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1. INTRODUCTION

Technological progress in collecting and storing data provides datasets recorded at finite
grids of points that become denser and denser over time. Although in practice data always
comes in the form of finite dimensional vectors, from the theoretical point of view, the classic
multivariate techniques are not well suited to deal with data which, essentially, is infinite
dimensional and whose observations within the same curve are highly correlated.

From a practical point of view, a commonly used technique to treat this kind of data
is to transform the (observed) discrete values into a function via smoothing or a series ap-
proximations (see [5], [21], [24, 25, 26], or chapter 9 of [13] and the references therein). For
the analysis, we can use the intrinsic infinite dimensional nature of the data and assume the
existence of continuous underlying stochastic processes which are observed ideally at every
point. In this context, the theoretical analysis is performed on the functional space where
they take values (see [15]). In what follows, we will refer to this last setting as the full model.

Nonparametric regression is an important tool in functional data analysis (FDA) which
has received considerable attention from different authors in both settings. For the full model,
consistency results have been obtained by, among others, [1], [3], [4], [7], [10], [15], [22], and
[23]. In particular, [16] (see also the Corrigendum [17]) prove a consistency result close to
universality for the kernel (with random bandwidth) estimator. The first contribution of the
present paper will be to prove the consistency of the k-nearest neighbor with kernel regression
estimator (Proposition 2.2) when the full trajectories are observed. This family, considered
by [12], combines the smoothness properties of the kernel function with the locality properties
of the k-nearest neighbors distances.

Regarding regression when discretized curves are available, [19] study the mean square
consistency of the kernel estimator when the sample size as well as the grid size discretization
go to infinity. More precisely, from independent realizations of a random process with con-
tinuous covariance structure, they estimate the regression function, assuming its smoothness.
Under the same assumptions, but using interpolation of the data, [27], in a mainly practical
approach, propose a method to estimate the regression function via smoothing splines (see
also [20]). More recently, [8] establish minimax rates of convergence of estimators of the mean
based on discretized sampled data while [9] establish the minimax rates of convergence for
the covariance operator when data are observed on a lattice (see also [18] for the problem of
principal components analysis for longitudinal data). In this context it is natural to assess
the relation between the ideal nonparametric regression estimator constructed with the entire
set of curves and the one computed with the discretized sample. In this direction, we are
interested in addressing the following question:

• Under what conditions can the consistency (and rates of convergence) of the estimate
computed with the discretized trajectories be derived from the consistency of the
estimate based on the full curves?

Clearly, the asymptotic results for estimates computed with the discretized sample will
not be a direct consequence of those for the full model. However, we provide reasonable
conditions in order to still get the consistency and find rates of convergence of the estimator.
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In this context we state the results for the well known kernel and k-nearest neighbor with
kernel estimators. These results are a consequence of a more general result, which, besides
discretization, also includes the cases of regularization via smoothing and basis representation.

This paper is organized as follows: In Section 2 we state the consistency of the k-nearest
neighbor with kernel estimator in the infinite dimensional setting (for the full model). This
result is not only interesting by itself but also, it will be used to prove consistency results when
discretely sample data are available. In Section 3 we provide conditions for the consistency of
the kernel and k-nearest neighbor with kernel estimators when we do not observe the whole
trajectories but only a function of them (Theorems 3.1 and 3.2). In Section 4 the results for
discretization, smoothing and basis representation are obtained as a consequence of Theorems
3.1 and 3.2. Finally, in Section 5 we perform a small simulation study where we compare
the behaviour of the estimators computed with the discretized trajectories and with the full
curves. Proofs are given in Appendices A and B.

2. CONSISTENCY RESULTS FOR FULLY OBSERVED CURVES

In this section we provide two L2-consistency results for the full model, i.e., when ideally
all trajectories are observed at every point of the interval [0, 1]. The first one corresponds
to kernel estimates, and was obtained in [16], while the second one for k-NN with kernel
estimates is derived in the present paper. Both results will be used, in Section 3, to prove
the consistency of that estimators when only discretely sampled curves in [0, 1] are observed.

We will use the notation f . g when there exists a constant C > 0 such that f ≤ Cg

and f ≈ g if there exists a constant C > 0 such that f = Cg.

Let (H, d) be a separable metric space and let (X1, Y1), ...(Xn, Yn) be independent iden-
tically distributed (i.i.d.) random elements in H×R with the same law as the pair (X , Y )
fulfilling the model:

(2.1) Y = η(X ) + e ,

where the error e satisfies Ee|X (e|X ) = 0 and vare|X (e|X ) = σ2 < ∞. In this context, the
regression function E(Y |X ) = η(X ) can be estimated by

(2.2) η̂n(X ) =
n∑

i=1

Wni(X ) Yi ,

where the weights Wni(X ) = Wni(X ,X1, ...,Xn) ≥ 0 and
∑n

i=1 Wni(X ) = 1. In this paper, we
first consider the weights corresponding to the family of kernel estimators given by

(2.3) Wni(X ) =
K
(

d(X ,Xi)
hn(X )

)
∑n

j=1 K
(

d(X ,Xj)
hn(X )

) ,

where K is a regular kernel, i.e., there are constants 0 < c1 < c2 < ∞ such that c1I[0,1](u) ≤
K(u) ≤ c2 I[0,1](u). Here 0/0 is assumed to be 0. In this general setting, [16] proved the
following result.
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Proposition 2.1 (Theorem 5.1 in [16]). Assume that

K1) K is a regular and Lipschitz kernel;

F1) (H, d) is a separable metric space;

F2) {(Xi, Yi)}i≥1 are i.i.d. random elements with the same law as the pair (X , Y ) ∈
H×R fulfilling model (2.1) with, for each i = 1, ..., n, joint distribution PX ,Xi ;

F3) µ is a Borel probability measure of X and η ∈ L2(H, µ) =
{
f : H → R :∫

H f2(z) dµ(z) < ∞
}

is a bounded function which satisfies the Besicovitch con-
dition:

(2.4) lim
δ→0

1
µ
(
B(X , δ)

) ∫
B(X ,δ)

|η(z)− η(X )| dµ(z) = 0 ,

in probability, where B(X , δ) is the closed ball of center X and radius δ with

respect to d.

For any x ∈ supp (µ) and any sequence hn(x) → 0 such that nµ(B(x,hn(x))
log n →∞, the estimator

given in (2.2) with weights given in (2.3) satisfies

lim
n→∞

E
(
(η̂n(X )− η(X ))2

)
= 0 .

Remark 2.1. The Besicovitch condition in F3 is a differentiation type condition which,
as is well known, in finite dimensional spaces automatically holds for any integrable function
η. Unfortunately, it is no longer true in infinite dimensional spaces and it can be proved,
for instance, that it is necessary in order to get the L1-consistency of uniform kernel esti-
mates (see Proposition 5.1 in [16]). However, it holds in a general setting if, for instance, the
function η is continuous. For a deeper reading on this topic see [10] or [16].

Remark 2.2. Note that for x ∈ supp (µ) the consistency of this estimator holds for
every sequence h̃n(x) → 0 such that h̃n(x) ≥ hn(x), where hn(x) is given in Proposition 2.1,
since if h̃n(x) ≥ hn(x), then nµ(B(x,h̃n(x))

log n ≥ nµ(B(x,hn(x))
log n →∞.

The existence of a sequence verifying nµ(B(x,hn(x))
log n →∞ in Proposition 2.1 follows from

the next lemma.

Lemma 2.1 (Lemma A.5 in [16]). For any x ∈ supp (µ), there exists a sequence of

positive real numbers hn(x) → 0 such that nµ(B(x,hn(x))
log n →∞.

Let Hn(x) be the distance from x to its kn-nearest neighbor among {X1, ...,Xn}. Recall
that the kn-nearest neighbor of x among {X1, ...,Xn} is the sample point Xi reaching the
kn-th smallest distance to x in the sample. Then, when the bandwidth in (2.3) is given by
Hn(x), we obtain the family of kn-nearest neighbor (k-NN) with kernel estimates. For the
uniform kernel, the consistency of the estimator was proven in [16], Theorem 4.1. For more
general kernels, the consistency could be a consequence of Proposition 2.1 if we can prove
that Hn(x) → 0 and nµ(B(x,Hn(x))

log n →∞. Although it can be proved that Hn(x) → 0 (see [16],

Lemma A.4 stated below) the condition nµ(B(x,Hn(x))
log n →∞ is not necessary true for Hn(x).

However, as we will see in Proposition 2.2, we can still prove the mean square consistency of
this estimator under the same weak conditions as in Proposition 2.1.



Nonparametric Regression Based on Discretely Sampled Curves 5

Lemma 2.2 (Lemma A.4 in [16]). Let H be a separable metric space, µ a Borel prob-

ability measure, and {Xi}n
i=1 a random sample of X . If x ∈ supp (µ) and kn is a sequence of

positive real numbers such that kn →∞ and kn/n → 0, then Hn(x) → 0.

Proposition 2.2. Assume K1, F1–F3 hold. Let kn be a sequence of positive real

numbers such that kn →∞, kn/n → 0 and let Hn(x) be the distance from x to its kn-nearest

neighbor among {X1, ...,Xn}. Then, the estimator given by (2.2) with weights given in (2.3)

is mean square consistent for any sequence hn(x) → 0 such that hn(x) ≥ Hn(x), x ∈ supp (µ).

Remark 2.3. Observe that, unlike [15] or [7], we ask d to be a metric not a semi-
metric (which is a milder condition). Nevertheless, we do not ask for conditions neither on
small ball probabilities nor on the smoothness of the regression function as in the cited papers.
Further study is needed to extend ours results to the case of semi-metrics.

3. CONSISTENCY RESULTS FOR DISCRETELY SAMPLED CURVES

In this section we will assume that we are not able to observe the whole trajectories Xi

in H given in F2, but only a function of them. As we will see in Section 4, different choices
of that function will correspond to discretizations, eigenfunction expansions, or smoothing.
In this context, the weights of the estimator given in (2.3) cannot be computed because we
have not a distance d defined for the discretized sample curves (as a consequence, we do not
have the validity of the Besicovitch condition (2.4) for the discretized data) or a bandwidth
hn.

We are interested in defining an estimator and proving its consistency in this setting.
For that, let us consider the following assumptions:

H1) (H, d) is a separable (metric) Hilbert space and F : H → H is a function such

that, for each i = 1, ..., n, F (Xi) = X p
i ;

H2) dp : H×H → R is a semi-metric in H defined by dp(X ,Y) = d(X p,Yp) such that

there exists a sequence cn,p → 0 as n, p →∞ satisfying, for each i = 1, ..., n,

(3.1) n2 EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣ X ∈ supp (µ)
))

→ 0 .

Here, P2
Y|X (·) means the square of PY|X (·).

Remark 3.1. Observe that in H1 neither H nor F change with the sample. This
implies that in this case, the functional data falls into the category of sparsely and regularly
sampled data.

The estimator of η based on {(X p
i , Yi)}n

i=1 will be defined as in (2.2) and (2.3) but with
the semi-metric dp instead of the metric d. More precisely, for hn,p(X ) > 0, we define

(3.2) η̂n,p(X ) =

∑n
i=1 K

(
dp(X ,Xi)
hn,p(X )

)
Yi∑n

j=1 K
(

dp(X ,Xj)
hn,p(X )

) .
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For this estimator, we state the following two asymptotic results.

Theorem 3.1. Assume K1, F2, F3, H1 and H2 hold.

(a) (Kernel estimator) For any x ∈ supp (µ), let h∗n(x) → 0 be a sequence of pos-

itive real numbers such that nµ(B(x,h∗n(x))
log n →∞. Then, for cn,p given in H2 and

hn,p(x) → 0 such that there exists a sequence hn(x) → 0, hn(x) ≥ h∗n(x) satisfying:

(H3.1) EX
(
c2
n,p/h2

n(X )
)
→ 0 as n, p →∞;

(H3.2) cn,p ≤ hn,p(x)− hn(x) ≤ C2 cn,p for C2 ≥ 1;

we have
(3.3) lim

n,p→∞
E
(
(η̂n,p(X )− η(X ))2

)
= 0 .

(b) (kn-NN with kernel estimator) Let cn,p given in H2 and Hn(x) the distance from x

to its kn-nearest neighbor among {X1,...,Xn}. For any x ∈ supp (µ), let hn,p(x)→ 0
be such that there exists a sequence hn(x) → 0, hn(x) ≥ Hn(x) satisfying assump-

tions (H3.1) and (H3.2). Then, for kn →∞ and kn/n → 0 we have (3.3).

Remark 3.2. Observe that the sequence h∗n(x) in Theorem 3.1 always exists by
Lemma 2.1. In addition, under H2, it is always possible to choose a sequence hn,p(x) → 0
fulfilling the conditions in Theorem 3.1. Indeed, taking hn(x) = max{h∗n(x),√cn,p} and
hn,p(x) = hn(x) + Ccn,p, with C ≥ 1, we have that hn(x) → 0, hn,p(x) → 0, hn(x) ≥ h∗n(x),
(H3.1) holds since hn(x) ≥ √

cn,p and (H3.2) holds by definition of hn,p(x). The same happens
if instead of taking h∗n(x) we take Hn(x).

Theorem 3.2. Under the assumptions of Theorem 3.1, let γn →∞ as n →∞ be such

that, as n, p →∞,

(a) EX
(

γn

(
cn,p

hn(X )

)2)
→ 0;

(b) γn n2 EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

→ 0, for each

i = 1, ..., n.

Then

lim
n→∞

E
(
γn(η̂n(X )− η(X ))2

)
= 0

implies

lim
n,p→∞

E
(
γn(η̂n,p(X )− η(X ))2

)
= 0 .

4. PARTICULAR CASES

In this section we provide definitions of H and dp for discretization, smoothing, and
eigenfunction expansions, which satisfy conditions H1 and H2. Then, for any sequence
hn,p(x) → 0 satisfying (H3.1) and (H3.2) in Theorem 3.1, we get the consistency of η̂n,p

as a consequence of the consistency results for η̂n in the full model.
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Consider the case where the elements of the dataset are curves in L2([0, 1]) that are
only observed at a discrete set of points in the interval [0, 1]. More precisely, let us assume
that {Xi}n

i=1 are observed only at some points: (Xi(t1), ...,Xi(tp+1)) where 0 = t1 < t2 < ··· <
tp+1 = 1, which for simplicity we will assume are equally spaced, i.e., ∆t = ti+1 − ti = 1/p.
In this case, we will need to require the trajectories to satisfy some regularity condition. More
precisely, we will assume that X is a random element of H .= H1([0, 1]), the Sobolev space
defined as

H1([0, 1]) =
{

f : [0, 1] → R : f and Df ∈ L2([0, 1])
}

,

where Df is the weak derivative of f , i.e., Df is a function in L2([0, 1]) which satisfies∫ 1

0
f(t)Dφ(t) dt = −

∫ 1

0
Df(t)φ(t) dt , ∀φ ∈ C∞

0 .

In this space, the norm is defined by

‖f‖H1([0,1]) = ‖f‖L2([0,1]) + ‖Df‖L2([0,1]) .

In this setting, we will prove consistency for the semi-metrics dp given below.

4.1. Discretization

Consider the semi-metric

dp(X ,X1) = d(X p,X p
1 ) =

1
p

p∑
j=1

|X (tj)−X1(tj)|2
1/2

,

where X p(t) = F (X )(t) =
∑p

j=1 φj(t)X (tj) with φj(t) = I[tj ,tj+1)(t). In this case, consistency
will hold for any sequence cn,p→ 0 as n, p→∞ such that n2PX,X1 (‖X‖H+‖X1‖H ≥ pcn,p) → 0.

4.2. Kernel smoothing

Let us consider now the semi-metric

dp(X ,X1) = d(X p,X p
1 ) =

(∫ 1

0
|X p(t)−X p

1 (t)|2 dt

)1/2

,

where X p(t) = F (X )(t) =
∑p

j=1 φj(t)X (tj) with φj(t) = K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
and K is a regular

kernel supported in [0, 1]. In this case, consistency will be true for any sequence cn,p → 0 as
n, p →∞ satisfying n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) → 0.

Let us note that if EX (‖X‖2
H) < ∞, the consistency for the cases given in Sections 4.1

and 4.2 will hold for any sequence cn,p such that n
pcn,p

→ 0.
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4.3. Eigenfunction expansions

Let X ,X1 be i.d. random elements on H = L2[0, 1]. Let v1, v2, ... be the orthonormal
eigenfunctions of the covariance operator EX (X (t)X (s)) (without loss of generality we have
assumed that E (X (t)) = 0) associated with the eigenvalues λ1 ≥ λ2 ≥ ... such that

EX (X (t)X (s)) =
∞∑

k=1

λk vk(t)vk(s) .

If E
(∫
X 2(s) ds

)
<∞ is finite, using the Karhunen–Loève representation, we can write X as

(4.1) X (t) =
∞∑

k=1

(∫
X (s)vk(s) ds

)
vk(t)

.=
∞∑

k=1

ξk vk(t) ,

with E (ξk) = 0, E (ξkξj) = 0 (i.e., ξ1, ξ2, ... uncorrelated) and var (ξk) = E
(
ξ2
k

)
= λk =

E
((∫

X (s)vk(s) ds
)2). The classical L2-norm in H can be written as

(4.2) d(X ,X1) =

√√√√ ∞∑
k=1

(∫ (
X (t)−X1(t)

)
vk(t) dt

)2
.

If we consider the truncated expansion of X as given in [15],

(4.3) X p(t) =
p∑

k=1

(∫
X (s)vk(s) ds

)
vk(t) ,

we can define the parametrized class of seminorms from the classical L2-norm given by

‖X‖p =

√∫ (
X p(t)

)2
dt =

√√√√ p∑
k=1

(∫
X (t)vk(t) dt

)2
,

which leads to the semi-metric

(4.4) dp(X ,X1) = d(X p,X p
1 ) =

√√√√ p∑
k=1

(∫
(X (t)−X1(t))vk(t) dt

)2
.

In this case, the consistency will hold for any sequence cn,p → 0 such that n2

c2n,p

∑∞
k=p+1 λk → 0

as n, p →∞.

5. SIMULATION STUDY

In order to illustrate the results given in Theorems 3.1 and 3.2, we perform a small
simulation study where we compare the behaviour of the estimators, η̂n and η̂n,p for finite
sample sizes settings. Following [7], we simulate n pairs {(Xi(t), Yi)}n

i=1 where, for t ∈ [0, π],
and for each i = 1, ..., n,

Xi(t) = ai cos(2t) , ai ∼ N(0, σ = 0.1) .

The plot of n = 100 curves is shown in Figure 1.
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Figure 1: Simulated curves for n = 100.

The responses were generated following the model

Yi = η(Xi) + εi , εi ∼ N(0, σ = 0.4) ,

for different regression functions η as listed below:

Setting 1: η(Xi) = a2
i (see [7]);

Setting 2: η(Xi) =
(∫ π

0 sin(4πt)Xi(t) dt
)2 (see [11]);

Setting 3: η(Xi) =
∫ π
0 |Xi(t)| log(|Xi(t)|) dt (see [14]);

Setting 4: η(Xi) =
∫ π
0 X

2
i (t) dt (see [2]).

For the full model we used the classical L2-metric which in this case gives

d(Xi,Xj) =
(∫ π

0

(
Xi(t)−Xj(t)

)2
dt

)1/2

=
(∫ π

0
(ai − aj)2 cos2(2t) dt

)1/2

=
(∫ π

0
cos2(2t) dt

)1/2

|ai − aj | =
√

π

2
|ai − aj | .

For the discretized model, we divided the interval of time [0, π] in p+1 subintervals of length π
p .

The semimetric in this case is given by

dp(X ,X1) = d(X p,X p
1 ) =

(∫ π

0
|X p(t)−X p

1 (t)|2 dt

)1/2

≈

(
1
p

p∑
k=1

(
Xi(tk)−Xj(tk)

)2)1/2

.

For both estimators η̂n and η̂n,p, we used the Epanechnikov kernel K(u) = 3
4 (1− u2)I[0,1](u)

and the bandwidths hn and hn,p were chosen via cross validation.

In both cases the sample of size n was divided in two samples of the same size, the
learning sample, used to compute the optimal smoothing parameter and the testing sample,
used to measure the power of both methods by the Mean Square Error (MSE). For different
combination of n and p we repeated 250 times the procedure of building n/2 learning sam-
ples and n/2 testing samples and computing the MSE’s for the full and discretized models.
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The following tables show the mean over the 250 MSE’s for all estimators. As we can see,
the simulations confirm our theoretical results since, for the four different settings we can see
the consistency as n, p →∞ stated in Theorem 3.1 and also the equal order or convergence
stated in Theorem 3.2.

Table 1: MSE’s for Setting 1.

n
Discretized model

Full model
20 40 60 80

50 0.1871725 0.1829381 0.1819154 0.1817674 0.1818614
100 0.1784129 0.1661579 0.1661309 0.1660854 0.1659922
150 0.1727869 0.1674195 0.1675846 0.1674071 0.1672996
200 0.1671014 0.1629972 0.1629855 0.1630360 0.1631458
250 0.1646048 0.1631582 0.1631817 0.1632266 0.1632193
300 0.1653583 0.1638297 0.1637960 0.1638118 0.1637993

Table 2: MSE’s for Setting 2.

n
Discretized model

Full model
20 40 60 80

50 0.1919580 0.1796157 0.1795600 0.1789984 0.1789860
100 0.1787471 0.1684685 0.1684097 0.1684710 0.1685058
150 0.1731875 0.1661859 0.1661971 0.1663508 0.1663451
200 0.1695872 0.1646054 0.1646025 0.1646861 0.1646566
250 0.1658714 0.1622371 0.1621559 0.1621067 0.1621016
300 0.1655437 0.1633919 0.1634236 0.1634164 0.1634100

Table 3: MSE’s for Setting 3.

n
Discretized model

Full model
20 40 60 80

50 0.1875816 0.1752962 0.1744660 0.1751941 0.1748388
100 0.1797477 0.1672346 0.1671503 0.1671671 0.1671481
150 0.1706658 0.1662048 0.1661369 0.1661024 0.1660888
200 0.1696802 0.1683357 0.1681568 0.1681344 0.1681435
250 0.1666817 0.1651802 0.1652298 0.1652369 0.1652162
300 0.1626991 0.1622967 0.1623146 0.1622935 0.1623169

Table 4: MSE’s for Setting 4.

n
Discretized model

Full model
20 40 60 80

50 0.1951465 0.1867710 0.1872990 0.1870323 0.1869950
100 0.1824836 0.1694453 0.1694464 0.1695669 0.1695569
150 0.1717909 0.1655053 0.1656256 0.1657503 0.1657367
200 0.1692647 0.1657557 0.1655030 0.1655163 0.1655050
250 0.1651644 0.1630851 0.1631351 0.1630439 0.1630378
300 0.1665684 0.1655066 0.1655070 0.1654343 0.1654715
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APPENDIX A – Proofs of auxiliary results

To prove the consistency of the examples given in sections 4.1 and 4.2 we need the
following result.

Proposition A.1. Let X p(t) =
∑p

j=1 φj(t)X (tj) with φj satisfying:

(a) for each t ∈ [0, 1],
∑p

j=1 φj(t) = 1;

(b) for each t ∈ [0, 1],
∑p

j=i φ
2
j (t) ≤ C3 for some constant C3;

(c) supp (φj) ⊂ [t(j−m), t(j+m)] with m independent of p.

If cn,p → 0 as n, p →∞ is such that n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) → 0, H2 is fulfilled.

Proof of Proposition A.1: Using the Fundamental Theorem of Calculus (FTC)
(see Theorem 8.2 in [6]) for H1([0, 1]), we get

d2(X p,X ) =
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

X (tj)φj(t)−X (t)

∣∣∣∣∣∣
2

dt

=
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

(X (tj)−X (t))φj(t)

∣∣∣∣∣∣
2

dt (by (a))

=
∫ 1

0

∣∣∣∣∣∣
p∑

j=1

(∫ t

tj

DX (s) ds

)
φj(t)

∣∣∣∣∣∣
2

dt (from FTC)

≤
∫ 1

0

 p∑
j=1

(∫ t

tj

DX (s) ds

)2

I{supp(φj)}(t)

 p∑
j=1

φ2
j (t)

 dt (by C-S Ineq.)

.
∫ 1

0

p∑
j=1

(∫ t

tj

DX (s) ds

)2

I{supp(φj)}(t) dt (by (b))

.
∫ 1

0

p∑
j=1

(∫ t

tj

(DX (s))2 ds

)
|t− tj |I{supp(φj)}(t) dt (by C-S Ineq.)

=
p∑

i=1

∫ ti+1

ti

p∑
j=1

j:|j−i|≤m

(∫ t

tj

(DX (s))2 ds

)
|t− tj | dt (by (c))

.
p∑

i=1

p∑
j=1

j:|j−i|≤m

∫ ti+m

ti−m

(DX (s))2
(∫ tj+1

tj

|t− tj | dt

)
ds

.
m

p2

p∑
i=1

p∑
j=1

j:|j−i|≤m

∫ ti+m

ti−m

(DX (s))2 ds
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.
m2

p2

p∑
i=1

∫ ti+m

ti−m

(DX (s))2 ds

=
m2

p2

∫ 1

0

p∑
i=1

I[ti−m,ti+m](s)(DX (s))2 ds .
1
p2
‖X‖2

H ,

from where we get d(X p,X ) . 1
p ‖X‖H. Analogously we can prove that d(X p

1 ,X1) . 1
p ‖X1‖H.

By triangular inequality,

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

≤ n2PX ,X1 (‖X‖H + ‖X1‖H ≥ pcn,p) ,

and therefore, for any cn,p → 0 such that n2PX ,X1(‖X‖H+‖X1‖H ≥ pcn,p)→ 0 H2 is fulfilled.

A.1. Consistency for the example in Section 4.1

Since the functions φj(t)= I[tj ,tj+1)(t) satisfy trivially conditions (a)–(c)of PropositionA.1,
H2 is fulfilled and therefore, for any sequence hn,p(x) → 0 satisfying (H3.1) and (H3.2) in
Theorem 3.1, we get the consistency of η̂n,p.

A.2. Consistency for the example in Section 4.2

Observe that φj(t) = K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
satisfies conditions (a)–(c) in Proposition A.1:

(a) for each t ∈ [0, 1],
∑p

j=1 φj(t) =
∑p

j=1
K(|t−tj |/h)

Pp
i=1 K(|t−ti|/h)

= 1;

(b) since K is nonnegative and K(|t−tj |/h)
Pp

i=1 K(|t−ti|/h)
≤ 1, for each t ∈ [0, 1], there exists

C3 = 1 such that

p∑
j=1

φ2
j (t) =

p∑
j=1

(
K(|t− tj |/h)∑p
i=1 K(|t− ti|/h)

)2
≤

p∑
j=1

K(|t− tj |/h)∑p
i=1 K(|t− ti|/h)

= 1;

(c) supp (φj) = supp (K(|t− tj |/h)) = [tj−h, tj +h], which implies that, for h ≤ m/p,
supp (φj) ⊂ [t(j−m), t(j+m)].

This implies that H2 is fulfilled then, for any sequence hn,p(x) → 0 satisfying (H3.1) and
(H3.2) in Theorem 3.1, we get the consistency of η̂n,p.
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A.3. Consistency for the example in Section 4.3

Let us consider the truncated expansion of X , X p(t), given by (4.3) and the pseudo-
metric dp(X ,X1) = d(X p,X p

1 ) given by (4.4). In order to prove H2, let us consider cn,p such
that n2

c2n,p

∑∞
k=p+1 λk → 0. Using Chebyshev’s Inequality in (3.1) followed by Cauchy Schwartz,

we get

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

(A.1)

≤ n2

c2
n,p

EX ,X1

(
(d(X ,X1)− dp(X ,X1))

2 ).
Now, since d(X ,X1)≥ dp(X ,X1) we have that 0≤ d(X ,X1)−dp(X ,X1) = d(X ,X1)−d(X p,X p

1 )
and, by triangular inequality d(X,X1)≤ d(X,X p)+d(X p,X p

1 )+d(X p
1,X1) which implies that

(A.2) 0 ≤ d(X ,X1)− dp(X ,X1) ≤ d(X ,X p) + d(X p
1 ,X1)

and, taking squares,

0 ≤ (d(X ,X1)− dp(X ,X1))2 ≤ (d(X ,X p) + d(X p
1 ,X1))2 ≤ 2

(
d2(X ,X p) + d2(X p

1 ,X1)
)
.

As a consequence, to proof this proposition it will sufficient to bound EX
(
d2(X ,X p)

)
(equiv-

alently, EX1

(
d2(X1,X p

1 )
)
). Since vk are orthonormal,

d2(X ,X p) =
∫ (

X (s)−
p∑

k=1

(∫
X (t)vk(t) dt

)
vk(s)

)2

ds

=
∞∑

k=p+1

(∫
X (t)vk(t) dt

)2

.

Then, we have

EX
(
d2(X ,X p)

)
= EX

 ∞∑
k=p+1

(∫
X (t)vk(t) dt

)2


=
∞∑

k=p+1

λk (from (4.1)) .

Analogously we can prove that EX1

(
d2(X1,X p

1 )
)

=
∑∞

k=p+1 λk. Therefore, in (A.1) we get

n2EX
(
P2
X1|X

(
|d(X ,X1)− dp(X ,X1)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))

.
n2

c2
n,p

∞∑
k=p+1

λk → 0 .

This implies that H2 is fulfilled then, for any sequence hn,p(x) → 0 satisfying (H3.1) and
(H3.2) in Theorem 3.1, we get the consistency of η̂n,p.
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APPENDIX B – Proof of Proposition 2.2 and Theorems 3.1 and 3.2

To prove Proposition 2.2 we need some preliminary results whose proofs can be found
in [16].

Theorem B.1 (Theorem 3.4). If η ∈ L2(H, µ) and η̂n is the estimator given in (2.2)

with weights Wn(X ) = {Wni(X )}n
i=1 satisfying the following conditions:

(i) there is a sequence of nonnegative random variables an(X ) → 0 a.s. such that

lim
n→∞

E

(
n∑

i=1

Wni(X )I{d(X ,Xi)>an(X )}

)
= 0 ;

(ii)
lim

n→∞
E
(

max
1≤i≤n

Wni(X )
)

= 0 ;

(iii) for all ε > 0 there exists δ > 0 such that for any η∗ bounded and continuous

function fulfilling EX ((η(X )− η∗(X ))2) < δ we have that

E

(
n∑

i=1

Wni(X )(η∗(Xi)− η(Xi))2
)

< ε ;

then η̂n is mean square consistent.

Corollary B.1 (Corollary 3.3). Let Un be a sequence of probability weights satisfy-

ing conditions (i), (ii) and (iii) of Theorem B.1. If Wn is a sequence of weights such that∑n
i=1 Wni(X ) = 1 and, for each n ≥ 1, |Wn| ≤ MUn for some constant M ≥ 1, then the esti-

mator given in (2.2) with weights Wn(X ) is mean square consistent.

Lemma B.1 (Lemma A.1). Let H be a separable metric space. If A = supp (µ) =
{x ∈ H : µ

(
B(x, ε)

)
> 0,∀ ε > 0)} then µ

(
A
)

= 1.

Proof of Proposition 2.2: Let x ∈ supp (µ) be fixed. Let us observe that, since K

is regular, there exist constants 0 < c1 < c2 < ∞ such that, for each i,

(B.1) Wni(x) =
K
(

d(Xi,x)
hn(x)

)
∑n

j=1 K
(

d(Xj ,x)
hn(x)

) ≤ c2

c1

I{d(Xi,x)≤hn(x)}∑n
j=1 I{d(Xj ,x)≤hn(x)}

.=
c2

c1
Uni(x) .

Let hn(x) → 0 such that hn(x) ≥ Hn(x) (Hn(x) → 0 by Lemma 2.2, for x ∈ supp (µ)). From
(B.1) and Corollary B.1, it suffices to prove that the weights Uni satisfy conditions (i), (ii)
and (iii) of Theorem B.1. To prove (i) let us take an(x) = h

1/2
n (x) → 0. Then, by Lemma B.1,

E

(
n∑

i=1

Uni(X )I{d(Xi,X )>hn(X )1/2}

)

= EX

(
EDn|X

(
I{X∈supp(µ)}

n∑
i=1

Uni(X )I{d(Xi,X )>hn(X )1/2}
∣∣∣X ∈ supp (µ)

))
.



Nonparametric Regression Based on Discretely Sampled Curves 15

Given ε > 0, let x ∈ supp (µ) be fixed. Since hn(x) → 0, there exists N1 = N1(x) such that if
n ≥ N1, I{hn(x)1/2<d(xi,x)≤hn(x)} = 0 for all i and, consequently,

EDn

(
1∑n

j=1 I{d(xj ,x)≤hn(x)}

n∑
i=1

I{hn(x)1/2<d(xi,x)≤hn(x)}

)
< ε .

In addition,

Pn
i=1 I{hn(x)1/2<d(xi,x)≤hn(x)}
Pn

j=1 I{d(xj,x)≤hn(x)}
≤ 1, from what follows that

EDn

(
1∑n

j=1 I{d(xj ,x)≤hn(x)}

n∑
i=1

I{hn(x)1/2<d(xi,x)≤hn(x)}

)
≤ 1 .

Therefore, by the dominated convergence theorem we have that condition (i) is satisfied.
Now, since hn(x) ≥ Hn(x),

n∑
j=1

I{d(Xj ,x)≤hn(x)} ≥
n∑

j=1

I{d(Xj ,x)≤Hn(x)} = kn → ∞ .

Therefore,

max
1≤i≤n

Uni(x) ≤ max
1≤i≤n

1∑n
j=1 I{d(Xj ,x)≤hn(x)}

≤ 1
kn

→ 0 ,

from what we derive (ii) using the dominated convergence theorem. It remains to verify that
condition (iii) holds. Since η ∈ L2(H, µ) which is separable and complete, there exists η∗

continuous and bounded such that, for all δ > 0, EX ((η(X )− η∗(X ))2) < δ. Then,

E

(
n∑

i=1

Uni(X )(η∗(Xi)− η(Xi))2
)

= EX

(
EDn|X

(
I{X∈supp(µ)}

n∑
i=1

Uni(X )(η∗(Xi)− η(Xi))2|X ∈ supp (µ)

))
.

Let x ∈ supp (µ) be fixed. From [16], Lemma A.7, for any nonnegative bounded measurable
function f , we have

EDn

(
n∑

i=1

Uni(x)f(Xi)

)
≤ 12

1
µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

f(y) dµ(y) .

Then, applying the inequality to f(Xi) = (η∗(Xi)− η(Xi))2, we get

EDn

(
n∑

i=1

Uni(x)(η∗(Xi)− η(Xi))2
)

.
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(y)− η(y))2 dµ(y)

≤ 1
µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(y)− η∗(x))2 dµ(y)

+
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η∗(x)− η(x))2 dµ(y)

+
1

µ
(
B(x, hn(x))

) ∫
B(x,hn(x))

(η(x)− η(y))2 dµ(y)

.= f1,n(x) + f2,n(x) + f3,n(x)) .
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This part will be complete if we show that the expectation with respect to X of these three
functions converges to zero. For this, let ε > 0 and δ ≤ ε. Since η∗ is continuous, there
exists r = r(x, ε) > 0 such that if d(x, y) < r then |η∗(x)− η∗(y)| < ε. On the other hand,
since hn(x) → 0, for that r(x, ε) > 0, there exists N2 = N2(x, r(x, ε)) such that if n ≥ N2,
hn(x) < r. Then, f1,n(x) = 1

µ
(
B(x,hn(x))

) ∫
B(x,hn(x))(η

∗(y)− η∗(x))2 dµ(y) < ε for n ≥ N2 and

in addition it is bounded so, by the dominated convergence theorem we have that

EX (f1,n(X )) → 0 .

For the second term, since δ ≤ ε, we have that

EX (f2,n(X )) = EX ((η(X )− η∗(X ))2) < ε .

Finally, since η is bounded,

EX (f3,n(X )) . EX

(
1

µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y)

)
,

which converge to zero if the bounded random variables

1
µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y)

converge to zero in probability. To see this, let λ > 0 be fixed. For every δ0 > 0,

PX

(
1

µ
(
B(X , hn(X ))

) ∫
B(X ,hn(X ))

|η(X )− η(y)| dµ(y) > λ

)

≤ PX (hn(X ) > δ0) + sup
δ≤δ0

PX

(
1

µ
(
B(X , δ)

) ∫
B(X ,δ)

|η(X )− η(y)| dµ(y) > λ

)
.

Since hn(X ) → 0 a.s. the first term converges to zero while the second term does thanks to
the truth of the Besicovitch condition (2.4).

Proof of Theorem 3.1:

Proof of (a): Let us define Dn = {X1, ...,Xn} and Cn = {Y1, ..., Yn}. In order to prove
the mean square consistency, we consider

E
(
(η̂n,p(X )− η(X ))2)

)
= EX

(
EDn,Cn|X

(
(η̂n,p(X )− η(X ))2)

∣∣X )) .

Let x ∈ supp (µ) be fixed. To simplify the notation, we set E (·) = EDn,Cn|X (·). Then, for a
particular hn(x) ≥ h∗n(x) to be defined later, let us define the theoretical quantities

K

(
d(x,Xi)
hn(x)

)
.= Ki(x) .= Ki and K

(
dp(x,Xi)
hn,p(x)

)
.= Ki,p(x) .= Ki,p ,

and, as in (2.3),
Ki∑n

j=1 Kj

.= Wi and
Ki,p∑n

j=1 Kj,p

.= Wi,p .

Let us consider the following auxiliary unobservable quantities:

η̂n(x) =
n∑

i=1

WiYi , ηn(x) =
n∑

i=1

Wiη(Xi) and ηn,p(x) =
n∑

i=1

Wi,pη(Xi) .
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Then, we have

η̂n,p(x)− η(x) = [η̂n,p(x)− ηn,p(x)] + [ηn,p(x)− ηn(x)] + [ηn(x)− η̂n(x)] + [η̂n(x)− η(x)]

=
n∑

i=1

Wi,p(Yi − η(Xi)) +
n∑

i=1

(Wi,p −Wi)η(Xi) +
n∑

i=1

Wi(η(Xi)− Yi)

+ [η̂n(x)− η(x)]

=
n∑

i=1

(Wi,p −Wi)(Yi − η(Xi)) +
n∑

i=1

(Wi,p −Wi)η(Xi)

+ [η̂n(x)− η(x)] .

Taking squares and expectation in Dn, Cn, we have

E
(
(η̂n,p(x)− η(x))2)

)
. E

( n∑
i=1

(Wi,p −Wi)(Yi − η(Xi))

)2


+ E

( n∑
i=1

(Wi,p −Wi)η(Xi)

)2


+ E
(
([η̂n(x)− η(x)])2

)
.= I + II + III .

By Proposition 2.1 and Remark 2.2 (since hn(x) → 0 and hn(x) ≥ h∗n(x)), taking expectation
on X we have that term III converges to zero. For the first term, we have

I ≈ E

( n∑
i=1

(Wi,p −Wi)(Yi − η(Xi))

)2


= E

 n∑
i=1

n∑
j=1

(Wi,p −Wi)(Wj,p −Wj)eiej

 (Yi − η(Xi) = ei)

= E

 n∑
i=1

n∑
j=1

(Wi,p −Wi)(Wj,p −Wj)ECn|Dn
(eiej |Dn)


= E

(
n∑

i=1

|Wi,p −Wi|2ECn|Dn

(
e2

i |Dn

))
(cond. ind.)

= σ2E

(
n∑

i=1

|Wi,p −Wi|2
)

.

On the other hand, since η is bounded, in II we have

II = E

( n∑
i=1

(Wi,p −Wi)η(Xi)

)2
 . E

( n∑
i=1

|Wi,p −Wi|

)2
 .
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We will see that terms I and II converge to zero by splitting the sum in different pieces:

(1) A1
.=
{

i : dp(x,Xi) > hn,p(x), d(x,Xi) > hn(x)
}

;

(2) A2
.=
{

i : dp(x,Xi) > hn,p(x), d(x,Xi) ≤ hn(x)
}

;

(3) A3
.=
{

i : dp(x,Xi) ≤ hn,p(x), d(x,Xi) > 3hn(x)
}

;

(4) A4
.=
{

i : dp(x,Xi) ≤ hn,p(x), d(x,Xi) ≤ 3hn(x)
}

.

Case (1) is trivial since in this case K is supported in [0, 1] which implies that Wi,p = Wi = 0.
Let us start, therefore, with case (2).

(2) Let A2
.=
{
i : dp(x, X i) > hn,p(x), d(x, X i) ≤ hn(x)

}
. Observe that in this

case Wi,p = 0 since K is supported in [0, 1]. Therefore, since |Wi| ≤ 1 we get

IA2

.= E

(
n∑

i=1

|Wi|2I{i∈A2}

)
≤ E

(
n∑

i=1

I{i∈A2}

)

and

(B.2) IIA2

.= E

( n∑
i=1

|Wi|I{i∈A2}

)2
 ≤ E

( n∑
i=1

I{i∈A2}

)2
 .= CA2 .

Observe that the i.i.d. random variables I{i∈A2} have a Bernoulli distribution with parameter

p = PX1 (dp(x,X1) > hn,p(x), d(x,X1) ≤ hn(x))

≤ PX1 (dp(x,X1)− d(x,X1) ≥ hn,p(x)− hn(x))

≤ PX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) (by H3.2) .

As a consequence, the random variable Z
.=
∑n

i=1 I{i∈A2} has Binomial distribution with
parameters n and p and expectation E (Z) = np. This implies that

(B.3) IA2 . E (Z) ≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) ,

and, since E
(
Z2
)

= np(1− p) + n2p2 ≤ np + (np)2,

IIA2 ≤ CA2 . E
(
Z2
)
≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p)(B.4)

+
(
nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p)

)2
.

(3) Let A3
.=
{
i : dp(x, X i) ≤ hn,p(x), d(x, X i) > 3hn(x)

}
. Observe that in this

case Wi = 0 since K is supported in [0, 1]. Then, since ∀ i, |Wi,p| ≤ 1, we get

IA3

.= E

(
n∑

i=1

|Wi,p|2 I{i∈A3}

)
≤ E

(
n∑

i=1

I{i∈A3}

)
,

and

(B.5) IIA3

.= E

( n∑
i=1

|Wi,p| I{i∈A3}

)2
 ≤ E

( n∑
i=1

I{i∈A3}

)2
 .
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Now, the i.i.d. random variables I{i∈A3} have Bernoulli distribution with parameter

p = PX1 (dp(x,X1) ≤ hn,p(x), d(x,X1) > 3hn(x))

≤ PX1 (d(x,X1)− dp(x,X1) ≥ 3hn(x)− hn,p(x)) .

As a consequence, the random variable Z
.=
∑n

i=1 I{i∈A3} has Binomial distribution with
parameters n and p. But from (H3.1), for n large enough, hn(x) ≥

(
1+C2

2

)
cn,p which, together

with H3.2 implies that

3hn(x)− hn,p(x) ≥ 2hn(x)− C2cn,p ≥ cn,p ,

and then, for n large enough,

p ≤ PX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) .

Therefore, since E (Z) = np we have

(B.6) IA3 . E (Z) ≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p) ,

and since E
(
Z2
)

= np(1− p) + n2p2 ≤ np + (np)2,

IIA3 . E
(
Z2
)
≤ nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p))(B.7)

+
(
nPX1 (|dp(x,X1)− d(x,X1)| ≥ cn,p))

)2
.

(4) Let A4
.=
{
i : dp(x, X i) ≤ hn,p(x), d(x, X i) ≤ 3hn(x)

}
. In this case we write,

Wi,p −Wi =
Ki,p∑n

j=1 Kj,p
− Ki∑n

j=1 Kj

=
Ki,p∑n

j=1 Kj,p
− Ki∑n

j=1 Kj,p
+

Ki∑n
j=1 Kj,p

− Ki∑n
j=1 Kj

= (Ki,p −Ki)
1∑n

j=1 Kj,p
+ Ki

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj
∑n

j=1 Kj,p

= (Ki,p −Ki)
1∑n

j=1 Kj,p
+ Wi

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p
.

Then,

IA4

.= E

(
n∑

i=1

|Wi,p −Wi|2I{i∈A4}

)

. E

(
n∑

i=1

|Ki,p −Ki|2
I{i∈A4}

(
∑n

j=1 Kj,p)2

)

+ E

 n∑
i=1

W 2
i I{i∈A4}

(∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p

)2
(B.8)

. E

(
n∑

i=1

|Ki,p −Ki|2
I{i∈A4}

(
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)})2

)
(K regular)

+ E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2
 (

|Wi| ≤ 1,

n∑
i=1

Wi = 1

)
.= I1

A4
+ I2

A4
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and

IIA4

.= E

( n∑
i=1

|Wi,p −Wi|I{i∈A4}

)2


. E

( n∑
i=1

|Ki,p −Ki|
I{i∈A4}∑n
j=1 Kj,p

)2


+ E

( n∑
i=1

WiI{i∈A4}

∑n
j=1(Kj −Kj,p)∑n

j=1 Kj,p

)2
(B.9)

. E

( n∑
i=1

|Ki,p −Ki|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
 (K regular)

+ E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2
 (|Wi| ≤ 1)

.= II1
A4

+ II2
A4

.

Observe that if
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)} = 0 then ∀ j, I{j∈A4} = 0 so in this case, I1
A4

and II1
A4

are zero. Then, in what follows we will assume that
∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)} 6= 0. Since K is
Lipschitz and we are only considering the indexes i such that dp(x,Xi) ≤ hn,p(x), we get

|Ki,p −Ki| =
∣∣∣∣K (

dp(x,Xi)
hn,p(x)

)
−K

(
d(x,Xi)
hn(x)

)∣∣∣∣
.

∣∣∣∣dp(x,Xi)
hn,p(x)

− d(x,Xi)
hn(x)

∣∣∣∣
=
|dp(x,Xi)hn(x)− d(x,Xi)hn,p(x)|

hn,p(x)hn(x)

≤ |dp(x,Xi)− d(x,Xi)|
hn(x)

+
dp(x,Xi)|hn(x)− hn,p(x)|

hn(x)hn,p(x)

.
|dp(x,Xi)− d(x,Xi)|

hn(x)
+

cn,p

hn(x)
(by H3.2) .

Therefore,

I1
A4

.
1

h2
n(x)

E

(
n∑

i=1

|dp(x,Xi)− d(x,Xi)|2
I{i∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2

E

(
n∑

i=1

I{i∈A4}(∑n
j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
)

(B.10)

.
1

h2
n(x)

E

(
n∑

i=1

|dp(x,Xi)− d(x,Xi)|2
I{j∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2
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and

II1
A4

.
1

h2
n(x)

E

( n∑
i=1

|dp(x,Xi)− d(x,Xi)|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2


+
(

cn,p

hn(x)

)2
E

( n∑
i=1

I{i∈A4}∑n
j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
(B.11)

.
1

h2
n(x)

E

( n∑
i=1

|dp(x,Xi)− d(x,Xi)|
I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2


+
(

cn,p

hn(x)

)2
.

(4.1) Let A41
.= A4 ∩

{
i : |dp(x, X i) − d(x, X i)| ≤ cn,p

}
. In this case, by (H3.1)

we get

I1
A41

.=
c2
n,p

h2
n(x)

E

( ∑n
i=1 I{i∈A4}(∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}
)2
)

+
(

cn,p

hn(x)

)2
.

(
cn,p

hn(x)

)2
(B.12)

and

II1
A41

.=
c2
n,p

h2
n(x)

E

( ∑n
i=1 I{i∈A4}∑n

j=1 I{j:dp(x,Xj)≤hn,p(x)}

)2
+

(
cn,p

hn(x)

)2
.

(
cn,p

hn(x)

)2
.(B.13)

(4.2) Let A42
.= A4 ∩

{
i : |dp(x, X i)−d(x, X i)| > cn,p

}
. Let us define the i.i.d. ran-

dom variables Zi
.= dp(x,Xi)− d(x,Xi), i = 1, ..., n. Since dp(x,Xi) ≤ hn,p(x) and d(x,Xi) ≤

3hn(x) we have that |Zi| ≤ hn,p(x) + 3hn(x). Observe that, from (H3.2) and (H3.1), respec-
tively, for n large enough we have

hn,p ≤ hn(x) + C2cn,p ≤ Chn(x) .

Which implies that, for n large enough, |Zi| ≤ Chn(x). Therefore,

I1
A42

.=
1

h2
n(x)

E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
≤ 1

h2
n(x)

E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(B.14)

≤ n

h2
n(x)

E
(
|Z1|2I{cn,p≤|Z1|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(#A42 ≤ n)

.
n

hn(x)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
+
(

cn,p

hn(x)

)2
(|Z1| . hn(x)) .

On the other hand,

II1
A42

.=
1

h2
n(x)

E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2
+

(
cn,p

hn(x)

)2

≤ 1
h2

n(x)
E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2
+

(
cn,p

hn(x)

)2
.(B.15)
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Observe that, for i 6= j, Zi is independent of Zj , then

E

( n∑
i=1

|Zi|I{i:cn,p≤|Zi|≤Chn(x)}

)2


= E

 n∑
i=1

n∑
j=1

|Zi||Zj |I{i:cn,p≤|Zi|≤Chn(x)}I{j:cn,p≤|Zj |≤Chn(x)}


= E

(
n∑

i=1

|Zi|2I{i:cn,p≤|Zi|≤Chn(x)}

)

+ E

(
n∑

i=1

n∑
j=1
j 6=i

|Zi||Zj |I{i:cn,p≤|Zi|≤Chn(x)}I{j:cn,p≤|Zj |≤Chn(x)}

)

≤ nE
(
|Z1|2I{cn,p≤|Z1|≤Chn(x)}

)
+ n2E

(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
. nhn(x)E

(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
+ n2

(
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

))2 (|Z1| . hn(x)) .

Using this bound in (B.15), we get

II1
A42

.
n

hn(x)
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
(B.16)

+
n2

h2
n(x)

(
E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

))2 +
(

cn,p

hn(x)

)2
.

We need to compute the expectation E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
, which is

E
(
|Z1|I{cn,p≤|Z1|≤Chn(x)}

)
=
∫ hn(x)

cn,p

P (|Z1| > t) dt

≤ P (|Z1| > cn,p)
∫ hn(x)

cn,p

dt

≤ P (|Z1| > cn,p) hn(x) .

Therefore, with this inequality in (B.14), we have

I1
A42

. nP (|Z1| > cn,p) +
(

cn,p

hn(x)

)2
(B.17)

= nP (|dp(x,X1)− d(x,X1)| > cn,p) +
(

cn,p

hn(x)

)2
and, with the same inequality in (B.16),

II1
A42

. nP (|Z1| > cn,p) + (nP (|Z1| > cn,p))2 +
(

cn,p

hn(x)

)2
(B.18)

= nP (|dp(x,X1)− d(x,X1)| > cn,p)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
+
(

cn,p

hn(x)

)2
.
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Then, with (B.12) and (B.17) in (B.10) we get

(B.19) I1
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)

and, with (B.13) and (B.18) in (B.11),

II1
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.20)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.

On the other hand, observe that I2
A4

= E
((Pn

j=1 |Kj−Kj,p|Pn
j=1 Kj,p

)2)
. Since Ac

4 = {j : d(x,Xj) >

3hn(x)} ∪ {j : dp(x,Xj) > hn,p(x)}, we can write

∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p
≤
∑n

j=1 |Kj −Kj,p|I{j∈A4}∑n
j=1 Kj,p

+

∑n
j=1 |Kj −Kj,p|I{j:d(x,Xj)>3hn(x)}∑n

j=1 Kj,p

+

∑n
j=1 |Kj −Kj,p|I{j:dp(x,Xj)>hn,p(x)}∑n

j=1 Kj,p
.

Using that K is regular and that
∑n

j=1 Kj,p ≥ 1 (this is since {j : dp(x,Xj) ≤ hn,p(x)} 6= ∅),
we get

I2
A4

= E

(∑n
j=1 |Kj −Kj,p|∑n

j=1 Kj,p

)2


. II1
A4

+ E

 n∑
j=1

|Wj,p|I{j:dp(x,Xj)≤hn,p(x),d(x,Xj)>3hn(x)}

2
+

∑n
j=1 KjI{j:dp(x,Xj)>hn,p(x)}∑n

j=1 Kj,p

. II1
A4

+ IIA3 + E

 n∑
j=1

I{j:dp(x,Xj)>hn,p(x),d(x,Xj)≤hn(x)}

2
≤ II1

A4
+ IIA3 + CA2 ,

where II1
A4

was defined in (B.9), IIA3 in (B.5), and CA2 in (B.2). Then, from (B.20), (B.7)
and (B.4), we have

I2
A4

.

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.21)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.
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Therefore, with (B.19) and (B.21) in (B.8) we have

IA4 .

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.22)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
,

and with (B.20) and (B.21) in (B.9),

IIA4 .

(
cn,p

hn(x)

)2
+ nP (|dp(x,X1)− d(x,X1)| > cn,p)(B.23)

+
(
nP (|dp(x,X1)− d(x,X1)| > cn,p)

)2
.

Finally, to complete the proof of this result (i.e. that I and II converge to zero) we
need to show that the expectation on X of(

cn,p

hn(x)

)2
+ nPX1 (|dp(x,X1)− d(x,X1)| > cn,p) + (nP2

X1
|dp(x,X1)− d(x,X1)| > cn,p)

converges to zero. In order to show it, recall that from H2 we have

n2EX
(
P2
X1|X

(
|dp(X ,X1)− d(X ,X1)| ≥ cn,p

)∣∣X ∈ supp (µ)
)
→ 0 ,

and consequently, by Cauchy Schwartz inequality,

nEX
(
PX1|X (|dp(X ,X1)− d(X ,X1)| ≥ cn,p))

∣∣X ∈ supp (µ)
)
→ 0 .

In addition, from (H3.1) we have

EX

((
cn,p

hn(X )

)2)
→ 0 .

Therefore, taking expectation with respect to X in (B.3), (B.4), (B.6), (B.7), (B.22) and
(B.23), we prove Part (a) of the Theorem.

Proof of (b): The only difference with item (a) is the convergence of term III to zero
which is ensured by Proposition 2.2.

Proof of Theorem 3.2: Let γn →∞ as n →∞ a sequence such that, as n, p →∞,

EX
(

γn

(
cn,p

hn(X )

)2)
→ 0 and, for each i = 1, ..., n,

γnn2EX
(
P2
Xi|X

(
|d(X ,Xi)− dp(X ,Xi)| ≥ cn,p

∣∣∣X ∈ supp (µ)
))
→ 0 .

From proof of Theorem 3.1 we get

E
(
γn(η̂n,p(X )− η(X ))2

)
. γnnEX (PX1 (dp(x,X1)− d(x,X1) ≥ cn,p))

+ EX

(
γn

(
cn,p

hn(X )

)2)
+ E

(
γn(η̂n(X )− η(X ))2

)
,

from what follows that

lim
n,p→∞

E
(
γn(η̂n,p(X )− η(X ))2

)
= 0 .
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