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Abstract:

• The repeated measures analysis for functional data is investigated. In the literature,
the test statistic for the two-sample problem when data are from the same subject
is considered. Unfortunately, the known permutation and bootstrap approximations
for distribution of it may be time-consuming. To avoid this drawback, a Box-type
approximation for asymptotic null distribution of that test statistic is proposed. This
approximation results in a new testing procedure, which is more efficient from a com-
putational point of view than the known ones. Root-n consistency of the new method
is also proved. Via intensive simulation studies, it is found that in terms of size control
and power, the new test is comparable with the known tests. An illustrative example
of the use of tests in practice is also given.
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1. INTRODUCTION

Functional data analysis (FDA) is concerned with data which are viewed as

functions defined over some set T . Examples of functional data can be found in

several application domains such as meteorology, medicine, economics and many

others (for an overview, see Ramsay and Silverman, 2002). Comprehensive sur-

veys about functional data analysis can be found in Ferraty and Vieu (2006),

Horváth and Kokoszka (2012), Ramsay et al. (2009), Ramsay and Silverman

(2002, 2005), Zhang (2013) and in the review papers Cuevas (2014) and Valder-

rama (2007). Many papers available in the literature are devoted to estimation

and classification of functional data, e.g., cluster analysis (Jacques and Preda,

2014; Tokushige et al., 2007; Yamamoto and Terada, 2014), confidence inter-

vals (Lian, 2012), discriminant analysis (Górecki et al., 2014; James and Hastie,

2001; Preda et al., 2007), estimation (Attouch and Belabed, 2014; Chesneau et al.,

2013; Cuevas et al., 2006, 2007; Prakasa Rao, 2010), principal component analysis

(Berrendero et al., 2011; Boente et al., 2014; Boente and Fraiman, 2000; Jacques

and Preda, 2014), variable selection (Gregorutti et al., 2015). Hypothesis testing

problems for functional data are also commonly considered, e.g., heteroscedas-

tic ANOVA problem (Cuesta-Albertos and Febrero-Bande, 2010; Zhang, 2013),

paired two-sample problem (Mart́ınez-Camblor and Corral, 2011), the one-way

ANOVA and MANOVA problem (Abramovich et al., 2004; Cuevas et al., 2004;

Horváth and Rice, 2015; Górecki and Smaga, 2015, 2017), testing equality of

covariance functions (Zhang, 2013), two-sample Behrens–Fisher problem (Zhang

et al., 2010b).

In this paper, the two-sample problem for functional data which are from

the same subject (probably submitted to different conditions) is considered.

We follow the notation of Mart́ınez-Camblor and Corral (2011). Suppose we

have a functional sample consisting of independent trajectories X1(t), ..., Xn(t)

from a stochastic process which may be expressed in the following form

(1.1) Xi(t) = m(t) + εi(t), t ∈ [0, 2],

where εi(t) are random functions with E(εi(t)) = 0 and covariance function C(s, t).

Hence, the null hypothesis is of the form

(1.2) H0 : m(t) = m(t + 1), ∀t ∈ [0, 1].

Concerning t ∈ [0, 2], we ignore (possible) period in which the subject is not

monitored.

To illustrate the testing problem described above, we consider the ortho-

sis data. Seven volunteers (n = 7) were participated in the experiment. First,

they were stepping-in-place without orthosis. Second, they did the same with a

spring-loaded orthosis on the right knee. Under each condition, the moment of
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force at the knee was computed at 256 time points, equally spaced and scaled

to the interval [0, 1]. So the orthosis data can be represented as curves. We are

interested in testing if the mean curves of all volunteers are different under these

two conditions (see Figure 1). As the curves obtained without and with orthosis

are from the same subjects (volunteers), we have a paired two-sample problem

for functional data. The detailed description of the experiment and its analysis

are presented in Section 6.

−30

0

30

0.0 0.5 1.0 1.5 2.0

t

M
o

m
e

n
t

volunteer

1

2

3

4

5

6

7

without orthosis versus with spring 1

Figure 1: The mean curves of all volunteers of the 10 raw orthosis curves
under without orthosis (t ∈ [0, 1]) and with spring 1 (t ∈ [1, 2])
conditions.

For testing (1.2), Mart́ınez-Camblor and Corral (2011) proposed to use the

test statistic

(1.3) Cn = n

∫ 1

0
(X̄(t) − X̄(t + 1))2 dt,

where X̄(t) = n−1
∑n

i=1 Xi(t), t ∈ [0, 2]. This test statistic is based on a simple

idea that the null hypothesis should be rejected whenever the “between group

variability” measured by the difference between sample means is large enough at

a prescribed significance level. As in the standard ANOVA test statistic, appro-

priate “within group variability” measure may be also contained as denominator

in Cn. However, then it seems to be impossible to find the exact sampling dis-

tribution of such statistic, even under Gaussianity assumption. Moreover, since

Mart́ınez-Camblor and Corral (2011) used an asymptotic test (large sample sizes

may be required) and such a denominator tends to some parameter connected

with covariance function as n → ∞, the denominator could be replaced by that

parameter. Then it could be incorporated to the numerator so that it is only nec-

essary to calculate the asymptotic distribution of the test statistic and replaced
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by an estimator in that distribution. This reasoning can be used in homoscedas-

tic as well as heteroscedastic case. Bearing in mind this motivation, Mart́ınez-

Camblor and Corral (2011) used only the numerator (i.e., Cn), and avoided the

homoscedasticity assumption in such a way (see also Cuevas et al., 2004, for

similar argumentation).

Mart́ınez-Camblor and Corral (2011) derived a random expression of their

test statistic (1.3), and approximated the null distribution by a parametric boot-

strap method via re-sampling some Gaussian process involved in the limit ran-

dom expression of Cn under the null hypothesis. Moreover, Mart́ınez-Camblor

and Corral (2011) considered nonparametric approach and proposed bootstrap

and permutation tests. Although these methods work reasonably well in finite

samples, they may be time-consuming. In this paper, we present the Box-type

approximation (Box, 1954; Brunner et al., 1997; also called two-cumulant ap-

proximation, see Zhang, 2013) for the asymptotic distribution of Cn under the

null, and we propose the new test based on this approximation. It is shown to be

root-n consistent. The new testing procedure is also much less computationally

intensive than the re-sampling and permutation tests of Mart́ınez-Camblor and

Corral (2011). Moreover, it is comparable with these tests in terms of size control

and power.

This paper is organized as follows. Section 2 presents the Box-type approx-

imation for the asymptotic null distribution of test statistic Cn and the new test

based on this approximation. Its root-n consistency is proved in Section 3. In

Section 4, an intensive simulation study providing an idea of the size control and

power of the new testing procedure and the tests proposed by Mart́ınez-Camblor

and Corral (2011) is given. The comparison of computational time required to

perform the considered tests is presented in Section 5. Section 6 contains a real-

data example of the use of those tests to the orthosis data. Some concluding

remarks are given in Section 7. In the Appendix, proofs of theoretical results,

numerical implementation of the new test, R code which performs it and addi-

tional simulations are presented.

2. THE TESTING PROCEDURE

In this section, we describe and discuss the new testing procedure for (1.2)

which is based on the Box-type approximation for the asymptotic distribution of

the test statistic Cn given by (1.3) under the null.

Let X1(t), ..., Xn(t) be independent trajectories from a stochastic process

(with expectation function m(t) and covariance function C(s, t), s, t ∈ [0, 2]) ex-

pressed as in (1.1). For theoretical study, we list the following regularity assump-

tions.
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Assumptions:

A1. The mean function m(t) ∈ L2[0, 2] and tr(C)
def
=

∫ 2
0 C(t, t) dt < ∞,

where L2([0, 2]) denotes the set of all square-integrable functions over

[0, 2].

A2. The subject-effect function v1(t)
def
= X1(t) − m(t) satisfies

E‖v1‖4 = E

(∫ 2

0
v2
1(t) dt

)2

< ∞.

A3. For any t ∈ [0, 2], C(t, t) > 0, and maxt∈[0,2] C(t, t) < ∞.

A4. For any (s, t) ∈ [0, 2]2, E
(

v2
1(s)v

2
1(t)

)

< C < ∞, where C is certain

constant independent of any (s, t) ∈ [0, 2]2.

The given assumptions are quite common in functional data analysis liter-

ature (see, for instance, Zhang, 2013; Zhang and Liang, 2014). Assumption A1 is

regular. It guarantees that as n → ∞, the sample mean function will converge to

Gaussian process weakly. Assumptions A2–A4 are additionally imposed to obtain

the consistency of estimator of the covariance function. The uniformly bound-

edness of E
(

v2
1(s)v

2
1(t)

)

in assumption A4 is satisfied when the subject-effect

function v1(t) is uniformly bounded in probability over [0, 2].

Under assumption A1, by (4.7) in Zhang (2013), we have E‖X1‖2 = ‖m‖2 +

tr(C) < ∞. Hence, using the central limit theorem for random elements taking

values in a Hilbert space (see, for example, Zhang, 2013, p. 91) and the continuous

mapping theorem as in the proof of Theorem 1 in Mart́ınez-Camblor and Corral

(2011), under the null hypothesis, we obtain Cn
d→ ‖ξ‖2, as n → ∞, where

d→
denotes convergence in distribution, and ξ(t), t ∈ [0, 1] is a Gaussian process with

mean zero and covariance function

(2.1) K(s, t) = C(s, t) − C(s, t + 1) − C(s + 1, t) + C(s + 1, t + 1), s, t ∈ [0, 1]

(see the proof of Theorem 1 in Mart́ınez-Camblor and Corral, 2011, for more

details). Under assumptions A1 and A3, we have tr(K) is finite, where we use

the fact C(s, t) ≤ (C(s, s)C(t, t))1/2 ≤ maxt∈[0,2] C(t, t) < ∞. Thus, Theorem 4.2

in Zhang (2013) implies ‖ξ‖2 has the same distribution as
∑

k∈N
λkAk, where

Ak, k = 1, 2, ..., is a sequence of independent random variables following a central

chi-squared distribution with one degree of freedom, and λk, k = 1, 2, ..., is the

non-negative sequence, satisfying λ1 ≥ λ2 ≥ ... ≥ λr ≥ ... ≥ 0 and
∑

k∈N
λ2

k < ∞,

of the eigenvalues of K(s, t) given by (2.1). Since Cn
d→ ‖ξ‖2, as n → ∞, we

conclude that

(2.2) Cn
d→ C∗

0 =
∑

k∈N

λkAk

under the null and assumptions A1 and A3. Hence, the test statistic Cn converges

in distribution to a central χ2-type mixture (see Zhang, 2005), under the null and
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assumptions A1 and A3. On the basis of (2.2), the asymptotic null distribution

of Cn is known except the unknown eigenvalues λk, k = 1, 2, ..., of K(s, t). These

unknown eigenvalues can be estimated by the eigenvalues λ̂k, k = 1, 2, ..., of the

following estimator of K(s, t):

(2.3) K̂(s, t) = Ĉ(s, t) − Ĉ(s, t + 1) − Ĉ(s + 1, t) + Ĉ(s + 1, t + 1), s, t ∈ [0, 1],

where Ĉ(s, t) = (n − 1)−1
∑n

i=1(Xi(s) − X̄(s))(Xi(t) − X̄(t)), s, t ∈ [0, 2] is the

unbiased estimator of C(s, t) (see Zhang, 2013, p. 108). Moreover, it is often

sufficient to use only the positive eigenvalues of K̂(s, t). With the sample size n

growing to infinity, the estimator K̂(s, t) is consistent in the sense of the following

lemma. Let
P→ denote convergence in probability.

Lemma 2.1. Under the model (1.1) and assumptions A1–A4, we have

K̂(s, t)
P→ K(s, t) uniformly over [0, 1]2, as n → ∞.

We now apply Box-type approximation (Box, 1954; Brunner et al., 1997)

for approximating the asymptotic null distribution of Cn. This method is also

known as two-cumulant approximation (see Zhang, 2013). It is an example of the

approximation methods using cumulants, which are often considered in functional

data analysis (see, for example, Górecki and Smaga, 2015; Zhang, 2013; Zhang

and Liang, 2014; Zhang et al., 2010b), so we also may name it “two-cumulant

approximation”. The key idea of this method is to approximate the distribution

of C∗
0 by that of a random variable of the form βχ2

d, where the parameters β and

d are determined by matching the first two cumulants or moments of C∗
0 and βχ2

d.

By the results of Zhang (2013, Sections 4.3 and 4.5), we have

(2.4) β =
tr(K⊗2)

tr(K)
, d =

tr2(K)

tr(K⊗2)
,

where tr(K) =
∫ 1
0 K(t, t) dt and K

⊗2 def
=

∫ 1
0 K(s, u)K(u, t) du. The approximation

of the distribution of C∗
0 by that of βχ2

d seems to be sensible, since C∗
0 is a χ2-type

mixture which is nonnegative and generally skewed, and so βχ2
d is. Thus, C∗

0 and

βχ2
d with β and d as in (2.4) have the same range, mean and variance and similar

shapes. However, the distributions of these random variables are usually not the

same. Moreover, the conditional distributions of the parametric and nonparamet-

ric bootstrap and permutation statistics of Mart́ınez-Camblor and Corral (2011)

can be different of the distribution of βχ2
d. Fortunately, these distributions are

very similar to each other, and the distribution of βχ2
d can have flexible shapes

and be adaptive to different shapes of the underlying null distribution of Cn, which

is confirmed by simulation studies of Section 4. From those simulation studies,

we can observe that both the previous and new approximations give very similar

and satisfactory results for small and moderate sample sizes. The same holds for

large samples. For instance, when n = 2000, the empirical sizes of the paramet-

ric and nonparametric bootstrap, permutation and new testing procedures were
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equal to 5.2%, 4.8%, 5.2%, 4.8%, respectively, and the empirical power of all tests

was equal to 100%. These results suggest that the type I error rate (resp. power)

of each test tends to the nominal significance level or to value close to it (resp.

one) as n → ∞.

The natural estimators of β and d are obtained by replacing the covariance

function K(s, t) in (2.4) by its estimator K̂(s, t) given by (2.3), i.e.,

(2.5) β̂ =
tr(K̂⊗2)

tr(K̂)
, d̂ =

tr2(K̂)

tr(K̂⊗2)
.

Therefore, under the null, Cn ∼ β̂χ2
d̂

approximately, and hence the new test (the

BT test) for (1.2) is conducted by computing the p-value of the form

(2.6) P (χ2
d̂

> Cn/β̂),

or for given significance level α, the estimated critical value of Cn given by

(2.7) Ĉn,α = β̂χ2
d̂,α

,

where χ2
r,α denotes the upper 100α percentile of χ2

r . The critical region of the

new testing procedure is of the form {Cn > β̂χ2
d̂,α

}. In the following theorem,

we show that the estimated critical value Ĉn,α tends to theoretical critical value

C0,α = βχ2
d,α, as n → ∞. The consistency of the estimators β̂ and d̂ is also proved

there.

Theorem 2.1. Under the assumptions of Lemma 2.1, as n → ∞, we have

β̂
P→ β and d̂

P→ d. Moreover, we have Ĉn,α
P→ C0,α = βχ2

d,α, as n → ∞.

Numerical implementation of the BT test is described in the Appendix.

This testing procedure is very easy to implement in the R language (R Core

Team, 2015). In the Appendix, we also present and describe the R code which

performs the new test.

3. ASYMPTOTIC POWER UNDER LOCAL ALTERNATIVES

In this section, we investigate the asymptotic power of the BT test under

two kinds of local alternatives. Power of tests under similar types of alternatives

was studied in the literature concerning the functional data analysis (see, for

example, Zhang et al., 2010a, Zhang and Liang, 2014). The formulas for the

asymptotic powers of the BT test are given in the proofs of Theorems 3.1 and

3.2.
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First, we consider the local alternatives of the form H
(1)
1n : m(t)−m(t+1) =

n−τ/2d(t), t ∈ [0, 1], where τ ∈ [0, 1) is fixed and d(t) is any fixed real function such

that ‖d‖ ∈ (0,∞). So, we study the power behavior when the alternatives tend to

the null hypothesis (1.2) with a rate slightly slower than n−1/2. In the following

result, we establish the asymptotic power of the BT test tends to one, as n → ∞,

under H
(1)
1n and under gaussianity assumption of processes Xi(t), i = 1, ..., n in

model (1.1).

Theorem 3.1. Under model (1.1), where Xi(t), i = 1, ..., n are Gaussian

processes, assumptions A1–A4 and the local alternatives H
(1)
1n , τ ∈ [0, 1), the

asymptotic power of the BT test tends to 1 as n → ∞.

We now consider the local alternatives, which tend to the null hypothesis

(1.2) with the root-n rate, i.e., H
(2)
1n : m(t)−m(t+1) = n−1/2d(t), t ∈ [0, 1], where

d(t) is any fixed real function such that ‖d‖ ∈ (0,∞). Here, we do not assume

gaussianity of the observations, but the asymptotic power of the BT test tending

to 1 is obtained when the information provided by d(t) diverges to infinity. This

is presented in the following theorem.

Theorem 3.2. Under model (1.1), assumptions A1–A4 and the local al-

ternatives H
(2)
1n , as n → ∞, the asymptotic power of the BT test tends to 1 as

‖d‖ → ∞.

Theorems 3.1 and 3.2 indicate that the BT test can detect the local al-

ternatives H
(1)
1n and H

(2)
1n with probability tending to one under the assumptions

given above. By the definition of Zhang and Liang (2014), we obtain that the

BT test is root-n consistent.

4. SIMULATIONS

Simulations are conducted to compare the empirical sizes (type I error

rates) and powers of the BT test with those of Mart́ınez-Camblor and Corral

(2011). As we mentioned, Mart́ınez-Camblor and Corral (2011) proposed three

approximation methods for the null distribution of Cn based on the asymptotic

distribution (the A test), on bootstrap (the B test), and on permutation (the

P test). Additional simulations considering different dependency structure than

that in this section are given in the Appendix. All simulations were conducted

with the help of the R computing environment (R Core Team, 2015).
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4.1. Description of the simulation experiments

To be consistent with the results of Mart́ınez-Camblor and Corral (2011)

for the A, B and P tests, we present similar simulation experiments to those in

that paper. We generated Xi(t) = m1(t) + εi1(t) and Xi(t + 1) = m2(t) + εi2(t)

for t ∈ [0, 1], i = 1, ..., n, where mj(t) and εij(t) are described below. Sample sizes

n = 25, 35, 50 are considered. Let

m0,1(t) =
√

6t/π exp(−6t)I[0,1](t), m1,1(t) =
√

13t/(2π) exp(−13t/2)I[0,1](t),

m2,1(t) =
√

11t/(2π) exp(−11t/2)I[0,1](t), m3,1(t) =
√

5t2/3 exp(−7t)I[0,1](t),

m0,2(t) = (sin(2πt2))5I[0,1](t), m1,2(t) = (sin(2πt2))3I[0,1](t),

m2,2(t) = (sin(2πt2))7I[0,1](t), m3,2(t) = (sin(2πt(9/5)))3I[0,1](t).

Figure 2 depicts the shapes of mi,j(t). Because of the choice of mi(t), i = 1, 2,

we considered eight models. In models M0–M3, m1 = m0,1 and m2 = mj,1,

j = 0, ..., 3 respectively, and in models M4–M7, m1 = m0,2 and m2 = mj,2,

j = 0, ..., 3 respectively.
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Figure 2: The shapes of functions mi,j(t), t ∈ [0, 1] used in simulations of Section 4.

Three different types of errors were considered. In the normal case, εi1(t) =

ξBi1(t) and εi2(t) = ρεi1(t) + ξ
√

1 − ρ2Bi2(t), where ρ = 0, 0.25, 0.5, Bi1 and Bi2

are two independent standard Brownian Bridges, and ξ = 0.05 for models M0–M3

and ξ = 0.5 for the remaining. In the lognormal (resp. mixed) case, the error

functions are exp(εij(t)), j = 1, 2 (resp. εi1(t) and exp(εi2(t))), where εij(t) are

as above. The errors functions exp(εij(t)) are adequately centered.
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In practice, the functional data are not usually continuously observed. The

points, at which the functional data are observed, are called the design time

points. So, the processes Xi(t), Xi(t + 1), t ∈ [0, 1] were generated in discretized

versions Xi(tr), Xi(tr + 1), for r = 1, ..., I and for I = 26, 101, 251, where the

values tr were chosen equispaced in the interval [0, 1].

Under various parameter configurations, the empirical sizes and powers (as

percentages) of the tests were calculated at the nominal significance level α = 5%

and based on 1000 replications. In Tables 1–7, the results for models M0–M6

are displayed. For model M7, the empirical powers were always 100%. The

empirical power in the omitted rows in these tables is always 100%. Similarly

as in Mart́ınez-Camblor and Corral (2011), the p-values of the A, B and P tests

were estimated from 1000 replications.

Table 1: Empirical sizes (as percentages) of all tests obtained in model M0.
The column “R” refers to different residual types (N – normal,
L – lognormal, M – mixed).

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 6.9 6.8 6.0 6.5 6.1 6.2 4.9 6.1 5.3 5.4 5.0 5.3

25 0.25 6.8 7.1 6.4 6.8 6.8 6.9 5.9 7.1 5.2 5.6 5.1 5.3

0.50 7.2 7.6 6.4 7.1 7.2 7.0 6.2 6.7 5.1 5.7 4.6 5.2

0.00 5.5 6.1 5.7 6.1 4.8 4.5 4.0 4.7 4.3 4.5 4.1 4.3

N 35 0.25 5.4 6.1 5.4 5.5 5.4 5.6 5.1 5.1 4.2 4.4 3.6 4.2

0.50 5.9 6.0 5.1 5.9 5.4 5.6 5.2 5.7 4.4 4.3 3.7 4.2

0.00 5.4 5.2 4.8 5.2 6.0 6.1 5.7 5.8 6.5 5.8 5.7 6.1

50 0.25 5.2 5.7 5.1 5.0 6.3 6.6 6.5 6.4 6.3 5.7 5.9 5.7

0.50 5.3 5.4 5.0 5.0 7.2 7.1 6.3 7.0 5.4 5.1 4.9 5.2

0.00 6.8 6.7 6.7 6.4 5.4 5.7 5.7 5.5 5.1 4.8 5.5 5.0

25 0.25 7.2 7.4 7.2 7.1 5.1 5.3 5.1 4.9 5.7 5.8 5.7 5.6

0.50 7.2 8.0 7.9 7.6 5.2 5.3 5.3 5.4 5.6 5.9 6.0 5.9

0.00 5.4 5.3 4.8 5.3 5.5 5.0 5.2 5.2 4.8 5.0 4.8 4.8

L 35 0.25 4.7 4.3 4.6 4.5 5.2 5.2 5.0 5.2 5.0 4.8 4.8 4.7

0.50 4.7 4.9 4.7 4.6 5.9 5.9 5.7 5.7 4.7 4.6 4.5 4.6

0.00 5.0 5.3 4.9 5.1 5.3 5.3 4.9 4.8 4.9 4.9 5.2 5.3

50 0.25 5.8 5.7 5.7 5.6 5.0 5.1 4.5 4.7 4.7 4.9 4.6 4.8

0.50 5.5 5.5 5.7 5.8 5.0 5.3 5.1 5.1 4.4 4.6 4.4 4.6

0.00 5.1 5.6 4.8 5.2 5.6 6.0 5.6 5.6 5.8 5.6 5.8 5.6

25 0.25 5.7 5.3 5.2 5.0 5.2 5.6 5.4 5.6 6.2 6.0 5.8 5.7

0.50 5.8 6.1 5.6 5.9 5.9 5.9 5.6 6.1 6.1 6.1 5.3 6.0

0.00 5.3 5.5 5.2 5.3 4.9 4.7 4.5 4.7 4.5 4.8 4.7 4.8

M 35 0.25 4.8 5.0 4.7 4.9 4.9 5.3 4.8 5.0 4.8 5.0 4.9 4.6

0.50 4.9 5.3 4.7 4.8 5.1 5.2 4.5 5.3 4.6 5.7 4.4 4.6

0.00 5.1 5.1 5.0 5.1 5.5 5.3 5.4 5.2 5.8 5.7 5.6 5.8

50 0.25 4.9 4.9 4.9 4.7 5.3 5.5 5.0 5.0 6.2 6.1 5.5 6.1

0.50 4.5 4.8 4.5 4.6 5.7 5.8 5.5 5.5 5.9 6.4 5.6 6.0
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Table 2: Empirical powers (as percentages) of all tests obtained in model M1. The col-
umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).
The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 40.5 40.4 38.2 39.5 39.8 39.9 36.6 39.5 38.5 38.6 36.7 38.8

25 0.25 49.2 49.6 46.8 48.9 51.4 51.5 48.3 51.0 50.2 49.8 47.4 49.5

0.50 68.5 68.0 66.0 68.0 70.2 71.0 68.7 69.8 69.3 69.6 66.6 69.1

0.00 53.1 53.8 51.6 52.7 52.1 52.0 50.2 52.3 54.4 54.5 53.1 54.5

N 35 0.25 65.7 66.5 65.2 65.9 64.7 65.2 63.2 65.3 66.9 66.8 65.7 66.3

0.50 85.4 85.7 84.6 84.9 81.6 81.3 80.1 81.1 85.0 85.0 84.2 84.8

0.00 69.2 68.9 68.2 68.8 68.7 69.3 68.3 68.6 69.8 68.6 68.4 69.1

50 0.25 81.8 81.1 81.2 81.1 81.0 81.4 80.9 81.1 82.2 82.9 81.7 82.4

0.50 93.9 93.9 93.7 93.9 94.5 94.5 94.1 94.5 94.3 94.0 94.0 94.0

L 25 0.00 98.8 98.1 99.0 98.6 99.0 99.2 99.3 98.9 99.2 99.3 99.6 99.4

0.00 62.6 62.8 61.2 61.8 61.6 61.9 61.3 61.7 61.3 62.0 60.6 61.6

25 0.25 67.2 67.6 65.7 67.1 67.3 68.6 66.4 67.5 67.6 67.6 66.8 67.3

0.50 73.2 74.0 72.1 73.6 74.1 74.6 73.2 74.7 75.0 75.5 73.3 74.3

0.00 76.8 77.5 76.5 76.9 77.2 76.5 76.9 76.7 78.6 79.8 78.4 78.8

M 35 0.25 82.7 82.7 82.0 82.8 82.6 83.0 81.6 82.1 84.7 84.5 83.5 84.8

0.50 87.5 88.1 87.4 87.1 87.3 87.2 86.5 87.0 88.5 88.1 88.2 88.3

0.00 89.9 90.7 90.0 90.0 90.9 91.0 91.2 91.4 91.0 91.1 90.8 91.3

50 0.25 93.7 93.8 92.9 93.6 94.3 94.0 93.9 93.9 94.4 94.3 94.5 94.5

0.50 96.1 96.0 95.8 96.1 97.0 97.1 96.9 97.1 97.3 97.5 97.2 97.4

Table 3: Empirical powers (as percentages) of all tests obtained in model M2. The col-
umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).
The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 49.3 49.0 46.9 48.5 50.0 50.1 48.0 49.6 49.1 49.8 46.5 48.7

25 0.25 60.7 62.1 58.8 60.6 61.9 62.5 59.5 61.7 63.0 62.8 59.2 62.2

0.50 78.6 79.0 77.0 78.6 79.5 79.4 78.5 79.3 79.4 79.4 77.7 79.1

0.00 62.4 61.6 60.3 61.2 65.4 65.2 64.1 64.8 63.1 62.2 60.7 62.1

N 35 0.25 76.8 77.3 75.9 77.2 78.1 78.1 77.3 78.0 75.4 75.4 73.5 74.5

0.50 90.9 91.4 90.3 91.0 91.5 91.6 90.7 91.5 89.8 89.9 89.6 90.1

0.00 79.9 80.2 79.2 79.9 79.9 80.1 78.7 79.8 79.7 80.5 79.2 79.6

50 0.25 90.7 90.4 89.6 90.3 90.1 90.0 89.5 90.0 90.2 89.9 89.5 89.7

0.50 97.9 97.8 97.6 97.8 98.5 98.2 98.3 98.3 98.1 98.3 97.8 98.2

L 25 0.00 100 100 100 99.9 99.9 99.9 100 100 100 99.9 100 100

0.00 74.1 74.2 72.8 73.5 75.5 75.4 74.4 74.8 75.4 76.0 74.3 75.3

25 0.25 79.9 79.8 79.2 79.8 81.7 81.5 80.5 81.1 80.9 81.6 81.2 81.1

0.50 85.7 85.6 84.0 85.5 86.8 87.5 85.9 87.2 85.7 85.8 85.1 85.7

0.00 87.5 87.8 87.5 87.4 89.3 89.7 89.2 89.3 87.9 88.0 87.2 88.0

M 35 0.25 92.7 92.5 92.2 92.4 93.0 92.4 92.3 92.9 92.0 91.8 91.8 91.7

0.50 95.9 96.0 95.7 95.9 95.9 95.8 95.8 95.7 95.2 94.8 94.6 95.0

0.00 97.8 97.6 97.8 97.7 97.0 96.9 97.0 96.7 97.6 97.7 97.7 97.5

50 0.25 98.9 98.8 98.8 98.9 98.5 98.5 98.6 98.5 98.7 98.6 98.7 98.6

0.50 99.4 99.2 99.2 99.5 99.3 99.4 99.4 99.3 99.4 99.4 99.4 99.5
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Table 4: Empirical powers (as percentages) of all tests obtained in model M3. The col-
umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).
The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 19.3 19.6 18.0 18.4 31.4 31.6 30.9 30.9 31.4 32.7 31.7 31.7

25 0.25 25.1 25.2 23.6 24.3 46.9 46.2 47.3 45.3 46.3 46.3 47.0 44.5

0.50 39.6 39.6 38.9 39.2 76.2 75.9 78.2 75.4 80.0 81.7 81.9 80.5

0.00 26.0 25.7 26.0 26.3 46.6 45.9 47.3 46.1 50.5 50.7 50.1 49.6

N 35 0.25 37.1 37.7 36.8 36.9 67.2 68.3 69.7 67.8 73.2 73.7 74.6 73.3

0.50 60.3 60.4 60.4 59.7 96.2 95.5 96.2 96.0 97.7 97.5 98.2 97.7

0.00 40.3 41.2 40.1 39.8 77.5 77.8 78.5 77.2 82.9 82.9 83.7 82.5

50 0.25 54.1 53.9 54.5 53.3 95.0 94.9 96.1 95.1 97.6 97.7 97.4 97.7

0.50 84.6 84.2 84.6 83.4 100 100 100 100 100 100 100 100

0.00 70.4 71.7 75.6 71.5 97.9 97.9 98.8 98.1 99.2 99.1 99.4 99.3

25 0.25 91.5 91.9 94.4 91.1 99.8 99.8 100 99.7 100 100 100 100

L
0.50 99.9 99.9 99.9 99.8 100 100 100 100 100 100 100 100

35
0.00 93.0 92.7 94.7 92.6 100 100 100 100 100 100 100 100

0.25 99.9 99.9 100 99.7 100 100 100 100 100 100 100 100

50 0.00 100 100 99.9 100 100 100 100 100 100 100 100 100

0.00 33.5 34.1 34.6 32.9 62.8 62.6 64.8 62.2 66.6 67.3 69.9 67.0

25 0.25 39.6 40.4 40.6 39.4 71.1 71.5 75.1 70.6 77.1 77.6 79.4 76.6

0.50 46.8 46.9 47.4 45.6 79.1 80.0 82.0 79.3 84.7 84.4 85.5 84.2

0.00 48.6 48.7 50.0 48.0 87.2 87.0 89.0 87.6 90.7 90.6 92.8 90.6

M 35 0.25 57.2 56.8 58.3 56.9 92.8 93.0 93.5 92.6 95.3 95.6 96.2 95.3

0.50 65.3 65.5 66.1 65.3 96.0 96.1 96.6 96.1 97.9 97.8 98.1 98.0

0.00 75.0 75.1 75.8 74.8 99.4 99.6 99.6 99.6 99.8 99.5 99.8 99.9

50 0.25 83.0 82.8 83.1 81.8 99.8 99.8 100 99.8 100 100 99.9 100

0.50 89.4 89.1 89.3 88.8 99.9 99.9 100 100 100 100 100 100

4.2. Results

In this subsection, we describe the simulation results for the new method

and the tests of Mart́ınez-Camblor and Corral (2011).

Tables 1 and 5 display the empirical sizes of the tests obtained in models M0

and M4. Based on the binomial proportion confidence interval, for the nominal

level α = 5%, the empirical size over the 1000 independent replications should

belong to the interval [3.6%, 6.4%] (resp. [3.2%, 6.8%]) with probability 95% (resp.

99%). Therefore in Tables 1 and 5, when the rejection proportions are outside

the 95% significance limits, they are displayed in bold, and when they are outside

the 99% significance limits they are underlined. The results for the BT test

and the tests proposed in Mart́ınez-Camblor and Corral (2011) are generally

quite satisfactory, and the nominal level is well respected in most cases by the

tests. Their empirical sizes are rarely larger than the upper endpoint of the 95%

confidence interval, and they are not less than lower endpoint of that interval.
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Under normal and mixed cases, the B test is the most liberal of all the tests,

and it is slightly more liberal than the A and BT tests, which are more liberal

than the P test. Nevertheless, the P test is not conservative. Under lognormal

case, the empirical sizes do not express such a tendency in general. In model

M0 and normal case, the empirical sizes of all tests decrease when I increases

for n = 25, 35, and they increase when n = 50. In the other cases of model M0

and in model M4, this observation is not true generally, and the behavior of the

empirical sizes is more complicated when I increases. Summarising, the new test

respects the nominal level a bit better than the A and B tests and may be more

liberal than the P test.

Table 5: Empirical sizes (as percentages) of all tests obtained in model M4.
The column “R” refers to different residual types (N – normal,
L – lognormal, M – mixed).

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 5.3 5.2 4.7 5.3 5.7 6.1 5.4 5.5 5.1 5.0 4.2 4.6

25 0.25 5.4 5.4 5.0 5.3 5.2 5.4 5.1 5.4 5.4 5.4 4.3 5.4

0.50 5.2 5.1 4.6 5.2 5.0 5.1 4.5 4.9 5.7 5.8 4.7 5.6

0.00 4.9 5.0 4.3 4.7 6.8 6.7 6.4 6.7 4.7 5.0 4.5 4.8

N 35 0.25 5.5 5.7 4.9 5.7 6.8 7.0 6.5 6.8 4.9 4.8 4.4 4.9

0.50 5.9 6.3 5.6 6.3 6.7 6.6 6.3 6.4 4.9 5.0 5.1 5.2

0.00 6.3 6.1 5.7 6.0 5.8 5.7 5.5 5.9 4.9 5.1 4.9 4.9

50 0.25 6.3 6.4 5.9 6.4 5.3 5.5 4.8 5.2 5.3 5.5 5.0 5.4

0.50 5.9 6.4 5.4 6.2 5.3 5.4 5.0 5.2 5.5 5.8 5.2 5.6

0.00 4.0 4.4 4.4 4.4 5.6 5.6 5.5 5.6 5.4 5.3 5.2 5.2

25 0.25 3.9 4.0 4.0 4.0 6.0 6.0 6.2 5.9 5.6 5.5 5.4 5.4

0.50 3.7 4.1 4.1 3.8 5.9 6.3 6.4 6.1 4.8 5.0 5.1 4.8

0.00 4.4 4.9 4.9 4.9 4.6 4.7 4.9 4.8 5.4 5.7 5.2 5.3

L 35 0.25 4.2 4.1 4.5 4.2 4.2 4.4 4.8 4.5 5.3 5.3 5.5 5.1

0.50 4.4 4.6 4.8 4.5 4.6 4.9 5.6 5.2 5.4 5.2 5.1 5.2

0.00 5.0 5.2 5.2 5.0 4.9 5.4 5.1 5.2 4.8 5.5 5.1 5.2

50 0.25 5.4 5.2 5.7 5.6 5.3 5.2 5.0 5.0 4.9 5.9 5.5 5.4

0.50 5.8 5.7 5.7 5.8 6.2 5.8 5.6 5.7 5.3 5.7 5.6 5.4

0.00 5.6 5.1 5.3 5.4 5.7 6.0 5.9 5.6 6.3 6.2 6.1 6.2

25 0.25 5.5 5.3 5.1 5.4 5.7 6.4 5.4 5.9 6.2 6.2 6.1 6.3

0.50 5.6 5.5 5.3 5.4 6.6 6.8 6.2 6.6 6.6 6.2 6.1 5.9

0.00 5.4 5.8 5.5 5.5 5.8 5.9 5.7 5.8 4.7 4.8 4.6 4.6

M 35 0.25 5.2 5.4 5.1 5.1 5.9 5.8 5.9 5.9 5.1 5.4 4.6 5.1

0.50 5.8 5.6 4.9 5.1 5.9 6.1 5.6 5.8 5.4 5.3 5.2 5.1

0.00 7.8 8.0 7.5 7.5 6.4 7.0 6.6 6.7 5.7 6.1 6.5 5.9

50 0.25 8.6 8.5 7.9 8.6 6.4 6.6 6.4 6.4 6.0 6.5 6.5 6.2

0.50 8.5 8.5 7.9 8.5 6.6 6.7 6.1 6.6 6.2 6.7 6.7 6.5
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Table 6: Empirical powers (as percentages) of all tests obtained in model M5. The col-
umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).
The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 71.9 71.9 72.0 71.5 74.3 74.2 73.7 73.3 72.0 73.2 73.9 72.2

25 0.25 89.4 89.2 89.7 89.0 90.5 89.5 90.5 89.6 87.3 88.4 89.0 87.5

N
0.50 99.3 99.2 99.6 99.5 99.2 99.0 99.4 99.2 99.3 99.2 99.4 99.1

35
0.00 91.4 91.8 91.5 91.4 92.2 93.6 93.5 92.8 92.4 92.4 92.5 91.8

0.25 99.1 98.9 99.2 99.1 99.1 99.1 99.4 99.1 99.1 99.1 99.5 99.3

50 0.00 99.4 99.6 99.8 99.7 99.7 99.6 99.7 99.7 99.6 99.8 99.8 99.8

25
0.00 99.4 99.2 99.3 98.9 99.6 99.6 99.7 99.5 99.3 99.3 99.6 99.4

L 0.25 99.9 99.9 99.9 99.9 100 100 100 100 100 100 100 100

35 0.00 99.9 99.9 99.9 99.9 100 100 100 100 100 100 100 100

0.00 95.8 96.6 97.3 96.4 97.4 97.7 98.1 97.9 96.5 96.2 96.6 96.3

M
25 0.25 98.8 98.6 98.7 98.7 99.1 99.2 99.3 99.2 98.5 98.8 99.0 98.7

0.50 99.8 99.8 99.8 99.9 99.8 99.9 99.8 99.8 99.8 99.8 99.7 99.8

35 0.00 99.9 99.9 99.9 99.9 99.9 99.8 100 100 99.9 99.9 99.9 99.9

Table 7: Empirical powers (as percentages) of all tests obtained in model M6. The col-
umn“R”refers todifferent residual types (N–normal, L– lognormal,M–mixed).
The empirical power in the omitted rows is always 100%.

I 26 101 251
R n

ρ A B P BT A B P BT A B P BT

0.00 23.1 23.4 22.6 22.5 23.1 23.0 22.8 23.2 23.3 22.8 22.2 23.0

25 0.25 31.7 32.1 30.8 30.8 32.9 32.3 32.0 31.4 30.6 30.6 30.5 30.3

0.50 51.9 51.9 51.4 50.3 53.8 54.0 55.1 52.8 51.3 52.5 52.1 50.7

0.00 32.3 33.0 32.2 32.1 35.5 35.3 35.0 34.5 33.3 33.0 32.0 33.2

N 35 0.25 47.8 47.8 48.6 47.5 49.2 49.8 49.9 49.6 47.4 48.9 48.9 48.1

0.50 76.3 76.6 76.7 75.4 77.3 77.3 78.9 76.8 75.2 75.2 77.3 75.6

0.00 52.8 50.9 52.9 51.4 54.1 54.7 55.1 53.8 56.9 57.4 56.2 56.7

50 0.25 74.5 73.3 75.6 74.2 75.2 75.4 76.2 75.5 76.3 76.4 76.4 75.7

0.50 95.3 95.4 96.3 95.6 95.4 95.8 96.6 95.9 96.6 96.7 96.9 96.3

0.00 61.4 61.1 63.8 62.2 63.7 64.3 65.7 63.4 61.6 63.2 64.8 61.8

25 0.25 76.8 77.3 79.1 77.6 79.2 79.7 82.1 79.7 78.6 80.2 81.7 79.0

0.50 93.8 94.5 95.7 94.6 95.3 95.7 96.2 95.4 95.8 96.0 96.9 96.0

L
0.00 82.1 82.8 83.9 82.7 82.8 82.7 84.6 83.4 82.5 82.5 84.4 82.7

35 0.25 93.3 93.4 94.0 93.1 95.3 95.1 95.8 95.2 94.3 94.5 95.4 94.5

0.50 99.5 99.9 99.6 99.6 99.7 99.7 99.8 99.7 99.5 99.5 99.6 99.5

50
0.00 95.9 95.7 96.5 95.9 96.6 96.9 97.2 97.1 96.8 96.8 97.6 97.3

0.25 98.9 99.1 99.0 98.8 99.5 99.5 99.6 99.6 99.6 99.6 99.8 99.6

0.00 33.9 34.5 35.4 33.6 34.4 35.7 36.0 34.1 34.7 35.9 36.4 34.3

25 0.25 41.0 40.7 41.4 39.8 41.9 42.2 43.7 42.0 42.1 42.4 43.7 41.8

0.50 47.5 48.0 49.3 47.3 49.7 50.9 51.3 49.1 50.4 49.9 51.5 49.6

0.00 50.8 50.7 52.3 50.4 51.0 51.6 53.6 51.7 51.4 52.0 53.9 51.8

M 35 0.25 60.5 61.7 62.8 60.4 63.4 61.9 64.6 62.3 60.7 60.9 62.2 60.2

0.50 71.8 71.9 73.4 71.6 75.8 76.1 76.9 75.7 72.9 74.0 74.4 73.1

0.00 74.8 74.3 75.8 74.2 73.6 73.3 75.2 73.4 75.4 74.2 76.4 74.6

50 0.25 84.6 85.3 85.9 84.6 84.6 84.0 85.3 83.9 86.9 86.1 87.1 86.2

0.50 92.7 93.6 93.0 92.5 92.8 93.2 93.5 92.8 94.4 94.6 94.4 94.1
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The empirical powers of the testing procedures obtained in models M1–M3

and M5–M6 are given in Tables 2–4 and 6–7. Similarly to the empirical sizes,

the empirical powers are also quite satisfactory. The observed differences among

the empirical powers of all tests are very small. In models M1–M2, the B test is

usually a bit better than the other tests, while in models M3 and M5–M6, the P

test has such property. In models M1–M2 and M5–M6, the empirical powers of

each test are similar among different I’s, while in model M3, they increase when

I increases. They also increase with n or ρ. Since in models M3 and M6 the

functions m1 and m2 are very close to each other, the observed empirical powers

are usually moderate. In the other models, they are generally quite high even for

small n and ρ in all considered situations. Thus, the empirical powers of the BT

test are comparable with those of the tests proposed by Mart́ınez-Camblor and

Corral (2011), and their behavior is quite satisfactory.

5. SPEED COMPARISON

In this section, we study how the computational time required to perform

the A, B, P and BT tests depends on the number of observations n and the

number of design time points.

In the experiments, the functional data were generated under models con-

sidered in Section 4. We changed n = 100, 200, ..., 1000 and I = 500, 1000. As

an example, Figure 3 shows the execution times against n for obtaining the final

p-values of the A, B, P and BT tests when the data were generated as in model

M4 under normal case and ρ = 0.5, I = 500 or I = 1000. The results obtained in

the other models are similar.
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Figure 3: The execution times versus n for obtaining the final p-values of the A,
B, P and BT tests when the number I of design time points in [0, 1]
as well as in [1, 2] is equal to 500 or 1000. The data were generated
as in model M4 under normal case and ρ = 0.5.
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First of all, the BT test is the fastest among all considered ones, as was

expected. It may be extremely faster than the testing procedures of Mart́ınez-

Camblor and Corral (2011), and works at most a few seconds. The execution

time for the A test almost does not depend on the number of observations. This

follows from that in the implementation of the A test, the data are used only

to calculate the value of test statistic and the estimator of covariance function

(This is done only once.). However, the execution time for this testing procedure

increases significantly with an increase of the number of design time points, since

the generation of artificial trajectories of the Gaussian process ξ described in

Section 2 strongly depends on it. In most cases, the nonparametric bootstrap

and permutation methods are the slowest ones. Their execution times are quite

similar and increase much with an increase of n or I.

Summarizing, the BT test works very fast even for big data sets, in contrast

to the other testing procedures under consideration.

6. APPLICATIONS TO THE ORTHOSIS DATA

In this section, we apply the new test and the testing procedures pro-

posed by Mart́ınez-Camblor and Corral (2011) to real-data example, using or-

thosis data, which are available on the website of Professor Jin-Ting Zhang

(http://www.stat.nus.edu.sg/ zhangjt/books/Chapman/FANOVA.htm). These data

were used for illustrative purposes in many problems for functional data (see, for

instance, Abramovich et al., 2004; Górecki and Smaga, 2015; Zhang and Liang,

2014).

Abramovich et al. (2004) reported the orthosis data were acquired and

computed in an experiment by Dr. Amarantini David and Dr. Martin Luc (Lab-

oratoire Sport et Performance Motrice, EA 597, UFRAPS, Grenoble University,

France). The aim of their research was to investigate how muscle copes with

an external perturbation. Seven young male volunteers participated in the ex-

periment. They wore a spring-loaded orthosis of adjustable stiffness under the

following four experimental conditions: a control condition (without orthosis);

an orthosis condition (with orthosis); and two spring conditions (with spring 1

or with spring 2) in which stepping-in-place was perturbed by fitting a spring-

loaded orthosis onto the right knee joint. All volunteers tried all four conditions

10 times for 20 seconds each. In order to avoid possible perturbations in the

initial and final parts of the experiment, only the central 10 seconds were used

in the study. The resultant moment of force at the knee was derived by means

of body segment kinematics recorded with a sampling frequency of 200 Hz. For

each stepping-in-place replication, the resultant moment was computed at 256

time points, equally spaced and scaled to the interval [0, 1] so that a time interval

corresponded to an individual gait cycle.
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For illustrative purposes, we use the orthosis data under the first (without

orthosis) and third (with spring 1) experimental conditions. For each volunteer,

we calculate the mean curve of the 10 raw orthosis curves under these conditions.

Figure 1 depicts the resulting curves. Of interest is to test if the mean curves

of all volunteers are different under these two conditions (t ∈ [0, 1] — without

orthosis; t ∈ [1, 2] — with spring 1). This is a paired two-sample problem for

functional data. We applied the A, B, P and BT tests to this problem and the p-

values of these tests are equal to 0.001, 0, 0, 0.0008123766 respectively. Hence all

testing procedures suggest that the mean curves of all volunteers under without

orthosis and with spring 1 conditions are unlikely the same. From Figure 1,

however, we observe that the mean curves may be the same at the last stage

of the experiment, i.e., for t ∈ [0.8, 1] ∪ [1.8, 2]. In this case, the p-values of the

A, B, P and BT tests are equal to 0.201, 0.204, 0.241, 0.2368321 respectively,

and hence we fail to reject the equality of mean curves of all volunteers under

without orthosis and with spring 1 conditions over [0.8, 1] ∪ [1.8, 2]. Zhang and

Liang (2014) also observed similar behavior of orthosis curves at the last stage of

the experiment and confirmed its evidence by using appropriate tests. However,

they considered the orthosis data under all four experimental conditions in the

context of the functional analysis of variance.

7. CONCLUSIONS

In this paper, we studied the paired two-sample problem for functional

data. We proposed the test for this problem based on the test statistic consid-

ered by Mart́ınez-Camblor and Corral (2011) and the Box-type approximation

for its asymptotic null distribution. This testing procedure is root-n consistent,

easy to implement and much less computationally intensive than the re-sampling

and permutation tests of Mart́ınez-Camblor and Corral (2011). Moreover, it is

comparable with those tests in terms of size control and power, and its finite

sample behavior is very satisfactory. The illustrative real-data example indi-

cates that the decisions suggested by the new test and the testing procedures of

Mart́ınez-Camblor and Corral (2011) seem to be similar in practice.
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APPENDIX

A. Proofs

In the proofs, we use similar techniques as in Zhang et al. (2010a) and

Zhang and Liang (2014).

Proof of Lemma 2.1: Under assumptions A1–A4, from the proof of The-

orem 4.17 in Zhang (2013), it follows that Ĉ(s, t)
P→ C(s, t) uniformly over [0, 2]2,

as n → ∞. Hence, by (2.3) and the continuous mapping theorem, we obtain

K̂(s, t)
P→ K(s, t).

Proof of Theorem 2.1: By Lemma 2.1, we obtain K̂(s, t)
P→ K(s, t) uni-

formly over [0, 1]2. Hence

lim
n→∞

tr(K̂) =

∫ 1

0
lim

n→∞
K̂(t, t) dt =

∫ 1

0
K(t, t) dt = tr(K),

lim
n→∞

tr(K̂⊗2) =

∫ 1

0

∫ 1

0
lim

n→∞
K̂

2(s, t) dsdt =

∫ 1

0

∫ 1

0
K

2(s, t) dsdt = tr(K⊗2).

Therefore, by (2.5) and (2.7) and the continuous mapping theorem, we conclude

that

β̂ =
tr(K̂⊗2)

tr(K̂)

P→ tr(K⊗2)

tr(K)
= β, d̂ =

tr2(K̂)

tr(K̂⊗2)

P→ tr2(K)

tr(K⊗2)
= d

and Ĉn,α = β̂χ2
d̂,α

P→ βχ2
d,α, as n → ∞. The theorem is proved.

Proof of Theorem 3.1: Under the local alternatives H
(1)
1n , we have

Cn = n

∫ 1

0

(

(X̄(t) − m(t)) − (X̄(t + 1) − m(t + 1)) + (m(t) − m(t + 1))
)2

dt

(1.1)

=

∫ 1

0

(

n1/2(X̄(t) − m(t)) − n1/2(X̄(t + 1) − m(t + 1)) + n(1−τ)/2d(t)
)2

dt.

Under gaussianity assumption, Theorem 4.14 of Zhang (2013, p. 109) implies

n1/2(X̄(t)−m(t)), t ∈ [0, 2] is a Gaussian process with mean zero and covariance

function C(s, t). Hence, the processes n1/2(X̄(t) − m(t)) and n1/2(X̄(t + 1)−
m(t + 1)) for t ∈ [0, 1] are also Gaussian processes with such parameters.
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Thus, n1/2(X̄(t)−m(t))− n1/2(X̄(t + 1)−m(t + 1)) + n(1−τ)/2d(t) is a Gaussian

process with mean n(1−τ)/2d(t) and covariance function K(s, t) given by (2.1).

By the assumption of d ∈ L2([0, 1]) and since tr(K) is finite as noted in Section 2,

from Theorem 4.2 in Zhang (2013, p. 86), it follows that Cn has the same distribu-

tion as
∑l

r=1 λrAr + n1−τ
∑

∞

r=l+1 ∆2
r , where Ar ∼ χ2

1(n
1−τλ−1

r ∆2
r) are indepen-

dent, λr are the decreasing-ordered eigenvalues of K(s, t), ∆r
def
=

∫ 1
0 d(t)φr(t)dt,

φr(t) are the associated eigenfunctions of K(s, t), r = 1, 2, ..., and l is the number

of all positive eigenvalues. The possibility of l = ∞ is permitted. Using above

observation and since
∑

∞

r=1 ∆2
r = ‖d‖2, we calculate the expected value and vari-

ance of the test statistic as follows

E(Cn) =
l

∑

r=1

λrE(Ar) + n1−τ
∞

∑

r=l+1

∆2
r

=

l
∑

r=1

λr(1 + n1−τλ−1
r ∆2

r) + n1−τ
∞

∑

r=l+1

∆2
r

=
l

∑

r=1

λr + n1−τ‖d‖2 = tr(K) + n1−τ‖d‖2,

V ar(Cn) =

l
∑

r=1

λ2
rV ar(Ar) = 2

l
∑

r=1

λ2
r(1 + 2n1−τλ−1

r ∆2
r) = 2

l
∑

r=1

λ2
r + 4n1−τ∆2

λ

= 2tr(K⊗2) + 4n1−τ∆2
λ,

where ∆2
λ

def
=

∑l
r=1 λr∆

2
r . The rest of the proof is divided into two cases.

Case 1. Let ∆r = 0 for all r=1, ..., l. Then, Cn has the same distribution as

l
∑

r=1

λrAr + n1−τ
∞

∑

r=1

∆2
r =

l
∑

r=1

λrAr + n1−τ‖d‖2,

where Ar ∼ χ2
1. Hence, the distributions of Cn and C∗

0 + n1−τ‖d‖2 are the same,

where C∗
0 is given in (2.2). Theorem 2.1 implies the asymptotic power of the BT

test is of the form P (Cn > Ĉn,α) = P (C∗
0 > C0,α − n1−τ‖d‖2) + o(1), and it is easy

to see that this power tends to 1, as n → ∞.

Case 2. Let ∆r 6= 0 for some r ∈ {1, ..., l}. Since Ar ∼ χ2
1(n

1−τλ−1
r ∆2

r), it

has the same distribution as (Yr + n(1−τ)/2λ
−1/2
r ∆r)

2, where Yr ∼ N(0, 1). Thus,

the distribution of Cn is as that of
∑l

r=1 λrY
2
r + 2n(1−τ)/2∆λY + n1−τ

∑

∞

r=1 ∆2
r ,

where Y
def
=

∑l
r=1 λ

1/2
r ∆rYr/∆λ ∼ N(0, 1). Therefore, (Cn −E(Cn))/V ar(Cn) has

the same distribution as

∑l
r=1 λr(Y

2
r − 1)

√

2tr(K⊗2) + 4n1−τ∆2
λ

+
2n(1−τ)/2∆λY

√

2tr(K⊗2) + 4n1−τ∆2
λ

.
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Since τ ∈ [0, 1), tr(K⊗2) is finite (by the Cauchy–Schwarz inequality) and 0 < ∆2
λ

< λ1
∑l

r=1 ∆2
r ≤ λ1‖d‖2 < ∞, we have

∑l
r=1 λr(Y

2
r − 1)

√

2tr(K⊗2) + 4n1−τ∆2
λ

p→ 0,

and

2n(1−τ)/2∆λY
√

2tr(K⊗2) + 4n1−τ∆2
λ

=
2∆λY

√

2tr(K⊗2)/n1−τ + 4∆2
λ

d→ Y ∼ N(0, 1),

as n → ∞. By Theorem 2.1, we obtain

P (Cn > Ĉn,α) = 1 − Φ





C0,α − tr(K) − n1−τ‖d‖2

√

2tr(K⊗2) + 4n1−τ∆2
λ



 + o(1),

where Φ is the cumulative distribution function N(0, 1). Hence, P (Cn > Ĉn,α) →
1, as n → ∞, because τ ∈ [0, 1) and C0,α, tr(K), tr(K⊗2) and ∆2

λ > 0 are finite.

Proof of Theorem 3.2: Under the local alternatives H
(2)
1n , by (1.1), we

have

Cn =

∫ 1

0

(

n1/2(X̄(t) − m(t)) − n1/2(X̄(t + 1) − m(t + 1)) + d(t)
)2

dt.

Similarly as in the proof of Theorem 1 in Mart́ınez-Camblor and Corral (2011), we

obtain n1/2(X̄(t) − m(t)) − n1/2(X̄(t + 1) − m(t + 1)) + d(t)
d→ ξd(t), as n → ∞,

where ξd(t), t ∈ [0, 1] is a Gaussian process with mean d(t) and covariance function

K(s, t) given by (2.1). Hence, by the continuous mapping theorem, we have Cn
d→

‖ξd‖2, as n → ∞. Since d ∈ L2([0, 1]) and tr(K) < ∞ (see Section 2), Theorem 4.2

in Zhang (2013, p. 86) shows that ‖ξd‖2 has the same distribution as
∑l

r=1 λrAr +
∑

∞

r=l+1 δ2
r , where Ar ∼ χ2

1(λ
−1
r δ2

r ) are independent, λr are the decreasing-ordered

eigenvalues of K(s, t), δr
def
=

∫ 1
0 d(t)φr(t)dt, φr(t) are the associated eigenfunctions

of K(s, t), r = 1, 2, ..., and l is the number of all positive eigenvalues (l = ∞ is

possible). Since Ar has the same distribution as (Yr + λ
−1/2
r δr)

2, Yr ∼ N(0, 1),

the distribution of ‖ξd‖2 is the same as that of
∑l

r=1 λrY
2
r + 2δλY +

∑

∞

r=1 δ2
r ,

where δ2
λ

def
=

∑l
r=1 λrδ

2
r and Y

def
=

∑l
r=1 λ

1/2
r δrYr/δλ ∼ N(0, 1). Observing that

∑

∞

r=1 δ2
r = ‖d‖2 and by Theorem 2.1, the asymptotic power of the BT test, as

n → ∞, is given by P (Cn > Ĉn,α) = P (C∗
0 + 2δλY + ‖d‖2 > C0,α) + o(1), where C∗

0

and C0,α are given in (2.2) and Theorem 2.1. The rest of the proof runs as in the

proof of Proposition 4 in Zhang and Liang (2014) taking δ2 = ‖d‖2.
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B. Numerical implementation

As we mentioned in Subsection 4.1, in practice, the n functional observa-

tions are not continuously observed. Each function is usually observed on a grid

of design time points. In this paper, all individual functions Xi(t) for t ∈ [0, 1]

and t ∈ [1, 2] in the simulations and the example (also in the function BT.test

given in the next section) are assumed to be observe on a common grid of de-

sign time points that are equally spaced in [0, 1] and in [1, 2]. To implement

the new test when the design time points are different for different individual

functions, one first has to reconstruct the functional sample from the observed

discrete functional sample using some smoothing technique, then discretize each

individual function of the reconstructed functional sample on a common grid of

time points, and finally apply the test accordingly (see Zhang, 2013, or Zhang

and Liang, 2014, for more details).

Assume that 0 = t1 ≤ t2 ≤ ··· ≤ tp = 1 and 1 = t1 + 1 ≤ t2 + 1 ≤ ··· ≤
tp + 1 = 2 denote a grid of design time points that are equally spaced in [0, 1]

and in [1, 2], at which the data are observed. Then, we have

Cn = n

∫ 1

0
(X̄(t) − X̄(t + 1))2 dt ≈ n

p

p
∑

i=1

(X̄(ti) − X̄(ti + 1))2 =
1

p
C0

n,

tr(K̂) =

∫ 1

0
K̂(t, t) dt ≈ 1

p

p
∑

i=1

K̂(ti, ti) =
1

p
trace(K̂),

tr(K̂⊗2) =

∫ 1

0

∫ 1

0
K̂

2(s, t) dsdt ≈ 1

p2

p
∑

i=1

p
∑

j=1

K̂
2(ti, tj) =

1

p2
trace(K̂2),

where K̂ = (K̂(ti, tj))
p
i,j=1. For example, similar approximations have previously

been used by Zhang (2013, p. 117), and Zhang and Liang (2014). If the number

p is very small, then we can first reconstruct the data as described in the last

paragraph and then discretize the reconstructed functions on a greater number of

design time points. The estimated parameters β̂ and d̂ in (2.5) are approximately

expressed as

β̂ ≈ trace(K̂2)

p · trace(K̂)
=

1

p
β̂0, d̂ ≈ trace2(K̂)

trace(K̂2)
,

and hence the approximation of the p-value given in (2.6) is of the form

P (χ2
d̂

> Cn/β̂) ≈ P (χ2
d̂

> C0
n/β̂0).
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C. R code

The new test is performed by the R function BT.test given below. The

notations in the program are consistent with or similar to those used in the paper.

The argument x is a data frame or matrix of data, whose each row is a discretized

version of a function Xi(t), t ∈ [0, 2], i = 1, ..., n. It means that the columns of

x represent the values of the sample functions at the design time points. The

number of columns is even, and the first half of them is connected with the

design time points in [0, 1], and the second half with those in [1, 2]. As outputs,

we obtain value of test statistic and p-value of the test.

BT.test = function(x){

n = nrow(x); p = ncol(x); CC = var(x)

Cn = n*sum((colMeans(x[, 1:(p/2)]) - colMeans(x[, (p/2+1):p]))^2)

KK = CC[1:(p/2), 1:(p/2)] - CC[1:(p/2), (p/2+1):p] -

CC[(p/2+1):p, 1:(p/2)] + CC[(p/2+1):p, (p/2+1):p]

A = sum(diag(KK)); B = sum(diag(KK%*%KK)); beta = B/A; d = (A^2)/B

p.value = 1 - pchisq(Cn/beta, d)

return(c(Cn/(p/2), p.value))

}

D. Additional simulations

In this section, we present some additional simulations suggested by one

of the reviewers. The simulation models are similar to those in Subsection 4.1,

but we consider the functional autoregressive process of order one (FARf (1))

instead of compound symmetric dependency structure. The FARf (1) process

was considered, for example, by Didericksen et al. (2012) or Horváth and Rice

(2015). The error functions are generated in the following way:

(4.1) εij(t) = η

∫ 1

0
f(t, u)εi,j−1(u) du + ξBij(t), t ∈ [0, 1], i = 1, ..., n, j = 1, 2,

where f is a kernel, η = 0.005, 0.125 and ξ = 0.05, 0.5 for models M0–M3 and

M4–M7, respectively, and Bij are independent standard Brownian Bridges. If

‖f‖ < 1, then (4.1) has a unique stationary and ergodic solution (see Bosq, 2000,

η = ξ = 1). We consider f(t, u) = c exp((t2 + u2)/2), where c = 0.3416 so that

‖f‖ ≈ 0.5 (see Horváth and Rice, 2015). To obtain εi0, we use εi,−2 = ξBi, where

Bi is a standard Brownian Bridge, and then εi,−1 and εi0 are generated according

to (4.1). The errors functions εij are adequately centered. The results are given

in Table 8. They are very satisfactory. The conclusions are similar to those

obtained in Subsection 4.2.
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Table 8: Empirical sizes and powers (as percentages) of the A, B, P and BT tests
obtained in FARf (1) case. The column “M” refers to different models.

I 26 101 251
M

n A B P BT A B P BT A B P BT

25 4.7 4.6 4.6 4.6 5.5 5.3 5.3 5.4 4.4 4.4 4.5 4.4

M0 35 4.4 4.9 4.5 4.6 5.4 5.6 5.4 5.1 5.3 5.3 5.3 4.9

50 4.9 4.5 5.3 4.8 4.8 4.8 4.3 4.9 6.0 5.2 5.5 5.6

25 99.3 99.2 99.7 99.3 99.5 99.5 99.7 99.6 99.6 99.3 99.7 99.1

M1 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 100 100 100 100 100 100 100 100 100 100 100 100

M2 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 69.2 68.5 74.5 69.7 97.9 98.2 99.0 98.0 99.2 99.5 99.4 99.4

M3 35 94.9 94.7 96.5 95.3 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100

25 5.2 5.5 4.9 5.1 4.3 4.4 4.1 4.5 6.1 6.4 5.7 5.9

M4 35 6.6 6.7 6.2 6.6 5.2 5.6 5.3 5.3 4.8 4.8 4.2 4.8

50 5.5 5.4 4.9 5.5 5.9 5.5 5.9 5.7 5.4 5.3 4.8 5.1

25 79.4 79.8 80.3 79.0 84.6 84.1 84.8 84.0 83.9 84.4 84.2 83.5

M5 35 96.1 95.9 96.6 95.8 97.0 97.0 97.5 97.3 96.9 96.8 97.5 97.0

50 100 100 100 100 100 99.9 100 100 100 99.9 100 100

25 30.1 29.7 29.4 29.2 29.7 30.1 29.9 29.4 31.8 32.0 31.6 30.9

M6 35 41.5 41.2 42.2 41.3 43.0 43.6 42.9 42.2 44.7 43.7 44.6 43.4

50 58.7 57.7 58.6 57.4 64.8 65.2 65.9 63.9 65.9 65.8 66.7 65.5

25 100 100 100 100 100 100 100 100 100 100 100 100

M7 35 100 100 100 100 100 100 100 100 100 100 100 100

50 100 100 100 100 100 100 100 100 100 100 100 100
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