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Abstract:

• It is well-known that estimating extreme quantiles, namely, quantiles lying beyond
the range of the available data, is a nontrivial problem that involves the analysis of
tail behavior through the estimation of the extreme-value index. For heavy-tailed
distributions, on which this paper focuses, the extreme-value index is often called the
tail index and extreme quantile estimation typically involves an extrapolation proce-
dure. Besides, in various applications, the random variable of interest can be linked
to a random covariate. In such a situation, extreme quantiles and the tail index are
functions of the covariate and are referred to as conditional extreme quantiles and the
conditional tail index, respectively. The goal of this paper is to provide classes of esti-
mators of these quantities when there is a functional (i.e. possibly infinite-dimensional)
covariate. Our estimators are obtained by combining regression techniques with a gen-
eralization of a classical extrapolation formula. We analyze the asymptotic properties
of these estimators, and we illustrate the finite-sample performance of our conditional
extreme quantile estimator on a simulation study and on a real chemometric data set.
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1. INTRODUCTION

Studying extreme events is relevant in numerous fields of statistical appli-

cations. In hydrology for example, it is of interest to estimate the maximum level

reached by seawater along a coast over a given period, or to study extreme rainfall

at a given location; in actuarial science, a major problem for an insurance firm is

to estimate the probability that a claim so large that it represents a threat to its

solvency is filed. When analyzing the extremes of a random variable, a central

issue is that the straightforward empirical estimator of the quantile function is

not consistent at extreme levels; in other words, direct estimation of a quantile

exceeding the range covered by the available data is impossible, and this is of

course an obstacle to meaningful estimation results in practice.

In many of the aforementioned applications, the problem can be accu-

rately modeled using univariate heavy-tailed distributions, thus providing an

extrapolation method to estimate extreme quantiles. Roughly speaking, a dis-

tribution is said to be heavy-tailed if and only if its related survival function

decays like a power function with negative exponent at infinity; its so-called

tail index γ is then the parameter which controls its rate of convergence to 0

at infinity. If Q denotes the underlying quantile function, this translates into:

Q(δ) ≈ [(1− β)/(1− δ)]γQ(β) when β and δ are close to 1. The quantile function

at an arbitrarily high extreme level can then be consistently deduced from its

value at a typically much smaller level provided γ can be consistently estimated.

This procedure, suggested by Weissman [42], is one of the simplest and most

popular devices as far as extreme quantile estimation is concerned.

The estimation of the tail index γ, an excellent overview of which is given

in the recent monographs by Beirlant et al. [2] and de Haan and Ferreira [27],

is therefore a crucial step to gain understanding of the extremes of a random

variable whose distribution is heavy-tailed. In practical applications, the variable

of interest Y can often be linked to a covariate X. For instance, the value of

rainfall at a given location depends on its geographical coordinates; in actuarial

science, the claim size depends on the sum insured by the policy. In this sit-

uation, the tail index and quantiles of the random variable Y given X = x are

functions of x to which we shall refer as the conditional tail index and condi-

tional quantile functions. Their estimation has been considered first in the “fixed

design” case, namely when the covariates are nonrandom. Smith [36] and Davi-

son and Smith [12] considered a regression model while Hall and Tajvidi [28]

used a semi-parametric approach to estimate the conditional tail index. Fully

nonparametric methods have been developed using splines (see Chavez-Demoulin

and Davison [6]), local polynomials (see Davison and Ramesh [11]), a moving

window approach (see Gardes and Girard [19]) and a nearest neighbor approach

(see Gardes and Girard [20]), among others.
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Despite the great interest in practice, the study of the random covariate case

has been initiated only recently. We refer to the works of Wang and Tsai [41],

based on a maximum likelihood approach, Daouia et al. [9] who used a fixed

number of non parametric conditional quantile estimators to estimate the con-

ditional tail index, later generalized in Daouia et al. [10] to a regression context

with conditional response distributions belonging to the general max-domain of

attraction, Gardes and Girard [21] who introduced a local generalized Pickands-

type estimator (see Pickands [33]), Goegebeur et al. [25], who studied a non-

parametric regression estimator whose strong uniform properties are examined in

Goegebeur et al. [26]. Some generalizations of the popular moment estimator of

Dekkers et al. [13] have been proposed by Gardes [18], Goegebeur et al. [23, 24]

and Stupfler [37, 38]. In an attempt to obtain an estimator behaving better in

finite-sample situations, Gardes and Stupfler [22] worked on a smoothed local

Hill estimator (see Hill [29]) related to the work of Resnick and Stărică [34]. A

different approach, that has been successful in recent years, is to combine extreme

value theory and quantile regression: the pioneering paper is Chernozhukov [7],

and we also refer to the subsequent papers by Chernozhukov and Du [8], Wang

et al. [39] and Wang and Li [40].

The goal of this paper is to introduce integrated estimators of conditional

extreme quantiles and of the conditional tail index for random, possibly infinite-

dimensional, covariates. In particular, our estimator of the conditional tail index,

based on the integration of a conditional log-quantile estimator, is somewhat

related to the one of Gardes and Girard [19]. Our aim is to examine the asymp-

totic properties of our estimators, as well as to examine the applicability of our

conditional extreme quantile estimator on numerical examples and on real data.

Our paper is organized as follows: we define our estimators in Section 2. Their

asymptotic properties are stated in Section 3. A simulation study is provided

in Section 4 and we revisit a set of real chemometric data in Section 5. All the

auxiliary results and proofs are deferred to the Appendix.

2. FUNCTIONAL EXTREME QUANTILE: DEFINITION AND

ESTIMATION

Let (X1, Y1), ..., (Xn, Yn) be n independent copies of a random pair (X, Y )

taking its values in E × R+ where (E , d) is a (not necessarily finite-dimensional)

Polish space endowed with a semi-metric d. For instance, E can be the standard

p-dimensional space R
p, a space of continuous functions over a compact metric

space, or a Lebesgue space Lp(R), to name a few. For y > 0, we denote by S(y|X)

a regular version of the conditional probability P(Y > y|X). Note that since E is

a Polish space, such conditional probabilities always exist, see Jǐrina [30].
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In this paper, we focus on the situation where the conditional distribution

of Y given X is heavy-tailed. More precisely, we assume that there exists a

positive function γ(·), called the conditional tail index, such that

(2.1) lim
y→∞

S(λy|x)

S(y|x)
= λ−1/γ(x),

for all x ∈ E and all λ > 0. This is the adaptation of the standard extreme-value

framework of heavy-tailed distributions to the case when there is a covariate.

The conditional quantile function of Y given X = x is then defined for x ∈ E by

Q(α|x) := inf {y > 0 |S(y|x) ≤ α}. If x ∈ E is fixed, our final aim is to estimate

the conditional extreme quantile Q(βn|x) of order βn → 0. As we will show below,

this does in fact require estimating the conditional tail index γ(x) first.

2.1. Estimation of a functional extreme quantile

Recall that we are interested in the estimation of Q(βn|x) when βn → 0

as the sample size increases. The natural empirical estimator of this quantity is

given by

(2.2) Q̂n(βn|x) := inf
{

y > 0 | Ŝn(y|x) ≤ βn

}
,

where

Ŝn(y|x) =
n∑

i=1

I{Yi > y}I{d(x, Xi) ≤ h}
/

n∑

i=1

I{d(x, Xi) ≤ h}

and where h = h(n) is a nonrandom sequence converging to 0 as n → ∞. Un-

fortunately, denoting by mx(h) := nP(d(x, X) ≤ h) the average number of obser-

vations whose covariates belong to the ball B(x, h) = {x′ ∈ E | d(x, x′) ≤ h} with

center x and radius h, it can be shown (see Proposition 6.1) that the condition

mx(h)βn → ∞ is required to obtain the consistency of Q̂n(βn|x). This means that

at the same time, sufficiently many observations should belong to the ball B(x, h)

and βn should be so small that the quantile Q(βn|x) is covered by the range of

this data, and therefore the order βn of the functional extreme quantile cannot

be chosen as small as we would like. We thus need to propose another estimator

adapted to this case. To this end, we start by remarking (see Bingham et al. [4,

Theorem 1.5.12]) that (2.1) is equivalent to

(2.3) lim
α→0

Q(λα|x)

Q(α|x)
= λ−γ(x),

for all λ > 0. Hence, for 0 < β < α with α small enough, we obtain the extrap-

olation formula Q(β|x) ≈ Q(α|x)(α/β)γ(x) which is at the heart of Weissman’s

extrapolation method [42]. In order to borrow more strength from the available
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information in the sample, we note that, if µ is a probability measure on the

interval [0, 1], another similar, heuristic approximation holds:

Q(β|x) ≈
∫

[0,1]
Q(α|x)

(
α

β

)γ(x)

µ(dα).

If we have at our disposal a consistent estimator γ̂n(x) of γ(x) (an example of

such an estimator is given in Section 2.2), an idea is to estimate Q(βn|x) by:

(2.4)

̂
Qn(βn|x) =

∫

[0,1]
Q̂n(α|x)

(
α

βn

)bγn(x)

µ(dα).

In order to obtain a consistent estimator of the extreme conditional quantile, the

support of the measure µ, denoted by supp(µ), should be located around 0. To be

more specific, we assume in what follows that supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1]

and u ∈ (0, 1) small enough. For instance, taking µ to be the Dirac measure at u

leads to

̂
Qn(βn|x) = Q̂n(u|x) (u/βn)bγn(x), which is a straightforward adaptation

to our conditional setting of the classical Weissman estimator [42]. If on the

contrary µ is absolutely continuous, estimator (2.4) is a properly integrated and

weighted version of Weissman’s estimator. Due to the fact that it takes more

of the available data into account, we can expect such an estimator to perform

better than the simple adaptation of Weissman’s estimator, a claim we investigate

in our finite-sample study in Section 4.

2.2. Estimation of the functional tail index

To provide an estimator of the functional tail index γ(x), we note that equa-

tion (2.3) warrants the approximation γ(x) ≈ log[Q(α|x)/Q(u|x)]/ log(u/α) for

0 < α < u when u is small enough. Let Ψ(·, u) be a measurable function defined

on (0, u) such that 0 <
∣∣∫ u

0 log(u/α)Ψ(α, u)dα
∣∣ < ∞. Multiplying the aforemen-

tioned approximation by Ψ(·, u), integrating between 0 and 1 and replacing Q(·|x)

by the classical estimator Q̂n(·|x) defined in (2.2) leads to the estimator:

(2.5) γ̂n(x, u) :=

∫ u

0
Ψ(α, u) log

Q̂n(α|x)

Q̂n(u|x)
dα

/∫ u

0
log(u/α)Ψ(α, u)dα.

Without loss of generality, we shall assume in what follows that
∫ u

0
log(u/α)Ψ(α, u)dα = 1.

Particular choices of the function Ψ(·, u) actually yield generalizations of some

well-known tail index estimators to the conditional framework. Let kx := uMx(h),

where Mx(h) is the total number of covariates whose distance to x is not greater

than h:

Mx(h) =
n∑

i=1

I{d(x, Xi) ≤ h}.
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The choice Ψ(·, u) = 1/u leads to the estimator:

(2.6) γ̂H
n (x) =

1

kx

⌊kx⌋∑

i=1

log
Q̂n((i − 1)/Mx(h)|x)

Q̂n(kx/Mx(h)|x)
,

which is the straightforward conditional adaptation of the classical Hill estimator

(see Hill [29]). Now, taking Ψ(·, u) = u−1(log(u/·)− 1) leads, after some algebra,

to the estimator:

γ̂Z
n (x) =

1

kx

⌊kx⌋∑

i=1

i log

(
kx

i

)
log

Q̂n((i − 1)/Mx(h)|x)

Q̂n(i/Mx(h)|x)
.

This estimator can be seen as a generalization of the Zipf estimator (see Kratz

and Resnick [31], Schultze and Steinebach [35]).

3. MAIN RESULTS

Our aim is now to establish asymptotic results for our estimators. We

assume in all what follows that Q(·|x) is continuous and decreasing. Particular

consequences of this condition include that S(Q(α|x)|x) = α for any α ∈ (0, 1) and

that given X = x, Y has an absolutely continuous distribution with probability

density function f(·|x).

Recall that under (2.1), or equivalently (2.3), the conditional quantile func-

tion may be written for all t > 1 as follows:

Q(t−1|x) = c(t|x) exp

(∫ t

1

∆(v|x) − γ(x)

v
dv

)
,

where c(·|x) is a positive function converging to a positive constant at infinity

and ∆(·|x) is a measurable function converging to 0 at infinity, see Bingham et

al. [4, Theorem 1.3.1]. We assume in what follows that

(HSO) c(·|x) is a constant function equal to c(x) > 0, the function ∆(·|x)

has ultimately constant sign at infinity and there exists ρ(x) < 0

such that for all λ > 0,

lim
y→∞

∣∣∣∣
∆(λy|x)

∆(y|x)

∣∣∣∣ = λρ(x).

The constant ρ(x) is called the conditional second-order parameter of the dis-

tribution. These conditions on the function ∆(·|x) are commonly used when

studying tail index estimators and make it possible to control the error term in

convergence (2.3). In particular, it is straightforward to see that for all z > 0,

(3.1) lim
t→∞

1

∆(t|x)

(
Q((tz)−1|x)

Q(t−1|x)
− zγ(x)

)
= zγ(x) z

ρ(x) − 1

ρ(x)
,

which is the conditional analogue of the second-order condition of de Haan and

Ferreira [27] for heavy-tailed distributions, see Theorem 2.3.9 therein.
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Finally, for 0 < α1 < α2 < 1, we introduce the quantity:

ω (α1, α2, x, h) = sup
α∈[α1,α2]

sup
x′∈B(x,h)

∣∣∣∣log
Q(α|x′)

Q(α|x)

∣∣∣∣ ,

which is the uniform oscillation of the log-quantile function in its second argu-

ment. Such a quantity is also studied in Gardes and Stupfler [22], for instance. It

acts as a measure of how close conditional distributions are for two neighboring

values of the covariate.

These elements make it possible to state an asymptotic result for our con-

ditional extreme quantile estimator:

Theorem 3.1. Assume that conditions (2.3) and (HSO) are satisfied

and let un,x ∈ (0, 1) be a sequence converging to 0 and such that supp(µ) ⊂
[τun,x, un,x] with τ ∈ (0, 1]. Assume also that mx(h) → ∞ and that there exists

a(x) ∈ (0, 1) such that:

(3.2) c1 ≤ lim inf
n→∞

un,x[mx(h)]a(x) ≤ lim sup
n→∞

un,x[mx(h)]a(x) ≤ c2

for some constants 0 < c1 ≤ c2, z1−a(x)∆2(za(x)|x) → λ(x) ∈ R as z → ∞ and

(3.3) [mx(h)]1−a(x)ω2
(
[mx(h)]−1−δ, 1 − [mx(h)]−1−δ, x, h

)
→ 0

for some δ > 0. If moreover [mx(h)](1−a(x))/2(γ̂n(x) − γ(x))
d−→ Γ with Γ a non-

degenerate distribution, then, provided we have that βn[mx(h)]a(x) → 0 and

[mx(h)]a(x)−1 log2([mx(h)]−a(x)/βn) → 0, it holds that

[mx(h)](1−a(x))/2

log([mx(h)]−a(x)/βn)

( ̂
Qn(βn|x)

Q(βn|x)
− 1

)
d−→ Γ.

Note that [mx(h)]1−a(x) → ∞ depends on the average number of available

data points that can be used to compute the estimator. More precisely, under

condition (3.2), this quantity is essentially proportional to un,xmx(h), which is

the average number of data points actually used in the estimation. In particular,

the conditions in Theorem 3.1 are analogues of the classical hypotheses in the

estimation of an extreme quantile. Besides, condition (3.3) ensures that the

distribution of Y given X = x′ is close enough to that of Y given X = x when

x′ is in a sufficiently small neighborhood of x. Finally, taking µ to be the Dirac

measure at un,x makes it possible to obtain the asymptotic properties of the

functional adaptation of the standard Weissman extreme quantile estimator. In

particular, as in the unconditional univariate case, the asymptotic distribution

of the conditional extrapolated estimator depends crucially on the asymptotic

properties of the conditional tail index estimator used.
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We proceed by stating the asymptotic normality of the estimator γ̂n(x, u)

in (2.5). To this end, an additional hypothesis on the weighting function Ψ(·, u)

is required.

(HΨ) The function Ψ(·, u) satisfies for all u ∈ (0, 1] and β ∈ (0, u]:

u

β

∫ β

0
Ψ(α, u)dα = Φ(β/u) and sup

0<υ≤1/2

∫ υ

0
|Ψ(α, υ)|dα < ∞,

where Φ is a nonincreasing probability density function on (0, 1)

such that Φ2+κ is integrable for some κ > 0. In addition, there

exists a positive continuous function g defined on (0, 1) such that

for any k > 1 and i ∈ {1, 2, ..., k},
(3.4) |iΦ(i/k) − (i − 1)Φ ((i − 1)/k)| ≤ g (i/(k + 1)) ,

and the function g(·)max(log(1/·), 1) is integrable on (0, 1).

Note that for all t ∈ (0, 1), 0 ≤ tΦ(t) ≤
∫ t/2
0 |Ψ(α, 1/2)|dα. Since the right-

hand side converges to 0 as t↓0, we may extend the definition of the map t 7→ tΦ(t)

by saying it is 0 at t = 0. Hence, inequality (3.4) is meaningful even when i = 1.

Condition (HΨ) on the weighting function Ψ(·, u) is similar in spirit to a

condition introduced in Beirlant et al. [1]. This condition is satisfied for instance

by the functions Ψ(·, u) = u−1 and Ψ(·, u) = u−1(log(u/·) − 1) with g(·) = 1 for

the first one and, for the second one, g(·) = 1 − log(·). In particular, our results

shall then hold for the adaptations of the Hill and Zipf estimators mentioned at

the end of Section 2.2.

The asymptotic normality of our family of estimators of γ(x) is established

in the following theorem.

Theorem 3.2. Assume that conditions (2.3), (HSO) and (HΨ) are sat-

isfied, that mx(h) → ∞ and u = un,x → 0. Assume that there exists a(x) ∈
(0, 1) such that z1−a(x)∆2(za(x)|x) → λ(x) ∈ R as z → ∞, condition (3.3) holds

and that there are two ultimately decreasing functions ϕ1 ≤ ϕ2 such that

z1−a(x)ϕ2
2(z) → 0 as z → ∞ and ϕ1(mx(h)) ≤ un,x[mx(h)]a(x) − 1 ≤ ϕ2(mx(h)).

Then, [mx(h)](1−a(x))/2 (γ̂n(x, un,x) − γ(x)) converges in distribution to

N
(

λ(x)

∫ 1

0
Φ(α)α−ρ(x)dα, γ2(x)

∫ 1

0
Φ2(α)dα

)
.

Our asymptotic normality result thus holds under generalizations of the

common hypotheses on the standard univariate model, provided the conditional

distributions of Y at two neighboring points are sufficiently close. We close this

section by pointing out that our main results are also similar in spirit to results

obtained in the literature for other conditional tail index or conditional extreme-

value index estimators, see e.g. Gardes and Stupfler [22] and Stupfler [37, 38].
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4. SIMULATION STUDY

4.1. Hyperparameters selection

The aim of this paragraph is to propose a selection procedure of the hy-

perparameters involved in the estimator

̂
Qn(βn|x) of the extreme conditional

quantile and in the estimator γ̂n(x, u) of the functional tail index. Assuming that

the measure µ used in (2.4) is such that supp(µ) ⊂ [τu, u] for some τ ∈ (0, 1)

fixed by the user (a discussion of the performance of the estimator as a function

of τ is included in Section 4.2 below), these hyperparameters are: the bandwidth

h controlling the smoothness of the estimators and the value u ∈ (0, 1) which

selects the part of the tail distribution considered in the estimation procedure.

The criterion used in our selection procedure is based on the following remark:

for any positive and integrable weight function W : [0, 1] → [0,∞),

EW := E

[∫ 1

0
W (α) (I{Y > Q(α|X)} − α)2 dα

]
=

∫ 1

0
W (α)α(1 − α)dα.

The sample analogue of EW is given by

1

n

n∑

i=1

∫ 1

0
W (α) (I{Yi > Q(α|Xi)} − α)2 dα,

and for a good choice of h and u, this quantity should of course be close to the

known quantity EW . Let then W
(1)
n and W

(2)
n be two positive and integrable

weight functions. Replacing the unobserved variable Q(α|Xi) by the statistic

Q̂n,i(α|Xi) which is the estimator (2.2) computed without the observation (Xi, Yi)

leads to the following estimator of E
W

(1)
n

:

Ê
(1)

W
(1)
n

(h) :=
1

n

n∑

i=1

∫ 1

0
W (1)

n (α)
(
I{Yi > Q̂n,i(α|Xi)} − α

)2
dα.

Note that Ê
(1)

W
(1)
n

(h) only depends on the hyperparameter h. In the same way, one

can also replace Q(α|Xi) by the statistic

̂
Qn,i(α|Xi) which is the estimator (2.4)

computed without the observation (Xi, Yi). An estimator of E
W

(2)
n

is then given

by:

Ê
(2)

W
(2)
n

(u, h) :=
1

n

n∑

i=1

∫ 1

0
W (2)

n (α)
(
I{Yi >

̂
Qn,i(α|Xi)} − α

)2
dα.

Obviously, this last quantity depends both on u and h. We propose the following

two-stage procedure to choose the hyperparameters u and h. First, we compute
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our selected bandwidth hopt by minimizing with respect to h the function

CV(1)(h) :=

[
Ê

(1)

W
(1)
n

(h) −
∫ 1

0
W (1)

n (α)α(1 − α)dα

]2

.

Next, our selected sample fraction uopt is obtained by minimizing with respect to

u the function CV(2)(u, hopt) where

CV(2)(u, h) :=

[
Ê

(2)

W
(2)
n

(u, h) −
∫ 1

0
W (2)

n (α)α(1 − α)dα

]2

.

Note that the functions CV(1) and CV(2) can be seen as adaptations to the prob-

lem of conditional extreme quantile estimation of the cross-validation function

introduced in Li et al. [32].

4.2. Results

The behavior of the extreme conditional quantile estimator (2.4), when

the estimator (2.5) of the functional tail index is used together with our selec-

tion procedure of the hyperparameters, is tested on some random pairs (X, Y ) ∈
C1[−1, 1]× (0,∞), where C1[−1, 1] is the space of continuously differentiable func-

tions on [−1, 1]. We generate n = 1000 independent copies (X1, Y1), ..., (Xn, Yn)

of (X, Y ) where X is the random curve defined for all t ∈ [−1, 1] by X(t) :=

sin[2πtU ] + (V + 2π)t + W , where U , V and W are independent random vari-

ables drawn from a standard uniform distribution. Note that this random co-

variate was used for instance in Ferraty et al. [16]. Regarding the conditional

distribution of Y given X = x, x ∈ C1[−1, 1], two distributions are considered.

The first one is the Fréchet distribution, for which the conditional quantile is

given for all α ∈ (0, 1) by Q(α|x) = [− log (1 − α)]−γ(x). The second one is the

Burr distribution with parameter r > 0, for which Q(α|x) = (α−rγ(x) − 1)1/r. For

these distributions, letting x′ be the first derivative of x and

z(x) =
2

3

[∫ 1

−1
x′(t)[1 − cos(πt)]dt − 23

2

]
,

the functional tail index is given by

γ(x) = exp

[
− log(3)

9
z2(x)

]
I{|z(x)| < 3} +

1

3
I{|z(x)| ≥ 3}.

In this setup, it is straightforward to show that z(x) ∈ [−3.14, 3.07] approxi-

mately, and therefore the range of values of γ(x) is the full interval [1/3, 1]. Let us

also mention that the second order parameter ρ(x) appearing in condition (HSO)

is then ρ(x) = −1 for the Fréchet distribution and ρ(x) = −rγ(x) for the Burr

distribution; in the latter case, the range of values of ρ(x) is therefore [−r,−r/3].
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The space C1[−1, 1] is endowed with the semi-metric d given for all x1, x2

by

d(x1, x2) =

[∫ 1

−1

(
x′

1(t) − x′
2(t)
)2

dt

]1/2

,

i.e. the L2-distance between first derivatives. To compute γ̂n(x, u), we use the

weight function Ψ(·, u) = u−1(log(u/·) − 1), and the measure µ used in the in-

tegrated conditional quantile estimator is assumed to be absolutely continuous

with respect to the Lebesgue measure, with density

pτ,u(α) =
1

u(1 − τ)
I{α ∈ [τu, u]}.

In what follows, this estimator is referred to as the Integrated Weissman Estima-

tor (IWE). Other absolutely continuous measures µ, with different densities with

respect to the Lebesgue measure, have been tested, with different values of τ . It

appears that the impact of the choice of the parameter τ is more important than

the one of the measure µ. We thus decided to present in this simulation study

the results for the aforementioned value of the measure µ only, but with different

tested values for τ .

The hyperparameters are selected using the procedure described in Sec-

tion 4.1. Since we are interested in the tail of the conditional distribution, the

supports of the weight functions W
(1)
n and W

(2)
n should be located around 0. More

specifically, for i ∈ {1, 2}, we take

W (i)
n (α) := log

(
α

β
(i)
n,1

)
I{α ∈ [β

(i)
n,1, β

(i)
n,2]},

where β
(1)
n,1 = ⌊2√n log n⌋/n, β

(1)
n,2 = ⌊3√n log n⌋/n, β

(2)
n,1 = ⌊5 log n⌋/n and β

(2)
n,2 =

⌊10 log n⌋/n. The cross-validation function CV(1)(h) is minimized over a grid H
of 20 points evenly spaced between 1/2 and 10 to obtain the optimal value hopt,

while the value uopt is obtained by minimizing over a grid U of 26 points evenly

spaced between 0.005 and 0.255 the function CV(2)(u, hopt).

For the Fréchet distribution and two Burr distributions (one with r = 2 and

one with r = 1/20), the conditional extreme quantile estimator (2.4) is computed

with the values uopt and hopt obtained by our selection procedure. The quality

of the estimator is measured by the Integrated Squared Error given by:

ISE :=
1

n

n∑

i=1

∫ β
(2)
n,2

β
(2)
n,1

log2

̂
Qn,i(α|Xi)

Q(α|Xi)
dα.

This procedure is repeated N = 100 times. To give a graphical idea of the be-

havior of our estimator (2.4), we first depict, in Figure 1, boxplots of the N

obtained replications of this estimator, computed with τ = 9/10, for the Fréchet

distribution and for some values of the quantile order βn and of the covariate x.
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Figure 1: For the Fréchet distribution, boxplots of (the logarithm of) estimator (2.4)

for βn = β
(2)
n,1 (top), βn = (β

(2)
n,1 + β

(2)
n,2)/2 (middle) and βn = β

(2)
n,2 (bottom).

In each picture, the covariate x is respectively (from left to right) such that
z(x) = −2 (γ(x) ≈ 0.64), z(x) = 0 (γ(x) = 1) and z(x) = 2 (γ(x) ≈ 0.64).
In each case, the true value of the conditional quantile to be estimated is
represented by a cross.
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More precisely, we take here βn ∈ {β(2)
n,1, (β

(2)
n,1 + β

(2)
n,2)/2, β

(2)
n,2} and three values of

the covariate are considered: x = x1 with z(x1) = −2 (and then γ(x1) ≈ 0.64),

x = x2 with z(x2) = 0 (giving γ(x2) = 1) and x = x3 with z(x3) = 2 (which entails

γ(x3) ≈ 0.64). As expected, the quality of the estimation is strongly impacted

by the quantile order βn but also by the actual position of the covariate and, of

course, by the value of the true conditional tail index γ(x).

Next, the median and the first and third quartiles of the N values of the

Integrated Squared Error are gathered in Table 1. The proposed estimator is

compared to the adaptation of the Weissman estimator obtained by taking for

the measure µ in (2.4) the Dirac measure at u. This estimator is referred to as the

Weissman Estimator (WE) in Table 1. In the WE estimator, the functional tail

index γ(x) is estimated either by (2.6) or by the generalized Hill-type estimator

of Gardes and Girard [21]: for J ≥ 2, this estimator is given by

γ̂GG(x, u) =
J∑

j=1

(log Q̂n(u/j2|x) − log Q̂n(u|x))

/
J∑

j=1

log(j2) .

Following their advice, we set J = 10. Again, the median and the first and third

quartiles of the N values of the Integrated Squared Error of these two estimators

are given in Table 1. In this Table, optimal median errors among the five tested es-

timators are marked in boldface characters. It appears that the IWEs outperform

the two WEs in the case of the Fréchet and Burr (with r = 1/20) distributions.

Table 1: Comparison of the Integrated Squared Errors of the follow-
ing extreme conditional quantile estimators: IWE with τ ∈
{1/10, 1/2, 9/10} (lines 1 to 3), WE when γ(x) is estimated
by (2.6) (line 4) and WE when γ(x) is estimated by the Hill-
type estimator (line 5). Results are given in the following form:
[first quartile median third quartile].

Fréchet dist. Burr dist. (r = 2)

IWE (τ = 1/10) [0.0060 0.0077 0.0132] [0.0063 0.0099 0.0147]

IWE (τ = 1/2) [0.0060 0.0077 0.0112] [0.0058 0.0095 0.0128]

IWE (τ = 9/10) [0.0058 0.0076 0.0107] [0.0059 0.0093 0.0119]

WE (with (2.6)) [0.0054 0.0078 0.0115] [0.0054 0.0088 0.0137]

WE (Hill-type) [0.0068 0.0094 0.0120] [0.0071 0.0103 0.0137]

Burr dist. (r = 1/20)

IWE (τ = 1/10) [0.6427 0.9504 1.3982]

IWE (τ = 1/2) [0.6040 0.8343 1.2018]

IWE (τ = 9/10) [0.8010 1.0870 1.2725]

WE (with (2.6)) [0.5848 0.8909 1.3372]

WE (Hill-type) [0.7679 1.1314 1.4599]



Integrated Functional Weissman Estimator 123

It also seems that the choice of τ has some influence on the quality of the estimator

but, unfortunately, an optimal choice of τ apparently depends on the unknown

underlying distribution. It is interesting though to note that the optimal IWE

estimator among the three tested here always enjoys a smaller variability than

the WE estimator: for instance, in the case of the Burr distribution with r = 2,

even though the IWE with τ = 9/10 does not outperform the WE (with γ(x)

estimated by (2.6)) in terms of median ISE, the interquartile range of the ISE is

27.7% lower for the IWE compared to what it is for the WE. Finally, as expected,

the value of ρ(x) has a strong impact on the estimation procedure: a value of

ρ(x) close to 0 leads to large values of the Integrated Squared Error.

5. REAL DATA EXAMPLE

In this section, we showcase our extreme quantile Integrated Weissman

Estimator on functional chemometric data. This data, obtained by considering

n = 215 pieces of finely chopped meat, consists of pairs of observations (xn, zn),

where xi is the absorbance curve of the ith piece of meat, obtained at 100 regularly

spaced wavelengths between 850 and 1050 nanometers (this is also called the

spectrometric curve), and zi is the percentage of fat content in this piece of meat.

The data, openly available at http://lib.stat.cmu.edu/datasets/tecator, is

for instance considered in Ferraty and Vieu [14, 15]. Figure 2 is a graph of all

215 absorbance curves.
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Figure 2: Spectrometric curves for the data.

Because the percentage of fat content zi obviously belongs to [0, 100], it

has a finite-right endpoint and therefore cannot be conditionally heavy-tailed as
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required by model (2.1). We thus consider the “inverse fat content” yi = 100/zi

in this analysis. The top panel of Figure 3 shows the Hill plot of the sample

(y1, ..., yn) without integrating covariate information. It can be seen in this figure

that the Hill plot seems to be stabilizing near the value 0.4 for a sizeable portion of

the left of the graph, thus indicating the plausible presence of a heavy right tail in

the data (y1, ..., yn), see for instance Theorem 3.2.4 in de Haan and Ferreira [27].

The other panels in Figure 3 show exponential QQ-plots for the log-data points

whose covariates lie in a fixed-size neighborhood of certain pre-specified points

in the covariate space. It is seen in these subfigures that these plots are indeed

roughly linear towards their right ends, which supports our conditional heavy

tails assumption.

On these grounds, we therefore would like to analyze the influence of the

covariate information, which is the absorbance curve, upon the inverse fat content.

While of course the absorbance curves obtained are in reality made of discrete

data because of the discretization of this curve, the precision of this discretization

arguably makes it possible to consider our data as in fact functional. This, in our

opinion, fully warrants the use of our estimator in this case.

Because the covariate space is functional, one has to wonder about how to

measure the influence of the covariate and then about how to represent the re-

sults. A nice account of the problem of how to represent results when considering

functional data is given in Ferraty and Vieu [15]. Here, we look at the variation

of extreme quantile estimates in two different directions of the covariate space.

To this end, we consider the semi-metric

d(x1, x2) =

[∫ 1050

850

(
x′′

1(t) − x′′
2(t)

)2
dt

]1/2

,

also advised by Ferraty and Vieu [14], and we compute:

• A typical pair of covariates, i.e. a pair (xmed
1 , xmed

2 ) such that

d(xmed
1 , xmed

2 ) = median{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j};

• A pair of covariates farthest from each other, i.e. a pair (xmax
1 , xmax

2 )

such that

d(xmax
1 , xmax

2 ) = max{d(xi, xj), 1 ≤ i, j ≤ n, i 6= j}.

For the purpose of comparison, we also compute the “average covariate” x =

n−1
∑n

i=1 xi. In particular, we represent on Figure 4 our two pairs of covariates

together with the average covariate, the same scale being used on the y-axis

in both figures. Recall that since the semi-metric d is the L2-distance between

second-order derivatives, it acts as a measure of how much the shapes of two

covariate curves are different, rather than measuring how far apart they are.
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Figure 3: Top panel: Hill plot for the sample (y1, ..., yn). On the x-axis at the top of
the panel is the value of the lower threshold for the computation of the Hill
estimator, i.e. the lowest order statistic. Other panels: local exponential
QQ-plots for the log-data points whose covariates belong to a neighborhood
of certain pre-specified points in the covariate space.
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Figure 4: Top picture, solid lines: a pair of typical covariates. Bottom picture,
solid lines: the pair of covariates farthest from each other. In both
pictures the dotted line is the average covariate.

We compute our conditional extreme quantile estimator at the levels 5/n

and 1/n, using the methodology given in Section 4.2. In particular, the selection

parameters β
(1)
n,1, β

(1)
n,2, β

(2)
n,1 and β

(2)
n,2 used in the cross-validation methodology were

the exact same ones used in the simulation study, namely 0.437, 0.655, 0.035 and

0.069, respectively. The bandwidth h is selected in the interval [0.00316, 0.0116],

the lower bound in this interval corresponding to the median of all distances

d(xi, xj) (i 6= j) and the upper bound corresponding to 90% of the maximum

of all distances d(xi, xj), for a final selected value of 0.00717. The value of the

parameter u is selected exactly as in the simulation study, and the selection pro-

cedure gives the value 0.185. Finally, we set τ = 0.9 in our Integrated Weissman

Estimator.
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Results are given in Figure 5; namely, we compute the extreme quantile esti-

mates

̂
Qn(β|x), for β ∈{5/n,1/n}, and x belonging to either the line [xmed

1 , xmed
2 ] =

{txmed
1 + (1− t)xmed

2 , t ∈ [0, 1]} or to the line [xmax
1 , xmax

2 ]. It can be seen in these

figures that the estimates in the direction of a typical pair of covariates are re-

markably stable; they are actually essentially indistinguishable from the estimates

at the average covariate, which are 42.41 for β = 5/n and 93.86 for β = 1/n.
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Figure 5: Solid line: extreme quantile estimate in the direction of a typical pair of
covariates, dashed line: extreme quantile estimate in the direction of a pair
of covariates farthest from each other. Top picture: case β = 5/n, bottom
picture: β = 1/n.

By contrast, the estimates on the line [xmax
1 , xmax

2 ], while roughly stable for 60%

of the line and approximately equal to the value of the estimated quantiles at

the average covariate, very sharply drop afterwards, the reduction factor be-

ing close to 10 from the beginning of the line to its end in the case β = 5/n.
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This conclusion suggests that while in typical directions of the covariate space

the tail behavior of the fat content is very stable, there may be certain directions

in which this is not the case. In particular, there appear to be certain values of

the covariate for which thresholds for the detection of unusual levels of fat should

differ from those of more standard cases.

6. PROOFS OF THE MAIN RESULTS

Before proving the main results, we recall two useful facts. The first one is

a classical equivalent of

Mx(h) :=
n∑

i=1

I{d(Xi, x) ≤ h}.

If mx(h) → ∞ as n → ∞ then, for any δ ∈ (0, 1):

(6.1) [mx(h)](1−δ)/2

∣∣∣∣
Mx(h)

mx(h)
− 1

∣∣∣∣
P−→ 0 as n → ∞,

see Lemma 1 in Stupfler [37]. For the second one, let {Y ∗
i , i = 1, ..., Mx(h)} be

the response variables whose associated covariates {X∗
i , i = 1, ..., Mx(h)} are such

that d(X∗
i , x) ≤ h. Lemma 4 in Gardes and Stupfler [22] shows that the random

variables Vi = 1 − F (Y ∗
i |X∗

i ) are such that, for all u1, ..., up ∈ [0, 1],

(6.2) P

(
p⋂

i=1

{Vi ≤ ui}|Mx(h) = p

)
= u1...up,

i.e. they are independent standard uniform random variables given Mx(h).

6.1. Proof of Theorem 3.1

The following proposition is a uniform consistency result for the estimator

Q̂n(βn|x) when βn goes to 0 at a moderate rate.

Proposition 6.1. Assume that conditions (2.3), (HSO), (3.2) and (3.3)

are satisfied. If mx(h) → ∞, then

sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ = OP

(
[mx(h)](a(x)−1)/2

)
.
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Proof: Let Mn := Mx(h), {Ui, i ≥ 1} be independent standard uniform

random variables, Vi := S(Y ∗
i |X∗

i ) and

Zn(x) := sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ .

We start with the following inequality: Zn(x) ≤ Tn(x) + R
(Q)
n (x), with

Tn(x) := sup
α∈[τun,x,un,x]

∣∣∣∣
Q(V⌊αMn⌋+1,Mn

|x)

Q(α|x)
− 1

∣∣∣∣(6.3)

and R(Q)
n (x) := sup

α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x) − Q(V⌊αMn⌋+1,Mn

|x)

Q(α|x)

∣∣∣∣∣ .(6.4)

Let us first focus on the term Tn(x). For any t > 0,

P(vn,xTn(x) > t) =

n∑

j=0

P(vn,xTn(x) > t|Mn = j)P(Mn = j),

where vn,x := [mx(h)](1−a(x))/2. From (6.1), letting

(6.5) In := [mx(h)(1 − [mx(h)][a(x)/4]−1/2), mx(h)(1 + [mx(h)][a(x)/4]−1/2)],

one has P(Mn /∈ In) → 0 as n → ∞. Hence,

P(vn,xTn(x) > t) ≤ sup
p∈In

P(vn,x,Tn(x) > t|Mn = p) + o(1).

Using Lemma A.1,

sup
p∈In

P(vn,xTn(x) > t|Mn = p) = sup
p∈In

P(vn,xT p(x) > t),

where

T p(x) := sup
α∈[τun,x,un,x]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ .

Using condition (3.2), it is clear that there are constants d1, d2 > 0 with d1 < d2

such that for n large enough, we have for all p ∈ In:

T p(x) ≤ sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ .

Thus, for all t > 0, P(vn,xTn(x) > t) is bounded above by

sup
p∈In

P

(
vn,x sup

α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ > t

)
+ o(1).

Furthermore, for n large enough, there exists κ > 0 such that for all p ∈ In,

vn,x ≤ κp(1−a(x))/2 and thus, for all t > 0, P(vn,xTn(x) > t) is bounded above by

sup
p∈In

P

(
κp(1−a(x))/2 sup

α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ > t

)
+ o(1).
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Since

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ = OP(1),

(see Lemma A.2 for a proof), it now becomes clear that Tn(x) = OP(v−1
n,x).

Let us now focus on the term R
(Q)
n (x). As before, one can show that for all

t > 0,

P(vn,xR(Q)
n (x) > t) ≤ sup

p∈In

P(vn,xR(Q)
n (x) > t|Mn = p) + o(1).

Lemma A.1 and condition (3.3) yield for any t > 0 and n large enough:

sup
p∈In

P(vn,xR(Q)
n (x) > t|Mn = p)

≤ sup
p∈In

P(vn,xω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t)

≤ sup
p∈In

P(p(1−a(x))/2ω(U1,p, Up,p, x, h) exp(ω(U1,p, Up,p, x, h))(1 + T p(x)) > t/κ)

≤ sup
p∈In

[
P(U1,p < [mx(h)]−1−δ) + P(Up,p > 1 − [mx(h)]−1−δ)

]
.

Since for n large enough

sup
p∈In

[
P(U1,p < [mx(h)]−1−δ) + P(Up,p > 1 − [mx(h)]−1−δ)

]
(6.6)

= 2 sup
p∈In

[
1 − [1 − [mx(h)]−1−δ]p

]
≤ 2

(
1 − [1 − [mx(h)]−1−δ]2mx(h)

)
→ 0,

we thus have proven that R
(Q)
n (x) = oP(v−1

n,x) and the proof is complete.

Proof of Theorem 3.1: The key point is to write

̂
Qn(βn|x) =

∫ un,x

τun,x

Q(α|x)

(
α

βn

)γ(x)
{

Q̂n(α|x)

Q(α|x)

(
α

βn

)bγn(x)−γ(x)
}

µ(dα).

Now, by assumption vn,x(γ̂n(x) − γ(x))
d−→ Γ where vn,x := [mx(h)](1−a(x))/2.

Since βn/un,x is asymptotically bounded from below and above by sequences

proportional to βn[mx(h)]a(x) → 0, one has for n large enough that

sup
α∈[τun,x,un,x]

∣∣∣∣∣log

[(
α

βn

)bγn(x)−γ(x)
]∣∣∣∣∣ ≤ |γ̂n(x) − γ(x)| log

(
un,x

βn

)
= oP(1),

since by assumption v−1
n,x log(un,x/βn) → 0. A Taylor expansion for the exponen-

tial function thus yields

(
α

βn

)bγn(x)−γ(x)

− 1 − log(α/βn)(γ̂n(x) − γ(x)) = OP

(
v−1
n,x log2(un,x/βn)

)
,
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uniformly in α ∈ [τun,x, un,x]. We then obtain

̂
Qn(βn|x) =

∫ un,x

τun,x

Q(α|x)

(
α

βn

)γ(x)

Gn,x(α)µ(dα)

where

Gn,x(α) :=
Q̂n(α|x)

Q(α|x)

[
1 + log(α/βn)(γ̂n(x) − γ(x)) + OP

(
v−1
n,x log2(un,x/βn)

)]
.

By Proposition 6.1,

sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x)

Q(α|x)
− 1

∣∣∣∣∣ = OP(v−1
n,x),

and therefore:

(6.7) Gn,x(α) = 1 + log(α/βn)(γ̂n(x) − γ(x)) + OP

(
v−1
n,x log2(un,x/βn)

)
.

By Lemma A.3,

(6.8) sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = O
(
∆(u−1

n,x|x)
)
,

and thus, (6.7) and (6.8) lead to
̂
Q(βn|x)

Q(βn|x)
− 1 = (γ̂n(x) − γ(x))

∫ un,x

τun,x

log(α/βn)µ(dα)
[
1 + O

(
∆(u−1

n,x|x)
)]

+ O
(
∆(u−1

n,x|x)
)

+ OP

(
v−1
n,x log2(un,x/βn)

)
.

Since un,x/βn → 0 and µ([τun,x, un,x]) = 1, one has

∫ un,x

τun,x

log(α/βn)µ(dα) =

∫ un,x

τun,x

[log(un,x/βn) + log(α/un,x)] µ(dα)

= log(un,x/βn)(1 + o(1)),

and thus ̂
Q(βn|x)

Q(βn|x)
− 1 = (γ̂n(x) − γ(x)) log(un,x/βn) [1 + o(1)]

+ O
(
∆(u−1

n,x|x)
)

+ OP

(
v−1
n,x log2(un,x/βn)

)
.

Using the convergence in distribution of γ̂n(x) completes the proof.

6.2. Proof of Theorem 3.2

For the sake of brevity, let vn,x = [mx(h)](1−a(x))/2, Mn = Mx(h) and Kn =

un,xMn. The cumulative distribution function of a normal distribution with mean

λ(x)
∫ 1
0 Φ(α)α−ρ(x)dα and variance γ2(x)

∫ 1
0 Φ2(α)dα is denoted by Hx in what
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follows. Let t∈R and ε > 0. Denoting by En(t) the event {vn,x (γ̂n(x, un,x)− γ(x))

≤ t}, one has

|P [En(t)] − Hx(t)| ≤
n∑

p=0

P(Mn = p) |P [En(t)|Mn = p] − Hx(t)| .

Recall that from (6.1), P(Mn /∈ In) → 0 as n → ∞ where In is defined in (6.5).

Hence, for n large enough,

(6.9) |P [En(t)] − Hx(t)| ≤ sup
p∈In

|P [En(t)|Mn = p] − Hx(t)| + ε

8
.

Now, using the notation Vi := S(Y ∗
i |X∗

i ) for i = 1, ..., Mn, let us introduce the

statistics:

γ̃n(x, un,x) :=

⌊Kn⌋∑

i=1

Wi,n(un,x, Mn) log
Q(Vi,Mn

|x)

Q(V⌊Kn⌋+1,Mn
|x)

and R(γ)
n (x) := γ̂n(x, un,x) − γ̃n(x, un,x),(6.10)

where

(6.11) Wi,n(un,x, Mn) :=

∫ i/Mn

(i−1)/Mn

Ψ(α, un,x)dα.

It is straightforward that for all κ > 0,

(6.12) sup
p∈In

|P [En(t)|Mn = p] − Hx(t)| ≤ T (1)
n,x + T (2)

n,x,

where

T (1)
n,x := sup

p∈In

∣∣∣P
[
En(t) ∩

{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]
− Hx(t)

∣∣∣

and T (2)
n,x := sup

p∈In

P

[
vn,x|R(γ)

n (x)| > κ|Mn = p
]
.

Let us first focus on the term T
(1)
n,x. Let Ẽn(t) := {vn,x (γ̃n(x, un,x) − γ(x)) ≤ t}.

For all p ∈ In, P[En(t)∩ {vn,x|R(γ)
n (x)| ≤ κ}|Mn = p] ≤ P[Ẽn(t + κ)|Mn = p] and

P

[
En(t) ∩

{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]

≥ P

[
Ẽn(t − κ) ∩

{
vn,x|R(γ)

n (x)| ≤ κ
}
|Mn = p

]

≥ P

[
Ẽn(t − κ)|Mn = p

]
− P

[
vn,x|R(γ)

n (x)| > κ|Mn = p
]
.

Using the inequality |x| ≤ |a| + |b| which holds for all x ∈ [a, b], it is then clear

that for all κ > 0,

T (1)
n,x ≤ sup

p∈In

∣∣∣P
[
Ẽn(t + κ)|Mn = p

]
− Hx(t + κ)

∣∣∣

+ sup
p∈In

∣∣∣P
[
Ẽn(t − κ)|Mn = p

]
− Hx(t − κ)

∣∣∣

+ |Hx(t) − Hx(t + κ)| + |Hx(t) − Hx(t − κ)| + T (2)
n,x.



Integrated Functional Weissman Estimator 133

Since Hx is continuous, we can actually choose κ > 0 so small that

|Hx(t) − Hx(t + κ)| ≤ ε

8
and |Hx(t) − Hx(t − κ)| ≤ ε

8

and therefore

T (1)
n,x ≤ sup

p∈In

∣∣∣P
[
Ẽn(t + κ)|Mn = p

]
− Hx(t + κ)

∣∣∣(6.13)

+ sup
p∈In

∣∣∣P
[
Ẽn(t − κ)|Mn = p

]
− Hx(t − κ)

∣∣∣+ T (2)
n,x +

ε

4
.

We now focus on the two first terms in the left-hand side of the previous inequality.

From Lemma A.4, the distribution of γ̃n(x, un,x) given Mn = p is that of

γp(x, un,x) :=
1

pun,x

⌊pun,x⌋∑

i=1

Φ

(
i

pun,x

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
.

Hence, for all s∈R and p∈ In, P[Ẽn(s)|Mn = p] = P[vn,x(γp(x, un,x)− γ(x)) ≤ s].

Furthermore, for n large enough we have

p/2 ≤ p

1 + [mx(h)][a(x)/4]−1/2
≤ mx(h) ≤ p

1 − [mx(h)][a(x)/4]−1/2
≤ 2p

for all p ∈ In, so that for n large enough:

(6.14) ξ(+)(p) ≤ mx(h) ≤ ξ(−)(p),

with ξ(+)(p) := p[1 + (2p)[a(x)/4]−1/2]−1 and ξ(−)(p) := p[1 − (p/2)[a(x)/4]−1/2]−1.

Under our assumptions on the sequence un,x, the previous inequalities lead to

k1(p) ≤ pun,x ≤ k2(p) where k1(p) := p[ξ(−)(p)]−a(x)[1+ϕ1(ξ
(−)(p))] and k2(p) :=

p[ξ(+)(p)]−a(x)[1 + ϕ2(ξ
(+)(p))]. Since Φ is a nonincreasing function on (0, 1), we

then get that:

γp(x, un,x) ≤ 1

k1(p)

⌊pun,x⌋∑

i=1

Φ

(
i

⌊k2(p)⌋ + 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

≤ 1

k1(p)

⌊k2(p)⌋+1∑

i=1

Φ

(
i

⌊k2(p)⌋ + 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

=
̂
γp(x, k1(p), k2(p))

with

(6.15)
̂
γp(x, k, k′) :=

1

k

⌊k′⌋∑

i=1

Φ

(
i

⌊k′⌋ + 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
.

A similar lower bound applies and thus

̂
γp(x, k2(p), k1(p) − 1) ≤ γp(x, un,x) ≤̂

γp(x, k1(p), k2(p)) for all p ∈ In. As a first conclusion, using the inequality |x| ≤
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|a| + |b| which holds for all x ∈ [a, b], we have shown that for all s ∈ R,

sup
p∈In

∣∣∣P
[
Ẽn(s)|Mn = p

]
− Hx(s)

∣∣∣

≤ sup
p∈In

∣∣P
[
vn,x(

̂
γp(x, k1(p), k2(p)) − γ(x)) ≤ s

]
− Hx(s)

∣∣

+ sup
p∈In

∣∣P
[
vn,x(

̂
γp(x, k2(p), k1(p) − 1) − γ(x)) ≤ s

]
− Hx(s)

∣∣ .

Since from (6.14), [ξ(+)(p)](1−a(x))/2 ≤ vn,x ≤ [ξ(−)(p)](1−a(x))/2 for all p ∈ In and

since by assumption on the ϕi,

k1(p)

k2(p)
= 1 + O

(
p[a(x)/4]−1/2

)
+ O

(
ϕ1(ξ

(+)(p))
)

+ O
(
ϕ2(ξ

(+)(p))
)

= 1 + o(p(a(x)−1)/2),

one can apply Lemmas A.6 and A.7 to show that for n large enough

sup
p∈In

∣∣∣P
[
Ẽn(t + κ)|Mn = p

]
− Hx(t + κ)

∣∣∣(6.16)

+ sup
p∈In

∣∣∣P
[
Ẽn(t − κ)|Mn = p

]
− Hx(t − κ)

∣∣∣ ≤ ε

2
.

It remains to study the term T
(2)
n,x. Lemma A.4 entails that

T (2)
n,x ≤ sup

p∈In

P

[
2vn,xω(U1,p, Up,p, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα > κ

]
.

From condition (HΨ),

lim sup
u↓0

∫ u

0
|Ψ(α, u)|dα = C < ∞

and thus for n large enough, using (6.6):

T (2)
n,x ≤ sup

p∈In

P

[
vn,xω(U1,p, Up,p, x, h) >

κ

4C

]

≤ 2
(
1 − [1 − [mx(h)]−1−δ]2mx(h)

)
≤ ε

8
.(6.17)

Collecting (6.9), (6.12), (6.13), (6.16) and (6.17) concludes the proof.
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APPENDIX

The first lemma is dedicated to the statistics Tn(x) and R
(Q)
n (x) defined in

the proof of Proposition 6.1, equations (6.3) and (6.4).

Lemma A.1. Let {Ui, i ≥ 1} be independent standard uniform random

variables. For x ∈ E such that mx(h) > 0, the conditional distribution of Tn(x)

given Mx(h) = p is that of

T p(x) := sup
α∈[τun,x,un,x]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣

and, given Mx(h) = p, R
(Q)
n (x) is bounded from above by

ω(U1,p, Up,p, x, h) exp[ω(U1,p, Up,p, x, h)]
(
1 + T p(x)

)
.

Proof: Recall the notation Mn := Mx(h) and Vi := S(Y ∗
i |X∗

i ). First, given

Mn = p, equation (6.2) entails that {Vi, 1 ≤ i ≤ Mn}|{Mn = p} d
= {Ui, 1 ≤ i ≤

p} where U1, ..., Up are independent standard uniform variables. It thus holds

that

{
Q(V⌊αMn⌋+1,Mn

|x), α ∈ [0, 1)
}
|{Mn = p} d

=
{
Q(U⌊pα⌋+1,p|x), α ∈ [0, 1)

}
.

As a direct consequence

(A.1) Tn(x)|{Mn = p} d
= T p(x).

Let us now focus on the term R
(Q)
n (x). Since Q(·|x) is continuous and decreasing,

one has, for i = 1, ..., Mn,

log Q(Vi|x) − ω(V1,Mn
, VMn,Mn

, x, h) ≤ log Y ∗
i = log Q(Vi|X∗

i )

≤ log Q(Vi|x) + ω(V1,Mn
, VMn,Mn

, x, h).

It follows from Lemma 1 in Gardes and Stupfler [22] that for all i ∈ {1, ..., Mn},

(A.2)
∣∣log Y ∗

Mn−i+1,Mn
− log Q(Vi,Mn

|x)
∣∣ ≤ ω(V1,Mn

, VMn,Mn
, x, h).

Since Q̂n(α|x) = Y ∗
Mn−i+1,Mn

for all α ∈ [(i − 1)/Mn, i/Mn), the mean value the-

orem leads to

sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x)

Q(V⌊αMn⌋+1,Mn
|x)

− 1

∣∣∣∣∣
≤ ω(V1,Mn

, VMn,Mn
, x, h) exp [ω(V1,Mn

, VMn,Mn
, x, h)] .
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Hence,

R(Q)
n (x) = sup

α∈[τun,x,un,x]

∣∣∣∣∣
Q̂n(α|x)

Q(V⌊αMn⌋+1,Mn
|x)

− 1

∣∣∣∣∣

∣∣∣∣
Q(V⌊αMn⌋+1,Mn

|x)

Q(α|x)

∣∣∣∣

≤ ω(V1,Mn
, VMn,Mn

, x, h) exp [ω(V1,Mn
, VMn,Mn

, x, h)] (1 + Tn(x)).

Use finally (6.2) and (A.1) to complete the proof.

The next lemma examines the convergence of Tn(x), defined in the above

lemma, given Mx(h).

Lemma A.2. Let U1, ..., Up be independent standard uniform variables.

Assume that (2.3) and (HSO) hold. If a(x)∈ (0,1) is such that p1−a(x)∆2(pa(x)|x)

→ λ ∈ R as p → ∞ then, for all d1, d2 > 0 with d1 < d2, we have:

p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(α|x)
− 1

∣∣∣∣ = OP(1).

Proof: Recall that (HSO) entails that (3.1) holds. Then, one can apply

[27, Theorem 2.4.8] to the independent random variables {Q(Ui|x), i = 1, ..., p}
distributed from the conditional survival function S(·|x): because

inf
α∈[d1p−a(x),d2p−a(x)]

α

d2p−a(x)
=

d1

d2
> 0,

it holds that

(A.3) p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣∣∣
Q(U⌊pα⌋+1,p|x)

Q(d2p−a(x)|x)
−
(

αpa(x)

d2

)−γ(x)
∣∣∣∣∣∣
= OP(1).

Since (3.1) must in fact hold locally uniformly in z > 0 (see [27, Theorem B.2.9])

and [d1, d2] is a compact interval, it is clear that

(A.4) p(1−a(x))/2 sup
α∈[d1p−a(x),d2p−a(x)]

∣∣∣∣∣∣
Q(α|x)

Q(d2p−a(x)|x)
−
(

αpa(x)

d2

)−γ(x)
∣∣∣∣∣∣
= O(1).

Combine (A.3) and (A.4) to conclude the proof.

Lemma A.3 below controls a bias term appearing in the proof of Theo-

rem 3.1.

Lemma A.3. Assume that conditions (2.3) and (HSO) are satisfied. If

mx(h) → ∞ and βn/un,x → 0 we have that:

sup
α∈[τun,x,un,x]

∣∣∣∣∣
Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = OP

(
∆(u−1

n,x|x)
)
.
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Proof: Recall

αγ(x)Q(α|x) = c(x) exp

(∫ α−1

1

∆(v|x)

v
dv

)
,

and therefore

Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

= exp

(∫ α−1

β−1
n

∆(v|x)

v
dv

)
.

Furthermore, since α ≤ un,x,

∣∣∣∣∣

∫ α−1

β−1
n

∆(v|x)

v
dv

∣∣∣∣∣ ≤ |∆(u−1
n,x|x)|

∫ ∞

1

∣∣∣∣∣
∆(yu−1

n,x|x)

∆(u−1
n,x|x)

∣∣∣∣∣
dy

y
.

As the function y 7→ y−1∆(y|x) is regularly varying with index ρ(x)− 1 < −1, we

may write, according to [4, Theorem 1.5.2],

∣∣∣∣∣

∫ α−1

β−1
n

∆(v|x)

v
dv

∣∣∣∣∣ ≤ 2|∆(u−1
n,x|x)|

∫ ∞

1
yρ(x)−1dy = − 2

ρ(x)
|∆(u−1

n,x|x)|.

Since the right-hand side converges to 0 and does not depend on α, it follows by

a Taylor expansion of the exponential function that

sup
α∈(τun,x,un,x]

∣∣∣∣∣
Q(α|x)

Q(βn|x)

(
α

βn

)γ(x)

− 1

∣∣∣∣∣ = OP

(
∆(u−1

n,x|x)
)
,

which is the required conclusion.

The next result is dedicated to the statistics γ̃n(x, un,x) and R
(γ)
n (x) intro-

duced in the proof of Theorem 3.2, equation (6.10).

Lemma A.4. Let Ui, i ≥ 1 be independent standard uniform random

variables. For any x ∈ E such that mx(h) > 0, the conditional distribution of

γ̃n(x, un,x) given Mx(h) = p is that of

γp(x, un,x) =
1

pun,x

⌊pun,x⌋∑

i=1

Φ

(
i

pun,x

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)
,

and given Mx(h) = p, R
(γ)
n (x) is bounded from above by

2ω(U1,p, Up,p, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα.
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Proof: Set again Mn = Mx(h). Equation (6.2) entails that the conditional

distribution of γ̂n(x, un,x) given Mn = p is that of

⌊pun,x⌋∑

i=1

Wi,n(un,x, p) log
Q(Ui,p|x)

Q(U⌊pun,x⌋+1,p|x)

=

⌊pun,x⌋∑

i=1

Wi,n(un,x, p)

⌊pun,x⌋∑

j=i

log
Q(Uj,p|x)

Q(Uj+1,p|x)
,

where {Ui, i ≥ 1} are independent standard uniform random variables, and this

is equal to γp(x, un,x) by switching the summation order and using assump-

tion (HΨ). Now, since Q̂n(α|x) = Y ∗
Mn−i+1,Mn

for all α ∈ [(i − 1)/Mn, i/Mn),

one has

γ̂n(x, un,x) =

⌊un,xMn⌋∑

i=1

Wi,n(un,x, Mn) log
Y ∗

Mn−i+1,Mn

Y ∗
Mn−⌊un,xMn⌋,Mn

,

where Wi,n(un,x, Mn) was defined in (6.11). Hence the identity

R(γ)
n (x) =

⌊un,xMn⌋∑

i=1

Wi,n(un,x, Mn) log

[
Q(V⌊un,xMn⌋+1,Mn

|x)

Q(Vi,Mn
|x)

Y ∗
Mn−i+1,Mn

Y ∗
Mn−⌊un,xMn⌋,Mn

]
.

Using the bound (A.2) yields to

R(γ)
n (x) ≤ 2ω(V1,Mn

, VMn,Mn
, x, h)

⌊un,xMn⌋∑

i=1

|Wi,n(un,x, Mn)|

≤ 2ω(V1,Mn
, VMn,Mn

, x, h)

∫ un,x

0
|Ψ(α, un,x)|dα.

Using equation (6.2) completes the proof.

Our next result studies some particular Riemann sums. It shall prove useful

when examining the convergence of γ̃n(x, un,x) given Mx(h), see Lemma A.6.

Lemma A.5. Let f be an integrable function on (0, 1). Assume that f

is nonnegative and nonincreasing. For any nonnegative continuous function g on

[0, 1] we have that:

lim
m→∞

1

m − 1

m−1∑

i=1

f

(
i

m

)
g

(
i

m

)
=

∫ 1

0
f(t)g(t)dt.

If moreover f is square-integrable then:

lim
m→∞

√
m

∣∣∣∣∣
1

m − 1

m−1∑

i=1

f

(
i

m

)
−
∫ 1

0
f(t)dt

∣∣∣∣∣ = 0.
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Proof: To prove the first statement, it suffices to show that |Sm(f, g) −
S(f, g)| → 0 as m → ∞ where

Sm(f, g) :=
1

m

m−1∑

i=1

f

(
i

m

)
g

(
i

m

)
and S(f, g) :=

∫ 1

0
f(t)g(t)dt.

Note first that:

|S(f, g) − Sm(f, g)| ≤
m−1∑

i=1

∫ i/m

(i−1)/m

∣∣∣∣f(t)g(t) − f

(
i

m

)
g

(
i

m

)∣∣∣∣ dt

+

∫ 1

(m−1)/m
f(t)g(t)dt.

Since g is nonnegative on [0, 1] and f is nonincreasing, it is straightforward that

for all t ∈ [(i − 1)/m, i/m)

|f(t)g(t) − f(i/m)g(i/m)| ≤ f(t) sup
|s−s′|≤1/m

|g(s) − g(s′)|

+ ‖g‖∞ (f(t) − f(i/m)) ,

where ‖g‖∞ is the finite supremum of g on [0, 1]. The fact that f is nonincreasing

yields f(t) − f(i/m) ≤ f((i − 1)/m) − f(i/m) for all i = 2, ..., m and thus the

previous inequality leads to

|S(f, g) − Sm(f, g)| ≤
∫ 1

0
f(t)dt sup

|s−s′|≤1/m
|g(s) − g(s′)|

+ ‖g‖∞
(∫ 1/m

0
f(t)dt − f(1)

m

)

+ ‖g‖∞
∫ 1

(m−1)/m
f(t)dt → 0(A.5)

by the uniform continuity of g on [0, 1] and the fact that f is an integrable

function. This proves the first statement of the result. To prove the second one,

remark that:

√
m

∣∣∣∣∣
1

m − 1

m−1∑

i=1

f

(
i

m

)
−
∫ 1

0
f(t)dt

∣∣∣∣∣ ≤
√

m

m − 1
Sm(f, 1) +

√
m|S(f, 1) − Sm(f, 1)|.

Using the first statement with g = 1 entails that the first term of the left-hand

side converges to 0 as m → ∞. Now, taking g = 1 in (A.5) leads to

√
m|S(f, 1) − Sm(f, 1)| ≤ √

m

∫ 1/m

0
f(t)dt +

√
m

∫ 1

(m−1)/m
f(t)dt.

By the Cauchy-Schwarz inequality,

√
m

∫ 1/m

0
f(t)dt ≤

(∫ 1/m

0
f2(t)dt

)1/2

→ 0

and
√

m

∫ 1

(m−1)/m
f(t)dt ≤

(∫ 1

(m−1)/m
f2(t)dt

)1/2

→ 0

since f2 is integrable on (0, 1). The proof is complete.
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The next lemma establishes the asymptotic normality of the random vari-

able γp(x, k, k′) introduced in the proof of Theorem 3.2, equation (6.15).

Lemma A.6. Assume that conditions (2.3), (HSO) and (HΨ) are sat-

isfied. Let k(p) and k′(p) be two sequences satisfying, for some a(x) ∈ (0, 1),

pa(x)−1k(p) → 1 and p(1−a(x))/2[k(p)/k′(p) − 1] → 0 as p → ∞. Let U1, ..., Up be

independent standard uniform random variables. If p1−a(x)∆2(pa(x)|x) → λ(x) ∈
R, then the random variable

̂
γp(x, k(p), k′(p)) :=

1

k(p)

⌊k′(p)⌋∑

i=1

Φ

(
i

⌊k′(p)⌋ + 1

)
i log

Q(Ui,p|x)

Q(Ui+1,p|x)

is such that p(1−a(x))/2(
̂
γp(x, k(p), k′(p))−γ(x)) converges in distribution to a nor-

mal distribution with mean λ(x)
∫ 1
0 Φ(α)α−ρ(x)dα and variance γ2(x)

∫ 1
0 Φ2(α)dα.

Proof: For the sake of brevity, let

̂
γp(x) :=

̂
γp(x, k(p), k′(p)). Let vp :=

p(1−a(x))/2 and for j ∈ {1, ..., k′(p)}

∆̃j(p|x) := ∆

(
p + 1

⌊k′(p)⌋ + 1

∣∣∣∣x
)(

j

⌊k′(p)⌋ + 1

)−ρ(x)

Under conditions (2.3), (HSO) and (HΨ), one can apply Theorem 3.1 in Beirlant et

al. [1] to prove that

vp





k(p)

⌊k′(p)⌋
̂
γp(x) − 1

⌊k′(p)⌋

⌊k′(p)⌋∑

j=1

Φ

(
j

⌊k′(p)⌋ + 1

)[
γ(x) + ∆̃j(p|x)

]




converges to a centered normal distribution with variance σ2
Φ := γ2(x)

∫ 1
0 Φ2(α)dα.

As a direct consequence of Lemma A.5, the previous convergence can be rewritten

(A.6) vp

[
k(p)

⌊k′(p)⌋
̂
γp(x) − γ(x)

]
d−→ N

(
λ(x)

∫ 1

0
Φ(α)α−ρ(x)dα, σ2

Φ

)
.

Finally, since

vp

[̂
γp(x) − γ(x)

]
= vp

(⌊k′(p)⌋
k(p)

− 1

)
k(p)

⌊k′(p)⌋
̂
γp(x)

+ vp

[
k(p)

⌊k′(p)⌋
̂
γp(x) − γ(x)

]
,

a combination of convergence (A.6) and of the fact that vp[k(p)/k′(p) − 1] → 0

as p → ∞ concludes the proof.

The final lemma is a technical tool we shall need to bridge the gap between

the convergence of our estimators and that of their conditional versions.
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Lemma A.7. Let {Zp, p ∈ N} be a sequence of random variables such

that for all t ∈ R, P(Zp ≤ t) → H(t) where H is a continuous cumulative distri-

bution function. For n ∈ N, let In := [un, vn] where un → ∞ as n → ∞ and let

(an) be a sequence such that there exist two functions ξ1 and ξ2 converging to 1

at infinity with

sup
p∈In

ξ1(p)

an
≤ 1 ≤ inf

p∈In

ξ2(p)

an
.

Then, for all t ∈ R,

lim
n→∞

sup
p∈In

|P(anZp ≤ t) − H(t)| = 0.

Proof: We start by remarking that for all κ > 0,

sup
p∈In

|P(anZp ≤ t) − H(t)| ≤ Dn,p + sup
p∈In

P(|(an − 1)Zp| > κ),

where

Dn,p := sup
p∈In

|P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) − H(t)| .

Now, since H is continuous, there exists κ > 0 such that for n large enough,

|H(t) − H(t + κ)| ≤ ε

6
and |H(t) − H(t − κ)| ≤ ε

6
.

Furthermore, since ξ1(p) ≤ an ≤ ξ2(p) for any p ∈ In, using the inequality |x| ≤
|a|+ |b| which holds for all x ∈ [a, b], one has for all p ∈ In that |an − 1| ≤ |ξ1(p)−
1|+ |ξ2(p) − 1|; besides, since Zp = OP(1) and ξ1, ξ2 converge to 1 at infinity, we

have |ξ1(p) − 1|Zp = oP(1) and |ξ2(p) − 1|Zp = oP(1). Therefore, for all ε > 0,

sup
p∈In

P(|(an − 1)Zp| > κ) ≤ sup
p∈In

P(|ξ1(p) − 1||Zp| + |ξ2(p) − 1||Zp| > κ) ≤ ε

6

for n large enough. Now remark that for all p ∈ In, P({anZp ≤ t}∩{|(an−1)Zp| ≤
κ}) ≤ P(Zp ≤ t + κ) and that

P({anZp ≤ t} ∩ {|(an − 1)Zp| ≤ κ}) ≥ P({Zp ≤ t − κ} ∩ {|(an − 1)Zp| ≤ κ})
≥ P(Zp ≤ t − κ) − P(|(an − 1)Zp| > κ).

Hence, for all κ > 0, the inequality:

Dn,p ≤ sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| + sup
p∈In

|P(Zp ≤ t − κ) − H(t − κ)|

+ |H(t) − H(t + κ)| + |H(t) − H(t − κ)| + ε

6

≤ sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| + sup
p∈In

|P(Zp ≤ t − κ) − H(t − κ)| + ε

2
.

By assumption, for n large enough:

sup
p∈In

|P(Zp ≤ t + κ) − H(t + κ)| ≤ ε

6
and sup

p∈In

|P(Zp ≤ t − κ) − H(t − κ)| ≤ ε

6
.

It is now straightforward to conclude the proof.
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