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1. INTRODUCTION

The proportional mean residual life model (PMRLM) was introduced by

[11] and [14] as an alternative to the well-known proportional hazards model

(PHM). These two papers explain the relevance of PMRLM and its advantages

over the PHM. Let X and Y be two non-negative absolutely continuous random

variables with finite expectation and survival functions F̄X(·) and F̄Y (·) respec-

tively. Then the PMRLM is represented by

(1.1) mY (x) = θmX(x) , θ > 0 ,

where mX(x) = 1
F̄X(x)

∫

∞

x
F̄X(t)dt and mY (x) = 1

F̄Y (x)

∫

∞

x
F̄Y (t)dt are the mean

residual life functions of X and Y . Unlike the PHM, (1.1) may not be valid for all

θ > 0. If mX(x) is increasing then θ > 0 while for a decreasing mX(x), 0 < θ ≤ θ0,

where θ−1
0 = max (0,−min(mX(x))). The relationship between PMRLM and

PHM, the ageing properties and certain bounds on residual moments and residual

variance of the former in the context of reliability analysis were studied in [4].

In the same direction [9] discussed the closure properties of the ageing classes

related to PMRLM and preservation of certain stochastic orders. The reliability

aspects of a dynamic version of (1.1) obtained by replacing the constant θ in

(1.1) by a non-negative function of x are also investigated in [10]. All the works

mentioned above make use of the identity (1.1), the relationship between the

survival functions derived therefrom and the properties of the mean residual life

function.

An associated concept is the percentile residual life discussed in several

papers like [13], [2] and their references. Instead of the distribution function, a

life distribution and its desired characteristics can also be represented through

the quantile function

QX(u) = inf{x : FX(x) ≥ u} , 0 ≤ u ≤ 1 ,

and various reliability functions evaluated from QX(·). The relevance and advan-

tages of using QX(·) over F̄X(·) in various forms of statistical analysis are well

documented in [3] and the associated methodology for reliability analysis in [8].

The present article focuses attention on studying the reliability implications of

PMRLM using quantile function and the associated reliability concepts.

The factors that motivated the present work are as follows. There are

many quantile functions that have simple forms capable of representing a wide

variety of lifetime data. These are discussed extensively in [8]. Our work en-

ables the induction of such quantile functions as lifetime models in the anal-

ysis of PMRLM. Many of the flexible quantile functions in literature have no

tractable distribution functions to make use of them in the conventional analysis.
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Further, the quantile analogue of (1.1) reads

(1.2) mY (QX(u)) = θmX (QX(u)) , θ > 0 ,

in which the right side is the mean residual quantile function of X while the left

side is not the mean residual quantile function of Y . Thus the analogues of the

mean residual life in the quantile-based analysis are not proportional as in (1.1).

This points out to the possibility of properties of PMRLM that are different

from the conventional one. Because of the special properties of quantile functions

we can obtain results that are difficult to obtain by the distribution function

approach. Various measures of uncertainty in the residual life of a device and

their association with reliability concepts are of recent interest on the premise

that increase in uncertainty implies that the device becomes more unreliable.

We propose two characterizations of PMRLM based on the Kullback–Leibler

divergence and its cumulative form using quantile functions.

The rest of the paper contains four sections. In Section 2 we present some

preliminary results required for the deliberations in the sequence. This is followed

in Section 3 with discussion on the ageing concepts of Y in relation to those of

X. The characterizations of the PMRLM are presented in Section 4. Finally

in Section 5 some quantile-based stochastic orders associated with PMRLM are

discussed.

2. THE PROPORTIONAL MEAN RESIDUAL LIFE MODEL

Let X and Y be as defined in the previous section with strictly decreasing

survival functions, hazard rate functions hX(·) and hY (·) and quantile functions

QX(·) and QY (·). From [4],

(2.1) F̄Y (x) =
[

F̄X(x)
] 1

θ

(

mX(x)

µX

)1
θ
−1

, µX = E(X) ,

and

(2.2) hY (x) − hX(x) =
1 − θ

θmX(x)
.

The quantile-based reliability functions of X and Y are the hazard quantile func-

tions

HX(u) = hX (QX(u)) =
1

(1 − u)qX(u)

and

HY (u) =
1

(1 − u)qY (u)
,
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and the mean residual quantile functions

MX(u) = mX (QX(u)) =
1

(1 − u)

∫ 1

u

(1 − p)qX(p)dp

and

MY (u) =
1

(1 − u)

∫ 1

u

(1 − p)qY (p)dp ,

where qX(u) = dQX(u)
du

and qY (u) = dQY (u)
du

are the quantile density functions of

X and Y . For the definitions, interpretations of these functions and interrela-

tionships between them, we refer to [7].

Setting x = QX(u) in (2.1) we see that

F̄Y (QX(u)) = (1 − u)
1
θ

(

MX(u)

µX

) 1
θ
−1

or

(2.3) QX(u) = QY

[

1 − (1 − u)
1
θ

(

MX(u)

µX

) 1
θ
−1
]

.

Writing A(u) = 1 − (1 − u)
1
θ

(

MX(u)
µX

) 1
θ
−1

, (2.3) becomes

(2.4) QX(u) = QY (A(u)) .

It is not difficult to see that when (2.3) is satisfied (1.2) also holds. Notice

that A(·) is a distribution function on [0, 1] so that A(u) is increasing in u with

A(0) = 0 and A(1) = 1. One can work with the identity (1.1) and obtain another

relationship involving F̄X(·) and F̄Y (·) in the form

F̄X(x) =
[

F̄Y (x)
]θ

(

mY (x)

µY

)θ−1

, µY = E(Y ) ,

or equivalently

(2.5) QY (u) = QX (B(u)) ,

where B(u) = 1 − (1 − u)θ
(

MY (u)
µY

)θ−1
. Since QX is an increasing function, it is

easy to see that B(u) = A−1(u) and A(u) = B−1(u).

From (2.3) by differentiation,

qX(u) = qY (A(u)) A′(u) ,

so that

(1 − u)qX(u) =
(1 − u)A′(u)

1 − A(u)
(1 − A(u)) qY (A(u)) ,
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giving

(2.6) HX(u) =
1 − A(u)

(1 − u)A′(u)
HY (A(u))

and from (1.2)

(2.7) θMX(u) = mY [QY A(u)] = MY (A(u)) = mY (QX(u)) .

Equation (2.7) suggests that in general MX(·) and MY (·) need not be propor-

tional. Therefore unlike the distribution function approach wherein properties of

mY (x) can be directly obtained from equation (1.1), the quantile analysis does

not directly provide characteristics of mean residual quantile function of Y from

that of X. We give an example of the use of quantile function in the analysis of

PMRLM and in modelling real data.

Remark 2.1. When the mean residual quantile function of Y is propor-

tional to that of X,

1

1 − u

∫ 1

u

(1 − p)qY (p)dp =
1

1 − u

∫ 1

u

(1 − p)qX(p)dp

which is equivalent to QY (u) = θQX(u) = QX(θu). This is the case when Y is

obtained as a change of scale in X.

Example 2.1. Let the distribution of X be represented by the quantile

function

(2.8) QX(u) = −(α + µ) log(1 − u) − 2αu , µ > 0 , −µ < α < µ .

Equation (2.8) specifies a family of flexible distributions that includes exponential

and uniform distributions as special cases and approximates well distributions like

Weibull, gamma, beta and half-normal. A detailed discussion of (2.8) is available

in [5]. Notice that the general form of the distribution does not admit a closed

form for its distribution function, except that the distribution function FX(·) and

density function fX(·) are related through

fX(x) =
1 − FX(x)

2αFX(x) + µ − α
.

Thus it becomes difficult to work with mX(·) and more so with mY (·) and con-

clude their general properties using (1.1). From a quantile perspective we have

MX(u) = µ + αu ,

FY (QX(u)) = 1 − (1 − u)
1
θ

(

1 +
αu

µ

)1
θ
−1

,
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mY (QX(u)) = θ(µ + αu)

and

(2.9) QY (u) = QX

[

A−1(u)
]

, A(u) = 1 − (1 − u)
1
θ

(

1 +
αu

µ

)1
θ
−1

.

To illustrate the application of quantile functions in modelling proportional mean

residual life using the above model we consider the data on the time to first failure

of 20 electric carts given in [15].

The methodology used here is described as follows. Let x1 < x2 < ... < xn

be the distinct observations in the sample. We estimate the sample distribution

function as

F̂X(xr) = ur =
r − 0.5

n
, r = 1, 2, ..., n, ur ≤ x < ur+1 ,

by dividing the interval (0, 1) with equal parts and using their midpoints to

symmetrically place the u values. This gives

Q̂X(ur) = xr , ur−1 < u < ur , r = 1, 2, ..., n , u0 = 0 ,

and

F̂Y Q̂X(ur) = F̂Y (xr)

= 1 − (1 − ur)
1
θ

(

MX(ur)

µ

)1
θ
−1

.

Recall GY (·) = FY (QX(·)) is a distribution function over (0, 1). If gY (·) is the

probability density function of GY (·), then

gY (u) = fY (QX(u)) qX(u) =
fY QX(u)

fXQX(u)
.

We estimate the parameter of the PMRLM by minimizing

E = −

∫ 1

0
gY (u) log gY (u)du .

For the given data gY (·) is replaced by its estimated value

ĝY (u) =

(

F̂Y (xr) − F̂Y (xr−1)
)

ur − ur−1

and the minimization of E is carried out. The estimates obtained are

α̂ = 0.6078 , µ̂ = 1.054 and θ̂ = 0.8438 .

Thus

m̂Y

(

Q̂X(u)
)

= 0.8894 + 0.5129u .

for the minimum of E obtained as 1.54626 × 10−10 which shows the closeness

of the fit. Further analysis of the data can be accomplished based on GY (·) or

mY (QX(·)) obtained above.
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For all quantile functions equation, (1.2) may not be satisfied for θ > 0.

We present a necessary and sufficient condition for the existence of the PMRLM

for a distribution.

Theorem 2.1. A quantile function QX(·) admits a PMRLM if and only if

θ satisfies

qX(u) + θM ′

X(u) ≥ 0

where the prime denotes differentiation with respect to u.

Proof: The relationship (2.4) is satisfied for some QY (·) if and only if

there exists a quantile function QX(·) for which qX(·) > 0 since QX(·) must be

an increasing function. Now

qX(u) =
qY (A(u)) (1 − u)

1
θ
−1

θ

(

MX(u)

µX

) 1
θ
−1

− qY (A(u)) (1 − u)
1
θ

(

1

θ
− 1

)(

MX(u)

qX(u)

) 1
θ
−2

M ′

X(u)

µX
≥ 0

⇐⇒
MX(u)

θ
−

(

1

θ
− 1

)

M ′

X(u) > 0

⇐⇒ MX(u) − (1 − u)M ′

X(u) + (1 − u)θM ′

X(u) > 0

⇐⇒
1

HX(u)
+ (1 − u)θM ′

X(u) > 0

⇐⇒ qX(u) + θM ′

X(u) > 0 .

Remark 2.2. In view of Theorem 1, we see that

(i) if M ′

X(·) ≥ 0 then PMRLM holds for all θ > 0

and

(ii) if M ′

X(·) < 0, X admits PMRLM only when the range of θ is limited

to [0, θ0], θ0 = max
(

0,−min qX(u)
M ′

X
(u)

)

.

3. AGEING PROPERTIES

There are situations when the distribution of Y specified by QY (·) may not

have tractable form to study the ageing properties of Y analytically. For example

see QY (·) given in (2.9). This does not pose any problems to data analysis since
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FY (QX(·)) can be employed for inferential purposes. Generally, the baseline

distribution is one for which the ageing criteria is known or can be evaluated

and therefore results that enable the inference of ageing characteristics of Y in

terms of those of X become useful. In this section we prove some theorems

in this direction. For this we need the following definitions. The definitions

and results are given only for positive ageing concepts as it is easy to deduce

their negative ageing counterparts by reversing the monotonicity or the inequality

in each case. The random variable X is said to be (i) increasing hazard rate

(IHR) if HX(·) is increasing (ii) new better than used in hazard rate (NBUHR)

if HX(0) ≤ HX(u) for all u and new better than used in hazard rate average

(NBUHRA) if − log(1−u)
QX(u) ≥ HX(u) (iii) increasing hazard rate average (IHRA) if

QX(u)
− log(1−u) is decreasing in u (iv) decreasing mean residual life (DMRL) if MX(·)

is decreasing (v) decreasing mean residual life in harmonic average (DMRLHA) if
1

QX(u)

∫ u

0
qX(p)
MX(p)dp is decreasing in u, (vi) new better than used (NBU) if QX(u +

v − uv) ≤ QX(u) + QX(v) for 0 ≤ u < v < 1 and (vii) new better than used in

expectation (NBUE) if MX(u) ≤ µX . It may be noticed the definitions of the

above concepts in the distribution function approach and the quantile function

approaches are equivalent. However the results pertaining to PMRLM in the two

differ at least in some cases. For a detailed discussion of the characteristics of

various quantile ageing classes, see [8].

Theorem 3.1. If X is IHR, θ > 1 and MX(·) is logconvex then Y is IHR.

Proof: Recall that

HY (A(u)) =
(1 − u)A′(u)

1 − A(u)
HX(u) .

Also

T (u) =
(1 − u)A′(u)

1 − A(u)
=

1

θ
−

(

1

θ
− 1

)

(1 − u)
d log MX(u)

du
,

gives

T ′(u) =

(

1 −
1

θ

)

(1 − u)
d2 log MX(u)

du2
+

(

1

θ
− 1

)

d log MX(u)

du
.

When X is IHR, it is also DMRL. Under the conditions of the theorem T (·) is

increasing and so is HX(·). Thus HY (A(u)) is an increasing function of A(u) and

hence of u, showing that HY (u) is increasing.

Remark 3.1. It can be shown that if Y is IHR, θ < 1 and MY (·) is logcon-

cave, then X is IHR. To prove this we use (2.5) and work with B(u) in the same

manner as with A(u). Various results concerning other ageing properties proved

below can also have parallel results relating Y with X. Because of similarity they

are not pursued further.
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We give two examples, one demonstrating the usefulness of Theorem 2 and

the other to show that the conditions imposed on the reliability functions of X

are essential.

Example 3.1. Consider the linear hazard quantile function distribution

with quantile function

(3.1) QX(u) =
1

a + b
log

(

a + bu

a(1 − u)

)

, a > 0 , b > 0 .

whose properties and applications are studied in [6]. The hazard and the mean

residual quantile functions of (3.1) are

HX(u) = a + bu

and

MX(u) =
1

b(1 − u)
log

(

a + b

a + bu

)

.

Obviously X is IHR and

d log MX(u)

du
=

1

1 − u
−

b

(a + bu) [log(a + b) − log(a + bu)]

is increasing and hence by Theorem 2, Y is IHR. This method looks easier than

evaluating the reliability aspects directly from

QY (u) =
1

a + b
log

(

a + bA−1(u)

a(1 − A−1(u))

)

with

A(u) = 1 − (1 − u)
1
θ

[

log(a + b) − log(a + bu)

(1 − u) (log(a + b) − log a)

] 1
θ
−1

derived from (2.4).

Example 3.2. The quantile function

QX(u) =
3αβu2

2
+ αu(2 − β) , α > 0 , β =

1

2
,

has

HX(u) = [α(1 − u) (3βu + 2 − β)]−1

and

MX(u) = α(1 − u)(1 + βu) .

Differentiating HX(u), the sign of H ′

X(u) depends on the sign of 3βu − 2β + 1

which is positive for β = 1
2 . Hence X is IHR. Further

M ′

X(u) = α(β − 1) − αβu
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so that MX(·) is decreasing and concave. Thus the conditions of the theorem are

not satisfied. From (2.6) and

A(u) = 1 − (1 − u)
1
θ [(1 − u)(1 + βu)]

1
θ
−1 ,

and

HY (A(u)) =

(

2
θ
− 1
)

(1 + βu) −
(

1
θ
− 1
)

β(1 − u)

α(1 + βu)(1 − u)(3βu + 2 − β)
, β =

1

2
,

splitting up the terms we see that HY (u) is not increasing for all u.

Theorem 3.2.

(i) If X is IHRA, θ > 1 and

(

log
�

MX (u)

µX

�
log(1−u)

)

is decreasing then Y is IHRA.

(ii) If X is IHR and θ > 1, then Y is NBUHR.

(iii) IF X is NBUHRA, θ > 1 and

(

log
MX (u)

µX

log(1−u) +
M ′

X(0)
µX

)

≤ 0, then Y is

NBUHRA.

Proof: (i) First we note that

QY (u)

− log(1 − u)
=

QX

(

A−1(u)
)

− log(1 − u)
=

QX(u)

− log (1 − A(u))
(3.2)

=
QX(u)

− log(1 − u)

log(1 − u)

log (1 − A(u))
.

The sign of log(1−u)
log(1−A(u)) depends on

D(u) =
A”(u) log(1 − u)

1 − A(u)
− log

1 − A(u)

1 − u

=

(

1
θ
− 1
)

1 − u

[

− log
MX(u)

µX
− (1 − u) log(1 − u)

M ′

X(u)

MX(u)

]

= −

(

1

θ
− 1

)

(log(1 − u))2
d

du





log
(

MX(u)
µX

)

log(1 − u)



 .

When X is IHRA, the first term on the right of (3.2) increases and the second

term increases when θ > 1 and
log

�
Mx(u)

µX

�
log(1−u) increases. Hence Y is IHRA.

(ii) From (2.2)

HY (A(u)) − HX(u) =

(

1

θ
− 1

)

[MX(u)]−1 .
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This gives

HY (A(u)) − HY (A(0)) = HX(u) − HX(0) +

(

1

θ
− 1

)(

1

MX(u)
−

1

µX

)

.

Since IHR implies NBUHR and NBUE HX(u) ≥ HX(0) and 1
MX(u) ≥

1
µX

. Hence

HY (A(u)) ≥ HY (A(0)) = HY (0) for all A(u) implies that HY (u) ≥ HY (0), 0 ≤

u ≤ 1 and Y is NBUHR.

(iii) From (3.2)

QY (u)

− log(1 − u)
=

QY (u)

− log(1 − u)

log(1 − u)

log (1 − A(u))

and

(3.3)
− log(1 − u)

QY (u)
− HY (u) =

− log(1 − u)

QX(u)

log (1 − A(u))

log(1 − u)
− HY (0) .

Also (2.6) leads to

HX(0) =
HY (0)

A′(0)
(since A(0) = 0)(3.4)

=
1

θ
−

(

1

θ
− 1

)

M ′

X(0)

µX

and

(3.5) log (1 − A(u)) =
1

θ
log(1 − u) +

(

1

θ
− 1

)

log
MX(u)

µX
.

Using (3.4) and (3.5) in (3.3),

− log(1 − u)

QY (u)
− HY (u) =

=
− log(1 − u)

QX(u)





1
θ

+
(

1
θ
− 1
)

log MX(u)
µX

log(1 − u)



− A′(0)HX(0)

≥ HX(0)





1
θ

+
(

1
θ
− 1
)

log MX(u)
µX

log(1 − u)
−

(

1

θ
−

(

1

θ
− 1

))

M ′

X(0)

µX





= HX(0)

(

1

θ
− 1

)





log
(

MX(u)
µX

)

log(1 − u)
+

M ′

X(0)

µX



 .

Under the conditions assumed in Theorem 3, Y is NBUHRA.
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Theorem 3.3. If X is DMRL and θ < 1, then Y is DMRL.

Proof: First we notice that

A′(u) =
(1 − u)

1
θ
−1 (MX(u))

1
θ
−2

(µX)
1
θ
−1

[

1

θ
MX(u) − (1 − u)

(

1

θ
− 1

)

M ′

X(u)

]

implies that A(u) is increasing and X is DMRL only when θ < 1. Now

M ′

X(u) = θM ′

Y (A(u)) A′(u)

provides M ′

Y (A(u)) ≤ 0. When M ′

Y (A(u)) is decreasing so does MY (u) and

hence Y is DMRL.

Remark 3.2. In the distribution function approach Y is DMRL if and

only if X is DMRL ([9]) irrespective of the value of θ. In our case the restriction

on θ cannot be dropped. For example, when X is beta with F̄X(x) = (1−x)2, 0 ≤

x ≤ 1 and θ = 4

MX(u) =
1

3
(1 − u)

1
2

which is decreasing, while

MY (u) =
4

3
(1 − u)−4

is increasing.

Theorem 3.4. If X is DMRLHA if and only if Y is DMRLHA.

Proof: X is DMRLHA ⇐⇒
1

QX(u)

∫ u

0

qX(p)dp

MX(p)
is decreasing in u

⇐⇒
1

QY (A(u))

∫ u

0

qY (A(p)) A′(p)dp

MY (A(p))
is decreasing in u

⇐⇒
1

QY (u)

∫ u

0

qY (p)dp

MY (p)
is decreasing in u

⇐⇒ Y is DMRLHA.

Theorem 3.5. If X is NBU and θ < 1 and − log MX(u)
µX

is super additive,

then Y is NBU.
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Proof:

− log
(1 − u)MX(u)

µX
= − log(1 − u) − log

MX(u)

µX
.

Since X is NBU, − log (1−u)MX(u)
µX

is super additive.

SY (QX(u)) = (1 − u)

[

(1 − u)MX(u)

µX

] 1
θ
−1

.

The right side is the product of two survival functions each of which is NBU and

therefore SY (·) is NBU, which proves the result.

4. CHARACTERIZATIONS

In this section we attempt two characterization theorems of the PMRLM by

properties of measures of uncertainty in the residual lives of X and Y . The first

measure is the Kullback–Leibler divergence between the residual life distributions

of X and Y given by

(4.1) i(t) =
1

F̄X(x)

∫

∞

x

(

log
fX(t)

fY (t)

)

fX(t)dt + log
F̄Y (x)

F̄X(x)
.

The quantile version of (4.1),

(4.2) i (QX(u)) = I(u) = log

(

F̄Y (QX(u))

1 − u

)

+
1

1 − u

∫ 1

u

log
dF̄Y (QX(p))

dp
dp ,

was studied by [12] and several properties including characterization of PHM

were obtained by them. In the following theorem we investigate the distributions

satisfying PMRLM for which I(u) = C, a constant.

Theorem 4.1. Let X and Y be continuous non-negative random variables

as defined in Section 1 satisfying PMRLM. Then I(u) = C, a constant if and only

if the distribution of X is either exponential with quantile function

QE(u) = λ−1 (− log(1 − u)) , λ > 0 ,

or Pareto with

QP (u) = α
[

(1 − u)−
1
c − 1

]

, c > 1, α > 0 ,

or beta having quantile function

QB(u) = β
[

1 − (1 − u)
1
a

]

, a > 0, β > 0 .
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Proof: In the case of PMRLM, the divergence measure (4.2) reduces to

I(u) = log
1 − A(u)

1 − u
−

1

1 − u

∫ 1

u

log A′(p)dp .

When X is exponential,

A(u) = 1 − (1 − u)
1
θ

and hence

I(u) = θ − log θ − 1 .

In the case of QP (u), A(u) = 1 − (1 − u)
c+θ−1

cθ and

I(u) =
c + θ − 1

cθ
− log

c + θ − 1

cθ
− 1

and similarly for the beta distribution A(u) = 1 − (1 − u)
a−θ+1

aθ gives

I(u) =
a − θ + 1

aθ
− log

a − θ + 1

aθ
− 1 .

Thus I(u) is a constant for all the three distributions. Conversely, when I(u) = C,

log
1 − A(u)

1 − u
−

1

1 − u

∫ 1

u

log A′(p)dp = C

takes the form
∫ 1

u

log A′(p)dp = (1 − u)

[

log
1 − A(u)

1 − u
− C

]

.

Differentiating with respect to u and simplifying

(4.3) P (u) = C + 1 + log P (u)

where P (u) = (1−u)A′(u)
1−A(u) . Differentiating (4.3)

P ′(u)

[

1 −
1

P (u)

]

= 0

which leaves two solutions P (u) = K, a constant or P (u) = 1. Of these P (u) = 1

leads to
M ′

X(u)

MX(u) = 1
1−u

or MX(u) = K
1−u

which cannot be mean residual quantile

function of a proper distribution. The second solution P (u) = K, simplifies to

MX(u) = K(1 − u)−b which is the mean residual quantile function of the expo-

nential or Pareto or beta distribution according as b = 0 or b > 0 or b < 0. This

completes the proof.

In the second theorem the choice of the uncertainty measure is the cumu-

lative Kullback–Leibler divergence proposed by [1] for the residual lives of X and

Y as

(4.4) j(x) =

(

log
F̄Y (x)

F̄X(x)
− 1

)

mX(x) +
1

F̄X(x)

∫

∞

x

log
F̄X(t)

F̄Y (t)
F̄X(t)dt + mY (x) .
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In terms of quantile functions, we can write (4.4) in the form

J(u) = j (QX(u)) = MY (u) − MX(u) +
1

1 − u

∫ 1

u

(

1 −
HY (A(p))

HX(p)

)

MX(p)dp .

Here QX(·) is taken as representing the true distribution and QY (·) an arbitrary

reference model. The measure J(·) provides the relative amount of uncertainty

in the residual life of Y in comparison with that of X. We prove a theorem that

identifies the class of distributions for which this relative entropy is a constant.

Theorem 4.2. The cumulative divergence measure J(u) = C for all u in

[0, 1] if and only if the quantile function of Y admits the representation

QY (u) = Q1(u) + Q2(u)

where Q1(·) is the quantile function of the exponential distribution with mean C

and Q2(·) is the quantile function of X
θ
.

Proof: When J(u) = C, we have

(4.5) MY (u) − MX(u) +
1

1 − u

∫ 1

u

(

1 −
hY (QX(p))

HX(p)

)

MX(p)dp = C .

From (2.2)

hY (QX(u)) = HX(u) +
1 − θ

θMX(u)

and so 1 − hY (QX(u))
HX(u) = θ−1

θ
1

MX(u)HX(u) . Hence

∫ 1

u

(

1 −
hY (QX(p))

HX(p)

)

MX(p)dp =
θ − 1

θ

∫ 1

u

1

HX(p)
dp

=
θ − 1

θ

∫ 1

u

−
d

dp
(1 − p)MX(p)dp(4.6)

=
θ − 1

θ
(1 − u)MX(u).

Inserting (4.6) in (4.5) and simplifying

(4.7) MY (u) = C +
MX(u)

θ
,

or
∫ 1

u

(1 − p)qY (p)dp = C(1 − u) +
1

θ

∫ 1

u

(1 − p)qX(p)dp ,

giving

qY (u) =
C

1 − u
+

1

θ
qX(u) .
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Integrating from 0 to u

QY (u) = −C log(1 − u) +
1

θ
QX(u)(4.8)

= Q1(u) + Q2(u) ,

as stated. Conversely assuming (4.8) we have (4.7) and substituting this in the

expression on the left side of (4.5) we have the result stated and this completes

the proof.

Corollary 4.1.

1. When X is exponential (λ), Y is also exponential with parameter
1+Cλθ

λθ
.

2. When X has linear mean residual quantile distribution ([5]) with

QX(u) = −(α + µ) log(1 − u) − 2αu , µ > 0, −µ < α < µ ,

and

MX(u) = αu + µ ,

Y also has the same form of distribution with linear mean residual

quantile function

MX(u) =
α

θ
u +

(

C +
µ

θ

)

.

It is noted that (4.8) gives a class of distributions many of which do not

possess a closed form distribution functions, so that it is difficult to arrive such

forms using the distribution function approach.

We conclude this work by noting that here we have proposed an alternative

approach in analysing PMRLM through quantile functions. This brings in some

new results and models that are sometimes difficult to arrive at by using the

traditional approach.
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