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Abstract:

• In this paper, we study the estimation problems for the generalized inverted exponen-
tial distribution based on progressively type-II censored order statistics and record
values. We establish some theorems to construct the exact confidence intervals and
regions for the parameters. Monte Carlo simulation studies are used to assess the
performance of our proposed methods. Simulation results show that the coverage
probabilities of the exact confidence interval and the exact confidence region are all
close to the desired level. Finally, two numerical examples are presented to illustrate
the methods developed here.

Key-Words:

• confidence interval; joint confidence region; pivot; progressive type-II censoring;

record values.

AMS Subject Classification:

• 62F25, 62N01, 62N05.
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1. INTRODUCTION

The exponential distribution was the first widely discussed lifetime distri-

bution in the literature. This is because of its simplicity and mathematical feasi-

bility. If the random variable T has an exponential distribution, then the random

variable Y =1/X has an inverted exponential distribution. The exponential distri-

bution was generalized, by introducing a shape parameter, and discussed by sev-

eral researchers such as Gupta and Kundu [11, 12] and Raqab and Madi [19]. By

introducing a shape parameter in the inverted exponential distribution, Abouam-

moh and Alshingiti [1] proposed a generalized inverted exponential (GIE) distri-

bution. The probability density function and cumulative distribution function

of the generalized inverted exponential distribution are given, respectively, by

f (x; β, λ) =
λβ

x2
exp (−λ/x) (1 − exp (−λ/x))(β−1) , x > 0,

and
F (x; β, λ) = 1 − (1 − exp (−λ/x))β , x > 0,

where β > 0 is the shape parameter and λ > 0 is the scale parameter.

The properties and inferences for the GIE distribution were investigated

by several authors. Abouammoh and Alshingiti [1] derived some distributional

properties and reliability characteristics as well as maximum likelihood estimators

(MLEs) based on complete sample. Krishna and Kumar [14] obtained the MLEs

and least squares estimators of the parameters of the GIE distribution under pro-

gressively type-II censored sample. Dey and Dey [8] discussed the necessary and

sufficient conditions for existence, uniqueness and finiteness of the MLEs of the

parameters based on progressively type-II censored sample data. Recently, Dey and

Pradhan [9] made Bayesian inference for the GIE parameters under hybrid ran-

dom censoring. Ghitany et al. [10] established the existence and uniqueness of the

MLEs of the parameters for a general class of inverse exponentiated distributions

based on complete as well as progressively type-I and type-II censored data.

In this study, statistical inference for both progressive type-II right censored

sample and record values from the GIE distribution are investigated. Dey and Dey

[8] obtained approximate confidence intervals for the GIE parameters based on

progressive censored sample. However, if the sample size is small, the approximate

confidence interval may not be adequate. Thus, exact confidence intervals and

regions become important when the sample size is small. The method of pivotal

quantity are used to construct the confidence intervals and regions for the model

parameters. The rest of this paper is organized as follows. In Section 2, an

exact confidence interval and an exact confidence region for the parameters are

constructed based on progressive type-II right censored sample. In Section 3, two

theorems are proposed to obtain the exact confidence interval and region for the

parameters based on upper record values. Two numerical examples are presented

in Section 4. Some conclusions are made in Section 5.
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2. INTERVAL ESTIMATION UNDER PROGRESSIVE TYPE-II

CENSORING

Progressive type-II right censoring is of importance in the field of reliability

and life testing. Suppose n identical units are placed on a lifetime test. At the

time of the i-th failure, ri surviving units are randomly withdrawn from the ex-

periment, 1 ≤ i ≤ m. Thus, if m failures are observed then r1 + ···+ rm units are

progressively censored; hence, n = m+ r1 + ···+ rm. Let Xr

1:m:n < Xr

2:m:n < ··· <

Xr

m:m:n be the progressively censored failure times, where r = (r1, ..., rm) denotes

the censoring scheme. As a special case, if r = (0, ..., 0) where no withdrawals are

made, we obtain the ordinary order statistics (Bairamov and Eryılmaz [5]). If

r = (0, ..., 0, n−m), the progressive type-II censoring becomes type-II censoring.

For more details see Balakrishnan and Aggarwala [6].

In this section, we will construct the exact confidence interval and region

for model parameters by using pivotal quantity method. We will also conduct a

simulation study to assess the performance of proposed interval and region.

2.1. Exact confidence interval and region

Suppose that Xr

1:m:n < Xr

2:m:n < ··· < Xr

m:m:n denote progressively type-II

right censored order statistics from a GIE distribution. Let

Y r

i:m:n = −β log (1 − exp (−λ/Xr

i:m:n)) , i = 1, 2, ..., m.

It can be seen that Y r

1:m:n < Y r

2:m:n < ··· < Y r

m:m:n are progressively type-II right

censored order statistics from a standard exponential distribution. It is well

known that, from Thomas and Wilson [21],

π1 = nY r

1:m:n

π2 = (n − r1 − 1)(Y r

2:m:n − Y r

1:m:n)

...

πm = (n − r1 − ··· − rm−1 − m + 1) (Y r

m:m:n − Y r

m−1:m:n)

are independent and identically distributed as a standard exponential distribu-

tion. Hence,

κ1 = 2π1 = 2nY r

1:m:n

has a chi-squared distribution with 2 degrees of freedom and

ε1 = 2
m
∑

i=2

πi = 2

{

m
∑

i=1

(ri + 1)Y r

i:m:n − nY r

1:m:n

}
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has a chi-squared distribution with 2m − 2 degrees of freedom. It is also clear

that ε1 and κ1 are independent random variables. Let

(2.1) ξ1 =
ε1

(m − 1)κ1
=

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

and

(2.2) η1 = ε1 + κ1 = 2
m
∑

i=1

(ri + 1)Y r

i:m:n.

It is easy to show that ξ1 has an F distribution with 2m − 2 and 2 degrees

of freedom and η1 has a chi-squared distribution with 2m degrees of freedom.

Furthermore, ξ1 and η1 are independent (see Johnson et al. [13]).

The following lemma helps us to construct the exact confidence interval for

λ and exact joint confidence region for (λ, β).

Lemma 2.1. Suppose that 0 < a1 < a2 < ··· < am. Let

ξ1 (λ) =
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/ai))

log (1 − exp (−λ/a1))
−

1

m − 1
,

where ri ≥ 0, i = 1, 2, ..., m, and
∑m

i=1 ri = n−m. Then, ξ1 (λ) is strictly increas-

ing in λ for any λ > 0.

Proof: To prove ξ1 (λ) is strictly increasing, it suffices to show that the

function

g (λ) =
log (1 − exp (−λ/ai))

log (1 − exp (−λ/a1))

is strictly increasing in λ. The derivative of g(λ) is given by

g′ (λ) =

(

h1 (a1)

h2 (ai)
−

h1 (ai)

h2 (a1)

)(

1

h1 (a1)

)2

,

where

h1 (x) = log (1 − exp (−λ/x))

and

h2(x) = x (exp (λ/x) − 1) .

If both h1 (x) and h2 (x) are decreasing, it can be said that
(

h1(a1)
h2(ai)

− h1(ai)
h2(a1)

)

> 0

for ai > a1 and hence g′ (λ) > 0.

It is clear that h1 (x) is strictly decreasing in x. From the second order

Taylor polynomial of exp(a) at a = 0, one has the following inequality, for a < 0,

(2.3) exp (a) > a + 1.
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Let a = −λ/x. Equation (2.3) can be written as

(2.4) 1 − λ/x − exp (−λ/x) < 0, for x > 0.

Note that the first derivative of h2(x) is

h′
2(x) = exp(λ/x) [1 − λ/x − exp(−λ/x)] .

From Equation (2.4), it is easy to see that h′
2(x) < 0 for x > 0. That is, h2(x) is

strictly decreasing in x. Hence, g′(λ) is positive. This completes the proof.

Let Fα(δ1,δ2) be the upper α percentile of F distribution with δ1 and δ2

degrees of freedom. The following theorem gives an exact confidence interval for

the parameter λ.

Theorem 2.1. Suppose that Xr

1:m:n < Xr

2:m:n < ··· < Xr

m:m:n is a pro-

gressively type-II censored sample from the GIE distribution. Then, for any

0 < α < 1,

(

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F1−α/2;2m−2,2

)

,

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, Fα/2;2m−2,2

)

)

is a 100(1−α)% confidence interval for λ, where ϕ1 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t)

is the solution of λ for the equation

(2.5)
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1
= t.

Proof: From Equation (2.1), we know that the pivot

ξ1 (λ) =

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

=
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

has an F distribution with 2m−2 and 2 degrees of freedom. By Lemma 2.1, ξ1(λ)

is strictly increasing function of λ, and hence, ξ1(λ) = t has a unique solution for

any λ > 0. Thus, for 0 < α < 1, the event

F1−α/2;2m−2,2 <
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

< Fα/2;2m−2,2
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is equivalent to the event

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F1−α/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, Fα/2;2m−2,2

)

.

Then, the proof follows.

Let us now discuss the joint confidence region for (λ, β). Let χ2
α;δ denote

the upper α percentile of a chi-squared distribution with δ degrees of freedom.

An exact joint confidence region for (λ, β) is given in the following theorem.

Theorem 2.2. Suppose that Xr

i:m:n, i = 1, 2, ..., m, are progressive type-

II right censored order statistics from the GIE distribution with censoring scheme

r. Then for any 0 < α < 1, a 100(1 − α)% joint confidence region for (λ, β) is

determined by the following inequalities:



















































ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1−
√

1−α)/2;2m−2,2

)

−
χ2

(1+
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
< β

< −
χ2

(1−
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
,

where ϕ1 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t) is defined in Equation (2.5).

Proof: From Equation (2.1), we know that the pivot

ξ1 (λ) =

∑m
i=1 (ri + 1) Y r

i:m:n − nY r

1:m:n

n (m − 1) Y r

1:m:n

=
1

n (m − 1)

m
∑

i=1

(ri + 1)
log (1 − exp (−λ/Xr

i:m:n))

log (1 − exp (−λ/Xr

1:m:n))
−

1

m − 1

has an F distribution with 2m − 2 and 2 degrees of freedom. From Equation

(2.2), we also know that

η1 = 2
m
∑

i=1

(ri + 1) Y r

i:m:n = −2β
m
∑

i=1

(ri + 1) log (1 − exp (−λ/Xr

i:m:n))

has a chi-squared distribution with 2m degrees of freedom, and it is independent
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of ξ1(λ). Thus, for 0 < α < 1, we have

P

{

ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ1

(

Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, F(1−
√

1−α)/2;2m−2,2

)

,

−
χ2

(1+
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))
< β

< −
χ2

(1−
√

1−α)/2;2m

2
∑m

i=1 (ri + 1) log (1 − exp (−λ/Xr

i:m:n))

}

= P
(

F(1+
√

1−α)/2;2m−2,2 < ξ1 < F(1−
√

1−α)/2;2m−2,2

)

P
(

χ2
(1+

√
1−α)/2;2m

< η1 < χ2
(1−

√
1−α)/2;2m

)

=
√

1 − α
√

1 − α

= 1 − α.

The proof is completed.

2.2. Simulation study

The simulation study is performed with 5000 trials to investigate the per-

formance of exact and approximate confidence intervals and confidence regions

under progressive censoring. We consider the values of parameters (λ, β) =

(2, 0.5), (0.5, 2) and different combinations of n, m, and censoring schemes r.

The approximate intervals are considered as in Dey and Dey [8]. The nominal

confidence level is chosen as 95%. The results are given in Table 1 and Table 2.

From these tables, one can conclude that both the coverage probabilities of ap-

proximate and exact confidence intervals are close to the desired level. The cov-

erage probabilities of exact confidence regions are also close to the nominal level.

However, the coverage probabilities of the approximate confidence regions are

lower than the nominal level. When the sample size increases, the coverage prob-

ability of approximate confidence region reaches to nominal level 95%. During

simulation, the authors observed that the MLEs of parameters are not obtained

uniquely for different initials values. However, this problem disappeared for the

large sample size. In this regards, coverage probability of approximate confi-

dence region works for only large sample. As a conclusion, exact confidence

region should be used for the small sample size.
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Table 1: Coverage probabilities for the proposed methods
and the approximations under progressive censoring
when (λ, β) = (2, 0.5).

λ (λ, β)
n m r

approx. exact approx. exact

20 10

(1,1,1,1,1,1,1,1,1,1) 0.9482 0.9494 0.8122 0.9484
(5,0,0,0,0,0,0,0,0,5) 0.9532 0.9500 0.8966 0.9468
(5,5,0,0,0,0,0,0,0,0) 0.9476 0.9500 0.8966 0.9468
(0,0,0,0,0,0,0,0,5,5) 0.9540 0.9480 0.8640 0.9420
(0,0,0,0,5,5,0,0,0,0) 0.9422 0.9492 0.9130 0.9474
(2,2,1,0,0,0,0,1,2,2) 0.9498 0.9456 0.9504 0.9456

40 20

(1,1,1,1,1,...,1,1) 0.9462 0.9526 0.9294 0.9536
(10,0,0,0,...,0,10) 0.9556 0.9518 0.9344 0.9460
(10,10,0,...,0,0) 0.9480 0.9510 0.9380 0.9530
(0,0,0,0,...,10,10) 0.9586 0.9512 0.9156 0.9534
(0,...,0,10,10,0,...,0,0) 0.9508 0.9550 0.9432 0.9526
(2,2,2,2,2,0,...,0,2,2,2,2,2) 0.9520 0.9568 0.9584 0.9562

100 50

(1,1,1,1,1,...,1,1) 0,9506 0.9552 0.8416 0.9574
(25,0,0,0,...,0,25) 0,9544 0.9456 0.9528 0.9496
(25,25,0,0,...,0,0) 0,9530 0.9516 0.9524 0.9488
(0,0,0,0

”
...,25,25) 0,9508 0.9528 0.9404 0.9540

(0,...,0,25,25,0,...,0,0) 0,9464 0.9496 0.9484 0.9500
(2,...,2,1,0,...,0,1,2,...,2) 0.9484 0.9512 0.9594 0.9534

(1,1,1,1,1) 0.9452 0.9468 0.8356 0.9446
(2,1,0,0,2) 0.9486 0.9484 0.9202 0.9468

10 5 (2,2,1,0,0) 0.9436 0.9510 0.9352 0.9484
(0,0,1,2,2) 0.9530 0.9486 0.9016 0.9458
(0,2,1,2,0) 0.9384 0.9462 0.9168 0.9468
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Table 2: Coverage probabilities for the proposed methods
and the approximations under progressive censoring
when (λ, β) = (0.5, 2).

λ (λ, β)
n m r

approx. exact approx. exact

20 10

(1,1,1,1,1,1,1,1,1,1) 0.9538 0.9556 0.8904 0.9522
(5,0,0,0,0,0,0,0,0,5) 0.9534 0.9502 0.9570 0.9514
(5,5,0,0,0,0,0,0,0,0) 0.9540 0.9588 0.9570 0.9514
(0,0,0,0,0,0,0,0,5,5) 0.9526 0.9530 0.9396 0.9510
(0,0,0,0,5,5,0,0,0,0) 0.9474 0.9474 0.9530 0.9534
(2,2,1,0,0,0,0,1,2,2) 0.9452 0.9482 0.9440 0.9482

40 20

(1,1,1,1,1,...,1,1) 0.9460 0.9546 0.8946 0.9482
(10,0,0,0,...,0,10) 0.9534 0.9502 0.9570 0.9514
(10,10,0,...,0,0) 0.9540 0.9488 0.9576 0.9538
(0,0,0,0,...,10,10) 0.9526 0.9472 0.9522 0.9486
(0,...,0,10,10,0,...,0,0) 0.9504 0.9534 0.9534 0.9508
(2,2,2,2,2,0,...,0,2,2,2,2,2) 0.9468 0.9422 0.9330 0.9478

100 50

(1,1,1,1,1,...,1,1) 0.9486 0.9488 0.8988 0.9488
(25,0,0,0,...,0,25) 0.9490 0.9538 0.9530 0.9508
(25,25,0,0,...,0,0) 0.9510 0.9500 0.9514 0.9470
(0,0,0,0

”
...,25,25) 0.9486 0.9504 0.9560 0.9494

(0,...,0,25,25,0,...,0,0) 0.9510 0.9492 0.9534 0.9490
(2,...,2,1,0,...,0,1,2,...,2) 0.9496 0.9514 0.9418 0.9516

(1,1,1,1,1) 0.9466 0.9524 0.8194 0.9528
(2,1,0,0,2) 0.9510 0.9474 0.8292 0.9482

10 5 (2,2,1,0,0) 0.9420 0.9538 0.8694 0.9552
(0,0,1,2,2) 0.9656 0.9544 0.7712 0.9516
(0,2,1,2,0) 0.9390 0.9504 0.8226 0.9464
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3. INTERVAL ESTIMATION UNDER RECORD VALUES

Record values were first introduced by Chandler [7]. A record value is either

the largest or the smallest value obtained from a sequence of random variables.

Ahsanullah and Nevzorov [3] pointed out that records are very popular because

they arise naturally in many fields of studies such as climatology, sports, medicine,

traffic, industry and so on. In reliability studies, Lee et al. [16] indicated that

there are some situations in lifetime testing experiments in which a failure time

of a product is recorded if it exceeds all preceding failure times. These recorded

failure times are the upper record value sequence. An account on record values

can be found in the books by Ahsanullah [2] and Arnold et al. [4].

In this section, we will establish the exact confidence interval and region

for model parameters based on pivotal quantity method. A simulation study is

also conducted to investigate the performance of proposed interval and region.

3.1. Exact confidence interval and region

Let XU(1) < XU(2) < ··· < XU(m) be the first m upper record values from

the GIE distribution. Set

Wi = −β log
(

1 − exp
(

−λ/XU(i)

))

, i = 1, 2, ..., m.

Then, it is easily seen that W1 < W2 < ··· < Wm are the first m upper record

values from a standard exponential distribution. Moreover, Arnold et al. [4]

showed that

ρ1 = W1

ρ2 = W2 − W1

...

ρn = Wm − Wm−1

are independent and identically distributed random variables from a standard

exponential distribution. Hence,

κ2 = 2ρ1 = 2W1

has a chi-squared distribution with 2 degrees of freedom and

ε2 = 2
m
∑

i=2

ρi = 2 (Wm − W1)



440 İsmail Kınacı, Shuo-Jye Wu and Coşkun Kuş

has a chi-squared distribution with 2m − 2 degrees of freedom. We can also find

that ε2 and κ2 independent. Let

(3.1) ξ2 =
ε2

(m − 1)κ2
=

1

m − 1

Wm − W1

W1

and

(3.2) η2 = ε2 + κ2 = 2Wm.

It is easy to show that ξ2 has an F distribution with 2m − 2 and 2 degrees

of freedom and η2 has a chi-squared distribution with 2m degrees of freedom.

Furthermore, ξ2 and η2 are independent.

Lemma 3.1. Suppose that 0 < a1 < a2 < ··· < am. Let

ξ2 (λ) =
1

m − 1

Wm − W1

W1

=
1

m − 1

(

log (1 − exp (−λ/am))

log (1 − exp (−λ/a1))
− 1

)

.

Then, ξ2(λ) is strictly increasing in λ for any λ > 0.

Proof: The proof is analogous to that of Lemma 2.1.

To construct the exact confidence interval for λ based on record values, we

have the following theorem.

Theorem 3.1. Suppose that XU(1) < XU(2) < ··· < XU(m) are first m up-

per record values from the GIE distribution. Then, for any 0 < α < 1,

(

ϕ2

(

XU(1), XU(2), ..., XU(m), F1−α/2;2m−2,2

)

,

ϕ2

(

XU(1), XU(2), ..., XU(m), Fα/2;2m−2,2

)

)

is a 100(1−α)% confidence interval for λ, where ϕ2

(

XU(1), XU(2), ..., XU(m), t
)

is

the solution of λ for the equation

(3.3)
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

= t.

Proof: From Equation (3.1), we know that the pivot

ξ2 (λ) =
1

m − 1

Wm − W1

W1

=
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)
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has an F distribution with 2m−2 and 2 degrees of freedom. By Lemma 3.1, ξ2(λ)

is strictly increasing function of λ, and hence, ξ2(λ) = t has a unique solution for

any λ > 0. Thus, for 0 < α < 1, the event

F1−α/2;2m−2,2 <
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

< Fα/2;2m−2,2

is equivalent to the event

ϕ2

(

XU(1), XU(2), ..., XU(m), F1−α/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), Fα/2;2m−2,2

)

.

Then, the proof follows.

For the joint confidence region for (λ, β) based on record values, we have

the following result.

Theorem 3.2. Suppose that XU(i), i = 1, 2, ..., m are first i-th upper

record values from the GIE distribution. Then, for any 0 < α < 1, a 100(1−α)%

joint confidence region for (λ, β) is determined by the following inequalities:























































ϕ2

(

XU(1), XU(2), ..., XU(m), F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), F(1−
√

1−α)/2;2m−2,2

)

−
χ2

(1+
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) < β

< −
χ2

(1−
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) ,

where ϕ2 (Xr

1:m:n, Xr

2:m:n, ..., Xr

m:m:n, t) is defined in Equation (3.3).

Proof: From Equation (3.1), we know that the pivot

ξ2 (λ) =
1

m − 1

(

log
(

1 − exp
(

−λ/XU(m)

))

log
(

1 − exp
(

−λ/XU(1)

)) − 1

)

has an F distribution with 2m − 2 and 2 degrees of freedom. From Equation

(3.2), we know that

η2 = −2β log
(

1 − exp
(

−λ/XU(m)

))

.
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has a chi-square distribution with 2m degrees of freedom, and it is independent

of ξ2(λ). For 0 < α < 1, we have

P

{

ϕ2

(

XU(1), XU(2), ..., XU(m), F(1+
√

1−α)/2;2m−2,2

)

< λ

< ϕ2

(

XU(1), XU(2), ..., XU(m), F(1−
√

1−α)/2;2m−2,2

)

,

−
χ2

(1+
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

)) < β < −
χ2

(1−
√

1−α)/2;2m

2 log
(

1 − exp
(

−λ/XU(m)

))

}

=P
(

F(1+
√

1−α)/2;2m−2,2 < ξ2 < F(1−
√

1−α)/2;2m−2,2

)

P
(

χ2
(1+

√
1−α)/2;2m

< η2 < χ2
(1−

√
1−α)/2;2m

)

=
√

1 − α
√

1 − α

=1 − α.

3.2. Simulation study

It is important to examine howwell our proposedmethodworks for construct-

ing confidence interval and region. We consider the values of parameters (λ, β)=

(2, 0.5), (0.5, 2) and different values of m. For each case, we simulated 5000 upper

record samples from the GIE distribution. The nominal confidence level is chosen

as 95%. The results are given in Table 3. From this table, one can see that the

exact confidence intervals and regions have desired coverage probability for small

and large sample sizes. As a conclusion, the proposed methods work well.

Table 3: Coverage probability of exact confidence interval and confidence region
based on upper record values when (λ, β) = (2, 0.5), (0.5, 2).

(λ, β) = (2, 0.5) (λ, β) = (0.5, 2)
m

λ (λ, β) λ (λ, β)

2 0.9502 0.9520 0.9566 0.9540
3 0.9502 0.9488 0.9466 0.9446
4 0.9474 0.9546 0.9548 0.9504
5 0.9510 0.9500 0.9454 0.9498
6 0.9476 0.9526 0.9546 0.9528
7 0.9548 0.9606 0.9502 0.9512
8 0.9522 0.9606 0.9540 0.9548
9 0.9518 0.9604 0.9514 0.9498

10 0.9498 0.9578 0.9512 0.9516
11 0.9476 0.9570 0.9522 0.9526
12 0.9532 0.9600 0.9478 0.9488
13 0.9478 0.9560 0.9472 0.9468
14 0.9494 0.9524 0.9488 0.9452
15 0.9498 0.9490 0.9488 0.9520



Confidence Intervals and Regions for the GIE Distribution 443

4. ILLUSTRATIVE EXAMPLES

To illustrate the use of our proposed estimation method, the following two

examples are discussed.

Example 4.1 (Progressively Type-II Censored Data). We apply the pro-

posed interval estimation methods to the polished window strengths data set

presented in Abouammoh and Alshingiti [1]. Dey and Dey [8] indicated that the

GIE distribution is acceptable for these data. For the purposes of illustrating the

estimation methods discussed in this paper, we adopt the progressively type-II

censored sample with n = 31 and m = 11 which was generated from this data set

by Dey and Dey [8]. The progressively censored data are reported in Table 4.

To obtain a 95% confidence interval for λ, we need the percentiles

F0.025;22,2 = 39.4479 and F0.975;22,2 = 0.2242.

Then, we can solve Equation (2.5) and get the following values

ϕ1 (xr

1:m:n, xr

2:m:n, ..., xr

m:m:n, F0.975;22,2) = 81.8086,

and

ϕ1 (xr

1:m:n, xr

2:m:n, ..., xr

m:m:n, F0.025;22,2) = 401.0639.

By Theorem 2.1, the 95% confidence interval for λ is obtained as (81.8086,

401.0639).

Table 4: Progressively type-II censored data based on window strength data.

i 1 2 3 4 5 6
ri 0 0 0 0 0 0

xr

i:m:n 18.83 20.8 21.657 23.03 23.23 24.05

i 7 8 9 10 11
ri 0 0 0 0 20

xr

i:m:n 24.321 25.5 25.52 25.8 26.69

Furthermore, to obtain a 95% joint confidence region for (λ, β), we need

the percentiles

F0.9873;22,2 = 0.1825, F0.0127;22,2 = 78.4361,

χ2
.9873;24 = 9.8824, and χ2

.0127;24 = 39.4099.
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By Theorem 2.2, the 95% confidence region for (λ, β) is determined by the fol-

lowing two inequalities:

71.9165 < λ < 458.4111

and

−
9.8824

2
∑11

i=1 (ri + 1) log (1 − exp (−λ/xr

i:m:n))
< β

< −
39.4099

2
∑11

i=1 (ri + 1) log (1 − exp (−λ/xr

i:m:n))
.

Figure 1 shows the 95% joint confidence region for (λ, β) based on progressively

type-II censored data given in Table 1. It can be seen that the region is large

when λ is large.

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

7

λ

β

Figure 1: A 95% joint confidence region for (λ, β) based on progressively
type-II censored data given in Table 4.

Example 4.2 (Record Value Data). To illustrate the use of the interval

estimation based on records, we analyze one real data set. Lawless [15, p.3]

presented 11 times to breakdown of electrical insulating fluid subjected to 30

kilovolts. The data, under a logarithm transformation, is 2.836, 3.120, 3.045,

5.169, 4.934, 4.970, 3.018, 3.770, 5.272, 3.856, 2.046. Luckett [18] extracted

the m = 4 upper record values from this data set and indicated that the GIE

distribution is acceptable for this data set. The upper record value data are

presented in Table 5.
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Table 5: Upper record values based on breakdown
of electrical insulating fluid data.

i 1 2 3 4
xu(i) 2.836 3.120 5.169 5.272

To obtain a 95% confidence interval for λ, we need the percentiles

F0.025;6,2 = 39.3315 and F0.975;6,2 = 0.1377.

By Theorem 3.1, we have the following results.

ϕ2

(

xu(1), xu(2), ..., xu(10), F0.975;6,2

)

= 0.8644,

and
ϕ2

(

xu(1), xu(2), ..., xu(10), F0.025;6,2

)

= 29.3207.

That is, the 95% confidence interval for λ is (0.8644, 29.3207).

To obtain a 95% joint confidence region for (λ, β), we need the percentiles

F0.9873;6,2 = 0.1013, F0.0127;6,2 = 78.3196,

χ2
.9873;8 = 1.7670, and χ2

.0127;8 = 19.4433.

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000
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Figure 2: A 95% joint confidence region for (λ, β)
based on record values given in Table 5.
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By Theorem 3.2, a 95% confidence region for (λ, β) is determined by the

following two inequalities:

0.4484 < λ < 33.5289

and

−
1.7670

2 log (1 − exp (−λ/5.272))
< β < −

19.4433

2 log (1 − exp (−λ/5.272))
.

Figure 2 shows the 95% joint confidence region for (λ, β) based on record data

given in Table 5. It is easy to see that the region is large when λ is large.

5. CONCLUSIONS

Progressive censoring and record values have received attention in the past

few decades. The GIE distribution is a new lifetime distribution and can be

widely used in reliability applications. The main purpose of this study is to

investigate the interval estimation of parameters of the GIE distribution based on

progressive type-II censored sample and record values, respectively. We provide

four theorems based on the method of pivotal quantity to construct the exact

confidence intervals and regions for the parameters. The simulation results show

that the proposed methods perform well. Two numerical examples are used to

illustrate the proposed methods.
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