.00 1.24 (0.91) 0.24 0.88 0.67 (0.51) −0.32 0.36 0.42 (0.37) −0.57 0.47
α2 0.00 0.06 (0.27) ∗ 0.08 −0.09 (0.17) ∗ 0.04 −0.32 (0.19) ∗ 0.14
τ1 0.00 −0.03 (1.10) ∗ 1.20 0.10 (0.64) ∗ 0.42 0.59 (0.51) ∗ 0.61
τ2 −1.00 −1.61 (3.28) 0.61 11.05 −0.82 (0.48) −0.17 0.26 −0.37 (0.26) −0.62 0.46

100 β0 −3.00 −3.13 (0.45) 0.04 0.21 −2.73 (0.50) −0.08 0.32 −2.13 (0.63) −0.28 1.14
β1 1.00 1.03 (0.26) 0.03 0.06 0.98 (0.22) −0.01 0.05 0.87 (0.28) −0.12 0.09
β2 1.00 1.02 (0.09) 0.02 0.00 0.95 (0.10) −0.04 0.01 0.84 (0.14) −0.15 0.04
γ1 −1.00 −0.97 (0.21) −0.02 0.04 −0.95 (0.20) −0.04 0.04 −0.85 (0.28) −0.14 0.09
γ2 0.00 −0.00 (0.03) ∗ 0.00 −0.00 (0.03) ∗ 0.00 0.00 (0.04) ∗ 0.00
φ 1.00 1.11 (0.25) 0.11 0.07 0.22 (0.03) −0.77 0.60 — — —

α0 −1.00 −1.00 (0.50) 0.00 0.24 −0.07 (0.37) −0.92 1.00 0.72 (0.34) −1.72 3.10
α1 1.00 1.03 (0.33) 0.00 0.11 0.66 (0.22) −0.33 0.16 0.34 (0.18) −0.65 0.46
α2 0.00 −0.01 (0.10) ∗ 0.01 −0.15 (0.08) ∗ 0.03 −0.33 (0.07) ∗ 0.11
τ1 0.00 0.02 (0.34) ∗ 0.11 0.25 (0.24) ∗ 0.12 0.69 (0.20) ∗ 0.52
τ2 −1.00 −0.99 (0.29) 0.00 0.08 −0.73 (0.20) −0.26 0.11 −0.29 (0.10) −0.70 0.50

500 β0 −3.00 −3.00 (0.20) 0.00 0.04 −2.65 (0.20) −0.11 0.16 −2.20 (0.33) −0.26 0.75
β1 1.00 1.00 (0.07) 0.00 0.00 0.95 (0.08) −0.04 0.00 0.88 (0.13) −0.11 0.03
β2 1.00 0.99 (0.04) 0.00 0.00 0.93 (0.04) −0.06 0.00 0.86 (0.08) −0.13 0.02
γ1 −1.00 −0.99 (0.09) −.00 0.00 −0.91 (0.09) −0.08 0.01 −0.86 (0.13) −0.13 0.03
γ2 0.00 −0.00 (0.01) ∗ 0.00 −0.00 (0.01) ∗ 0.00 0.00 (0.03) ∗ 0.00
φ 1.00 1.01 (0.10) 0.00 0.01 0.23 (0.01) −0.76 0.57 — — —

4.4. Zero-inflated underdispersion generalized Poisson model

For investigating the performance of the proposed transition model, the data set of
this subsection are generated from a zero-inflated underdispersed generalized Poisson model
and the performance of the ZIGP, ZINB and ZIP models are compared. The data set
are generated from a ZIGP (λij , πij , φ) such that log(λi1) = β0, logit(pi1) = α0, log(λij) =
β0 + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)), j = 2, 3, 4, logit(pij) = α0 + τ1I{0}(Yi,j−1) +
τ2yi,j−1(1− I{0}(Yi,j−1)), j = 2, 3, 4, where α0 = −1, τ1 = −1, τ2 = 1, β0 = 1, γ1 = 0, γ2 = −1
and φ = −0.3. Also, two sample sizes N=500 and 1000 are selected where M = 1000 itera-
tions are performed. The results of this simulation study are summarized in Table 5. These
results show the well performance of the ZIGP model as the best fitting model while the
performance of ZINB model is poor. Also, the results show that the performance of ZIP is
better than those of ZINB model. Note that the underdispersion rarely occur in practice.
The well performance of ZIGP model are only satisfied in large sample size as described in
this simulation study.
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Table 5: Results of simulation study for generated data under ZIGP model in
the presence of underdispersion, estimate (Est.), standard error (S.E.),
relative bias (Bias) and mean square error (MSE) for M=1000 simu-
lated data with sample sizes 500 and 1000.

N Para. Real
ZIGP ZINB ZIP

Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE Est. (S.E.) Bias MSE

α0 −1.00 −0.97 (0.11) −0.03 0.01 <−103 (>103) 3618.73 >103 −4.47 (4.31) 3.47 29.19
τ1 −1.00 −1.03 (0.15) 0.03 0.02 <−103 (>103) 12854.74 >103 −18.20 (9.03) 17.20 371.03
τ2 1.00 1.15 (0.17) 0.15 0.15 <−103 (>103) −63370.51 >103 −11.15 (6.46) −12.15 186.23

500 β0 1.00 0.93 (0.01) −0.07 0.14 0.84 (0.05) −0.18 0.04 0.84 (0.10) −0.18 0.15
γ1 0.00 0.00 (0.01) ∗ 0.00 0.16 (0.04) ∗ 0.03 0.13 (0.05) ∗ 0.02
γ2 −1.00 −1.20 (0.75) 0.20 0.65 −1.55 (0.33) 0.55 0.50 −1.39 (0.45) 0.39 0.46
φ −0.30 −0.37 (0.00) 0.24 0.03 >103 (>103) <−103 >103 — — —

α0 −1.00 −0.97 (0.05) −0.03 0.00 <−103 (>103) 3537.27 >103 −3.78 (3.78) 2.78 21.80
τ1 −1.00 −1.03 (0.10) 0.03 0.01 <−103 (>103) 12912.70 >103 −18.35 (4.68) 17.35 322.60
τ2 1.00 1.06 (0.09) 0.06 0.08 <−103 (>103) −83788.10 >103 −13.00 (6.35) −14.00 235.61

1000 β0 1.00 0.98 (0.01) −0.02 0.04 0.92 (0.06) −0.08 0.06 0.95 (0.05) −0.05 0.06
γ1 0.00 0.00 (0.01) ∗ 0.00 0.17 (0.03) ∗ 0.03 0.14 (0.02) ∗ 0.02
γ2 −1.00 −1.12 (0.32) 0.12 0.29 −1.47 (0.40) 0.47 0.31 −1.52 (0.35) 0.52 0.44
φ −0.30 −0.32 (0.00) 0.07 0.03 >103 (>103) <−103 >103 — — —

5. APPLICATION

The data set of this paper is extracted from a longitudinal study on kidney transplant
patients in Imam Khomeini hospital of Urmia in Iran. The data set contains some information
about N = 129 patients who have kidney transplant in this hospital. The response variable
in this study is the number of acute rejections which is count response with extra zeros. The
data are recorded in one year period which contain the number of acute rejection each four
months. The barchat of the response variable for each time point (month 4, 8 and 12) is
showed in Figure 1. In this figure, Yk, k = 1, 2, 3, is used for indicating the response variable
at the kth time point. The number of extra zeros is clear in these charts.

Figure 1: Barcharts of the number of acute rejections for time point at month 4
(first panel), month 8 (middle panel) and month 12 (third panel).
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The collected explanatory variables which are considered in our analysis are creatinine
index as a continuous covariate and having hyperacute rejection of kidney (rejection in the
first 24 hours after surgery) as a categorical covariate. Figure 2 presents the boxplots of the
creatinine index versus the number of acute rejections for each time. Also, Table 6 summarizes
frequency of the number of acute rejections for each category of this variable for each time
point.

Figure 2: Boxplots of creatinine index versus the number of acute rejections
for all time points.

For analyzing this data set, we use the proposed zero-inflated generalized Poisson tran-
sition model, also, Poisson (PM), negative binomial (NBM), generalized Poisson (GPM),
zero-inflated Poisson (ZIPM), zero-inflated generalized Poisson (ZIGPM) and zero-inflated
negative binomial (ZINBM) models under the transition structure are used for analyzing the
data set. The explanatory variables which are considered for analysing the data are creatinine
index (CRAT), having early acute rejection (EAR) and time (t = 4, 8, 12).

Table 6: Frequency of early acute rejection of kidney on the total number of acute rejection
at each time point. “Yes” is used for having early acute rejection and “No” is used
for not having early acute rejection.

Early acute rejection

Number
1st time point 2nd time point 3rd time point

Yes No Yes No Yes No

0 19 82 31 89 28 88
1 7 9 1 4 5 3
2 5 1 1 0 1 1
3 3 2 1 0 0 0
4 0 0 1 0 0 1
5 1 0 0 1 1 1
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We consider models (4.3) for analysing this data, where

log(λij) = β0 + β1CRATi + β2Timej + β3EARi

+ γ1I{0}(Yi,j−1) + γ2

(
1− I{0}(Yi,j−1)

)
yi,j−1 ,

(5.1)

and

logit(πij) = α0 + α1CRATi + α2Timej + α3EARi

+ τ1I{0}(Yi,j−1) + τ2
(
1− I{0}(Yi,j−1)

)
yi,j−1 .

(5.2)

For model comparison, we evaluate different model fits by considering some information
criteria. These criteria are AIC, BIC and HQC, which are defined as follows:

Let θ be the vector of unknown parameters, then

AIC = −2`(θ̂|Y ) + 2|θ| ,

BIC = −2`(θ̂|Y ) + |θ| ln(N) ,

HQC = −2`(θ̂|Y ) + 2 ln(ln(N)) ,

where |θ| is the number of unknown parameters in vector θ, N is the number of
subjects and θ̂ is the vector of parameters estimates. The smaller values of AIC,
BIC and HQC indicate a better fitting model.

We use the EM algorithm, as described in Section 3, for parameters estimation of
zero-inflated models, also, the usual maximum likelihood approach is used for parameter
estimation of other models. In the EM algorithm, the initial values for unknown parameters
were set equal to the estimates obtained by analysing separate models. The results of the
above mentioned models are summarized in Table 7. This table contains parameter estimates
and their standard errors for the first order transition model where standard deviations for
zero-inflated models are estimated using a Bootstrap approach with 10000 iterations and for
the others we use inverse of the Hessian matrix. The results show, based on the values of
different criteria, that for this data set, the performance of ZIGP and ZINB models are similar
and the difference between them is negligible. After them ZIP has the best fitting model and
the worst fitting model based on these criteria is the PM. The results show some evidence
for existence of mild overdispersion.

The results show that for zero-inflated models creatinine index (CRAT), having early
acute rejection (EAR) and time are significant variables such that the more the creatinine
index is, the larger is the estimated probability of nonzeros. Also, two covariates time and
early acute rejection are positively significant, i. e. by increasing them the probability of zero
increases. The results of zero-inflated models also show that only transition parameter τ1 is
significant. The results show that significant covariates in non-inflated models are similar to
those in modeling zero probability in zero-inflated models, that is, the significant parameters
in modeling zero probability of zero-inflated models have similar interpretation to those in
modeling the rate of distributions in non-inflated models. Also, φ and τ1 are the other
significant parameters in these models.

Note that in a first order transition model the first response of each individual should
be modeled given its previous response which is not recorded. How to face this issue, called
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the initial condition problem [11, 10]. This problem does not exit in this study, because the
number of acute rejections before the time of study is zero. In other words, the patients have
been entered in the study from the time of kidney transplant and they have been followed
for one year. Also, in this paper, we consider the first order transition model for modeling
the data set, because the number of replications in our real data is three and a first order
transition model for considering between-group dependence in data is adequate.

Table 7: Results of fitting (parameter estimations and standard errors in parenthesis)
the Poisson model (PM), negative binomial model (NBM), generalized Poisson
model (GPM), zero-inflated Poisson model (ZIPM), zero-inflated generalized
Poisson model (ZIGPM) and zero-inflated negative binomial model (ZINBM)
to kidney transplant study (significant parameters are highlighted in bold).

Parameter
ZIGPM ZINBM ZIPM GPM NBM PM

Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.) Est. (S.E.)

α0 2.66 (1.13) 2.62 (1.16) 3.10 (0.91) — — —
α1 (CRAT) −3.43 (1.09) −3.42 (1.09) −3.35 (0.92) — — —
α2 (Time) 0.11 (0.04) 0.12 (0.05) 0.11 (0.05) — — —
α3 (EAR) 1.10 (0.58) 1.12 (0.59) 1.01 (0.44) — — —
β0 −0.71 (0.82) −0.72 (0.83) −0.18 (0.54) −3.57 (0.94) −3.19 (0.77) −2.49 (0.46)
β1 (CRAT) 0.55 (0.67) 0.58 (0.69) 0.32 (0.52) 2.19 (0.73) 2.08 (0.66) 1.99 (0.37)
β2 (Time) −0.25 (0.40) −0.24 (0.39) −0.21 (0.29) −0.93 (0.34) −0.87 (0.32) −0.79 (0.23)
β3 (EAR) 0.79 (1.35) 0.70 (1.28) 0.60 (0.98) 3.03 (1.93) 2.10 (1.27) 0.41 (0.65)
τ1 1.83 (0.62) 1.85 (0.63) 1.69 (0.49) — — —
τ2 0.04 (0.31) 0.04 (0.32) 0.02 (0.25) — — —
γ1 −0.35 (1.01) −0.29 (0.96) −0.24 (0.72) −2.82 (1.18) −2.27 (0.78) −1.34 (0.41)
γ2 0.00 (0.19) 0.00 (0.19) −0.01 (0.14) −0.17 (0.28) −0.13 (0.23) −0.02 (0.14)
φ 0.21 (0.07) 2.11 (0.99) — 1.22 (0.36) 0.34 (0.10) —

AIC 384.04 384.98 386.19 392.96 392.51 441.87

BIC 419.16 419.20 417.64 412.98 412.53 459.03

HQC 364.00 364.05 367.35 382.13 381.67 433.03

6. CONCLUSION AND DISCUSSION

In this paper, we have discussed a new transition model for analysing longitudinal out-
comes with extra zeros. We compare the performance of different distributional assumptions:
zero-inflated generalized Poisson, zero-inflated negative binomial and zero-inflated Poisson
and we conclude that zero-inflated generalized Poisson is a flexible distributional assumption.

We have used the EM algorithm for parameter estimation. For illustration of the
proposed models some simulation studies have been conducted. Also, a real data set of a
kidney allograft rejection study has been analyzed as an illustrative example. Based on the
results the creatinine index, having early acute rejection and time are significant covariates
such that the more the creatinine index is, the larger is the estimated probability of nonzeros
acute rejection. Also, two covariates time and early acute rejection are positively significant,
i. e. by increasing them the probability of zero acute rejection increases. The results show
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that the significant parameters in modeling zero probability of zero-inflated models have
similar effect to parameters in the modeling rate of distributions in non-inflated models. We
have considered a first order transition model for considering within-group dependence in
longitudinal measurements, because the number of repeated longitudinal measurements has
been small in our real data set. As a future work, illustration of the proposed approach
for higher order of transition model for analyzing data set with larger number of repeated
measures and comparison of the performance of it with that of the first order transition
model may be performed. For this purpose (3.2) and (3.4) can be improve to be log(λi1) =
x′

i1β, logit(πi1) = z′
i1α, log(λij) = x′

ijβ + γ ′hi,j and logit(πij) = z′
ijα + τ ′hi,j , j = 2, ..., ni.

Another parameterizations for λij and πij of (3.2) and (3.4) may be the use of the first order
transition model along with some random effects, that is, log(λi1) = x′

i1β + bi1, logit(πi1) =
z′

i1α + bi2, log(λij) = x′
ijβ + γ1I{0}(Yi,j−1) + γ2yi,j−1(1− I{0}(Yi,j−1)) + bi1 and logit(πij) =

z′
ijα + τ1I{0}(Yi,j−1) + τ2yi,j−1(1− I{0}(Yi,j−1)) + bi2, j = 2, ..., ni. where bi = (bi1, bi2)′ is a

bivariate random effects. As a parameterization for the random effects, one can write b1i ∼
N(0, σ2

1), b2i|b1i ∼ N(ψb1i, σ
2
2). We have used the EM algorithm for parameter estimation,

one can use a Bayesian paradigm using MCMC for parameter estimation [29]. The priors
elicitation are an important issue for performing this paradigm. The data set which analyzed
in this paper has not had any missing values. The proposed method can be extended for
modeling data sets in the presence of missing values as a future work. For this purpose, an
ignorable or non-ignorable missing mechanism should be selected. The modeling of missing
data mechanism for modeling non-ignorable missing data mechanism is necessary and these
a sensitivity analysis is commonly suggested.
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