
REVSTAT – Statistical Journal

Volume 17, Number 1, January 2019, 91–108

USING SHRINKAGE ESTIMATORS TO REDUCE

BIAS AND MSE IN ESTIMATION OF HEAVY TAILS

Authors: Jan Beirlant

– Department of Mathematics, KU Leuven, Belgium, and
Department of Mathematical Statistics and Actuarial Science,
University of the Free State South Africa
jan.beirlant@kuleuven.be

Gaonyalelwe Maribe

– Department of Mathematical Statistics and Actuarial Science,
University of the Free State, South Africa
maribeg@ufs.ac.za
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Abstract:

• Bias reduction in tail estimation has received considerable interest in extreme value
analysis. Estimation methods that minimize the bias while keeping the mean squared
error (MSE) under control, are especially useful when applying classical methods such
as the Hill (1975) estimator. In the case of heavy tailed distributions, Caeiro et al.
(2005) proposed minimum variance reduced bias estimators of the extreme value in-
dex, where the bias is reduced without increasing the variance with respect to the
Hill estimator. This method is based on adequate external estimation of a pair of
parameters of second order slow variation under a third order condition. Here we
revisit this problem exploiting the mathematical fact that the bias tends to 0 with
increasing threshold. This leads to shrinkage estimation for the extreme value index,
which allows for a penalized likelihood and a Bayesian implementation. This new
approach is applied starting from the approximation to excesses over a high thresh-
old using the extended Pareto distribution, as developed in Beirlant et al. (2009).
We present asymptotic results for the resulting shrinkage penalized likelihood estima-
tor of the extreme value index. Finite sample simulation results are proposed both
for the penalized likelihood and Bayesian implementation. We then compare with the
minimum variance reduced bias estimators.
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1. INTRODUCTION

In this paper we consider the estimation of the extreme value index ξ and

tail probabilities P (X > x) for x large, on the basis of independent and identically

distributed observations X1, X2, ..., Xn which follow a Pareto-type distribution

with right tail function (RTF) given by

(1.1) F̄ (x) = 1 − F (x) = P (X > x) = x−1/ξℓ(x)

where ℓ is a slowly varying function at infinity, i.e.

ℓ(ty)

ℓ(t)
→ 1, as t → ∞, for every y > 1.

The most famous estimator of ξ was first derived by Hill (1975) as a maximum

likelihood (ML) estimator approximating the RTF of the excesses X
t |X > t over

a large threshold t by a simple Pareto distribution with RTF y−1/ξ:

(1.2) F̄ (ty)/F̄ (t) ≈ y−1/ξ, t large.

When setting t = Xn−k,n where X1,n ≤ X2,n ≤ ··· ≤ Xn,n the ML estimator is

given by

(1.3) Hk,n =
1

k

k
∑

j=1

log
Xn−j+1,n

Xn−k,n
.

A simple estimator of a tail probability P (X > x) with x large, introduced in

Weissman (1978), is then obtained from (1.2) setting ty = x and estimating

P (X > t) by the empirical proportion k/n:

(1.4) p̂x,k =
k

n

(

x

Xn−k,n

)−1/Hk,n

.

In practice, a way to verify the validity of model (1.1) is to check whether the Hill

estimates are stable as a function of k. However in most cases the stability is not

visible, which can be explained by slow convergence in (1.2). For this reason bias

reduced estimators have been proposed which lead to plots that are much more

horizontal in k which facilitates the analysis of a practical case to a great extent.

Here we can refer to Peng (1998), Beirlant et al. (1999, 2008), Feuerverger and

Hall (1999), Caeiro et al. (2005, 2009) and Gomes et al. (2000, 2007) for bias-

reduced estimators based on functions of the top k order statistics. Several of

these methods focus on the distribution of log-spacings of high order statistics.

Beirlant et al. (2009) proposed a more flexible model capable of capturing

the deviation between the true excess RTF F̄ (ty)/F̄ (t) and the asymptotic Pareto

model. For a heavy tailed distribution (1.1), this deviation can be parametrized
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using a power series expansion (Hall, 1982), or more generally via second-order

slow variation (Bingham et al., 1987). More specifically in Beirlant et al. (2009)

the subclass F(ξ, τ) of the Pareto-type tails (1.1) was considered satisfying

F̄ (x) = Cx−1/ξ
(

1 + ξ−1δ(x)
)

,(1.5)

with δ(x) eventually nonzero and of constant sign such that |δ(x)| = xτ ℓδ(x) with

τ < 0 and ℓδ slowly varying. It was shown that under F(ξ, τ) as t → ∞

sup
y≥1

∣

∣

∣

∣

F̄ (ty)

F̄ (t)
− Ḡξ,δ,τ (y)

∣

∣

∣

∣

= o (|δ(t)|)

with Ḡξ,δ,τ the RTF of the extended Pareto distribution (EPD)

(1.6) Ḡξ,δ,τ (y) = {y(1 + δ − δyτ )}−1/ξ, y > 1,

with τ < 0 < ξ and δ > max(−1, 1/τ). This shows that the EPD improves the

approximation (1.2) with an order of magnitude. Then ML estimation of the pa-

rameters (ξ, δ) based on a set of excesses (Yj,k := Xn−j+1,n/Xn−k,n, j = 1, ..., k)

was used to obtain a bias reduced estimator ξ̂ML
k,n of ξ. Bias reduction of the

Weissman estimator of tail probabilities can analogously be obtained using

(1.7) p̂EP
x,k =

k

n
Ḡξ̂k,δ̂k,τ̂

(

x

Xn−k,n

)

,

where (ξ̂k, δ̂k) denote the ML estimators based on the EPD model, and where τ̂ is

a consistent estimator of τ , to be specified below, which was shown not to affect

the asymptotic distribution of (ξ, δ).

If F satisfies F(ξ, τ), it is shown in Beirlant et al. (2009) that U(x) :=

Q(1 − x−1) (x > 1), with Q(p) = inf{x : F (x) ≥ p} (p ∈ (0, 1)), satisfies

(1.8) U(x) = Cξxξ (1 + a(x))

with a(x) = δ(Q(1 − x−1)){1 + o(1)} = δ(Cξxξ){1 + o(1)} as x → ∞. In partic-

ular a is eventually nonzero and of constant sign and |a(x)| = xρℓa(x) with ℓa

slowly varying and ρ = ξτ . Here we assume |ℓa(x)| = Ca(1 + o(1)) as x → ∞ for

some constant Ca > 0.

The following asymptotic results have been derived for Hk,n and ξ̂ML
k,n as-

suming that F satisfies F(ξ, τ), and
√

ka(n/k) → λ ∈ R and ρ̂k,n = ρ + op(1) as

k, n → ∞ and k/n → 0:

√
k (Hk,n − ξ) →d N

(

λ
ρ

1 − ρ
, ξ2

)

,(1.9)

√
k
(

ξ̂ML
k,n − ξ

)

→d N
(

0, ξ2

(

1 − ρ

ρ

)2
)

.(1.10)
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An estimator ρ̂k,n of ρ can be taken from Fraga Alves et al. (2003) using k = k1 =

⌊n1−ǫ⌋ for some ǫ > 0. The required consistency for ρ̂k,n was obtained under (1.8).

Asymptotic results of the type (1.9) and (1.10) are typical for bias reduced

estimators when both ξ and a(n/k) or δ are jointly estimated at every k value: for

larger values of k corresponding to
√

ka(n/k) → λ 6= 0, bias reduced estimators

still have asymptotic bias 0 in contrast to the Hill estimator, but their variance is

increased by a factor ((1−ρ)/ρ)2 compared to Hk,n. In a pioneering paper, Caeiro

et al. (2005) proposed to estimate (n/k)−ρa(n/k) at a high level k = k1 = ⌊n1−ǫ⌋,
leading to a corrected Hill estimator (denoted below by CHk,n) with asymptotic

variance ξ2 and excellent bias and MSE characteristics. To obtain the normal

asymptotic behaviour of such minimum variance reduced bias estimators one

needs a third-order slow variation condition which is more restrictive than (1.8)

or condition F(ξ, τ).

Up to now, to the best of our knowledge, the fact that δ(t) → 0 as t → ∞,

or a(n/k) → 0 as n/k → ∞ has not been exploited in the literature. However,

this calls for shrinkage estimators. Such shrinkage approach can be implemented

by putting a penalty on δ in an ML procedure, leading to penalized ML. Al-

ternatively a penalty on δ can be naturally introduced in a Bayesian approach

putting an appropriate prior on this parameter. Here we investigate the use of

shrinkage estimation when modelling the distribution of the vector of excesses

Yk := (Yj,k, j = 1, ..., k) with an EPD. In section 2 we show that a quadratic

penalty, or equivalently a normal prior, on δ with zero mean and variance σ2
k,n,

depending in an appropriate way on k and n, leads to interesting asymptotic MSE

results for ξ. In section 3 we consider the finite sample behaviour of the penal-

ized likelihood and Bayes approach, and make a comparison with the minimum

variance reduced bias estimator, and consider a practical case.

2. SHRINKAGE ESTIMATORS OF THE EPD PARAMETERS

2.1. Penalized likelihood and Bayesian interpretation

ML estimation of the EPD parameters (ξ, δ), given a value of τ , follows by

maximizing the log-likelihood

1

k
lEP (ξ, δ|y) = − log ξ −

(

1

ξ
+ 1

)

1

k

k
∑

j=1

[

log yj,k + log(1 + δ{1 − yτ
j,k})

]

+
1

k

k
∑

j=1

log
(

1 + δ{1 − (1 + τ)yτ
j,k}
)

.(2.1)
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Shrinkage estimators are then obtained by putting a penalty on δ. Below it

will be shown that a quadratic penalty is appropriate in view of the asymptotic

results for the penalized maximum likelihood (PML) estimators (ξ̂P
k,n, δ̂P

k,n). These

estimators are then obtained by optimizing the log-likelihood

(2.2)
1

k
lpen(ξ, δ|y) =

1

k
lEP (ξ, δ|y) − ω

δ2

2kσ2
k,n

,

where ω > 0 serves as a tuning constant regulating the amount of penalty, and

σ2
k,n indicating the penalty rate as a function of k. From the asymptotic analysis

below, it follows that σ2
k,n = (k/n)−2ρ is appropriate.

Alternatively, from a Bayesian perspective, a shrinkage estimator is ob-

tained by considering the posterior mode estimators (ξ̂B
k , δ̂B

k ) of the log-posterior

(2.3)
1

k
log p(ξ, δ|y) =

1

k
lEP (ξ, δ|y) +

1

k
log π(ξ, δ),

where π(ξ, δ) denotes the prior density on (ξ, δ). Following a objective Bayesian

point of view, we assign a maximal data information (MDI) prior to ξ, which for

a general parameter θ is defined as π(θ) ∝ exp(E(log f(Y|θ))). The concept of

MDI priors was introduced in Zellner (1971) in order to maximize the information

contributed by the data density, relative to that of the prior density. Beirlant et

al. (2004) derived that the MDI for a Pareto distribution is given by

(2.4) π(ξ) ∝ e−ξ

ξ
.

Next, in correspondance with the choice for the penalized log-likelihood (2.2), we

here choose a normal prior on δ with mean 0 and variance σ2
k,n. We also truncate

it from the left in order to comply with the restriction δ > max(−1, 1/τ):

(2.5) π(δ) =
1√

2πσk,n

e
− 1

2

δ2

σ2

k,n /
(

1 − Φ(max(−1, τ−1)/σk,n)
)

.

2.2. Asymptotic results for the penalized ML estimator ξ̂P
k

In the Appendix we derive that the first order approximations (ξ̂P
k , δ̂P

k ) of

the penalized ML estimators are given by

ξ̂P
k = Hk,n + δ̂P

k (1 − Ek,n(τ)) ,

δ̂P
k =

1 − Hk,nτ

DP
k,n

(

Ek,n(τ) − 1

Hk,nτ

)

where

Ek,n(s) =
1

k

k
∑

j=1

Y s
j,k, s < 0
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and

DP
k,n =

ωξ̂P
k

kσ2
k,n

−
(

1 − 2(1 − ξ̂P
k τ)Ek,n(τ) + (1 − 2ξ̂P

k τ − ξ̂P
k τ2)Ek,n(2τ)

− τ(1 − Ek,n(τ))Ek,n(τ)
)

.

These expressions are identical to the asymptotic EPD-ML estimators derived in

Beirlant et al. (2009) except for the extra term
ξ̂P
k

kσ2

k,n

in the expression of DP
k,n.

As an external estimator of τ we use τ̂ = ρ̂k,n/Hk,n with ρ̂k,n taken from Fraga

Alves et al. (2003). Moreover we set ζ = ξ2(1− 2ρ)(1− ρ)2. The following result

is derived in the Appendix.

Theorem. Let F ∈ F(ξ, τ) with |a(x)| = xρCa(1 + o(1)) as x → ∞. As-

sume that
√

ka(n/k) → λ as k, n → ∞, k/n → 0. Setting σ2
k,n = (k/n)−2ρ, it fol-

lows that Ξk,n :=
√

k
(

ξ̂P
k − ξ

)

is asymptotically normal with asymptotic mean

and variance given by

E∞(Ξk,n) =
λρ

1 − ρ

ζC2
aω

ζC2
aω + ρ4λ2

,(2.6)

V ar∞(Ξk,n) =
ξ2ρ8λ4

(ρ4λ2 + ζC2
aω)2

(

(

1 − ρ

ρ

)2

+
ζ2C4

aω2

ρ8λ4
+ 2

ζC2
aω

ρ4λ2

)

.(2.7)

Minimizing MSE∞(Ξk,n) = E2
∞(Ξk,n) + V ar∞(Ξk,n) with respect to ω,

after some lengthy calculations, leads to the asymptotically optimal value

ωopt = C−2
a .

One then obtains from (2.6) and (2.7) that

Eopt
∞ (Ξk,n) =

λρ

1 − ρ

ζ

ζ + λ2ρ4
,

V aropt
∞ (Ξk,n) =

ξ2

(λ2ρ4 + ζ)2
{

(1 − ρ)2ρ6λ4 + ζ2 + 2ζρ4λ2
}

,

from which

(2.8) MSEopt
∞ (Ξk,n) = ξ2 +

λ2ρ2ξ2(1 − 2ρ)

ξ2(1 − 2ρ)(1 − ρ)2 + ρ4λ2
.

Since the right hand side of (2.8) is an increasing function in λ2 it follows that

MSEopt
∞ (Ξk,n) ≤ lim

λ→∞
MSEopt

∞ (Ξk,n) = MSE∞

(√
k(ξ̂ML

k,n − ξ)
)

= ξ2

(

1 − ρ

ρ

)2

.

Also, expanding the right hand side of (2.8) for λ2 → 0 leads to

MSEopt
∞ (Ξk,n) = ξ2 + λ2 ρ2

(1 − ρ)2
(1 + o(1)).
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We can conclude that the asymptotic MSE of the optimal penalized estimator

is uniformly smaller than the MSE of the EPD-ML estimator as given in (1.10),

while for smaller λ this asymptotic MSE follows the asymptotic MSE of the

Hill estimator, given in (1.9), up to terms of order λ2. Hence with the penalty

ω/σ2
k,n = C−2

a (k/n)2ρ = a−2(n/k) in (2.2), the penalized ML estimator asymp-

totically follows the better of the two existing estimators as a function of λ or

k.

Replacing (ξ̂k, δ̂k) by (ξ̂P
k , δ̂P

k ) in p̂EP
x,k , it follows from the proof of Theorem5.2

in Beirlant et al. (2009) that the resulting tail probability estimator p̂P
x,k satisfies

the following asymptotic result under the conditions of the Theorem:

When pn = P (X > xn) satisfies npn/k → 0 and log(npn)/
√

k → 0, then

√
k

log(k/(npn))
ξ

(

p̂P
xn,k

pn
− 1

)

is asymptotically normal with the same limit distribution as in the Theorem.

Hence the asymptotic MSE behaviour for the tail probability estimator has the

same characteristics as the tail index estimator.

From the simulations it will follow that the choice ω = 1 and the use of

estimator of ρ taken from Fraga Alves (2003) yields good results. However, in

order to alleviate the problem of choosing the number of top order statistics k

that are used in the estimation procedure, one can choose ω adaptively with each

sample aiming for a plot of ξ̂P
k as a function of k which is as horizontal as possible.

Setting ξ̂P
k = ξ̂P

k (ω) in order to emphasize the dependence of the penalized ML

estimator on ω, a possible choice of ω is obtained by minimizing the variance of

the resulting estimators for k = 1, ..., n:

(2.9) ωmv = argminωs2
n

(

ξ̂P (ω)
)

,

with s2
n(ξ̂P (ω)) = 1

n−1

∑n
k=1

(

ξ̂P
k (ω) − ¯̂

ξP
)2

.

3. SIMULATIONS AND PRACTICAL CASE STUDIES

Both the Bayes maximum a posteriori probability estimator and the pe-

nalized maximum likelihood estimator are implemented in R using the general

optim function with default parameters.

We performed a simulation study, taking 1000 repetitions of samples of size

n = 200, 500, 1000 studying the finite sample behaviour of ξ̂P
k,n(ω) for different

distributions. The bias and RMSE are plotted as a function of k.
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The following distributions are used:

• The extreme value distribution (EV) with F (x) = exp(−(1 + ξx)−1/ξ)

(1 + ξx > 0) taking ξ = 0.25 in which case ρ = −0.25 and Ca = 1.

• The Fréchet distribution with F̄ (x) = 1− exp(−x−1/ξ) taking ξ = 0.5 in

which case ρ = −1 and Ca = 0.25.

• The Burr distribution with F̄ (x) = (1 + x)−4/3 so that ξ = 0.75 and

ρ = −0.75 and Ca = 1.

• The loggamma distribution with F̄ (x) ∼ constant × x−2(log x)3 so that

ξ = 0.5, which does not belong to the class F(ξ, τ).

First, in Figures 1-4 we plotted the bias and the RMSE of the Hill estimator

Hk, the EPD-ML estimator ξ̂ML
k , the penalized ML estimator ξ̂P

k (1) with ω = 1,

the Bayesian estimator ξ̂B
k (1) with ω = 1, and the minimum variance reduced

bias estimator CHk from Caeiro et al. (2005) given by

CHk = Hk,n

(

1 − β̂k1
(ρ̂k1

)

1 − ρ̂k1

(n

k

)ρ̂k1

)

,

with

β̂k(ρ) =

(

k
n

)ρ
{(

1

k

∑k
j=1

( j
k )−ρ

)(

1

k

∑k
j=1

Zj

)

−
(

1

k

∑k
j=1

( j
k )−ρZj

)}

(

1

k

∑k
j=1

( j
k )−ρ

)(

1

k

∑k
j=1

( j
k )−ρZj

)

−
(

1

k

∑k
j=1

( j
k )−2ρZj

) ,

where Zj := j(log Xn−j+1,n − log Xn−j,n) (j = 1, 2, ...), and k1 = ⌊n0.99⌋.

In Figure 5 we briefly report on the effect of the choice of ω using ω = 1

and ω = ωmv and compare these with the optimal asymptotic RMSE expression

from (2.8).

We conclude from the simulations that the finite sample behaviour of the

proposed estimators follows the characteristics predicted by the asymptotic anal-

ysis to a great extent: for small k the shrinkage estimators ξP
k and ξB

k show a

similar behaviour as the Hill estimator, while for larger k the proposed estima-

tors tend to follow the characteristics of the bias reduced EPD-ML estimator.

In between these two k-regions the shrinkage estimators make a transition from

the EPD-ML to the Hill RMSE curve. Only in the Fréchet case the Hill estima-

tor shows a smaller RMSE than the shrinkage estimators for small k, while the

shrinkage estimators then still show a much smaller RMSE than the EPD-ML

estimator.

The Bayesian implementation shows a smaller RMSE than the penalized

ML estimator, except for the Fréchet distribution where both RMSEs are compa-

rable. In the latter case ξ̂B
k shows a negative bias. Also note that the difference

between both the Bayesian and penalized likelihood implementation decreases as

n increases.
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Figure 1: Bias (left) and root mean squared error (right) in case of the EV distri-

bution with ξ = 0.25 for sample sizes n = 200 (top), n = 500 (middle)
and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 2: Bias (left) and root mean squared error (right) in case of the Fréchet

distribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (mid-
dle) and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 3: Bias (left) and root mean squared error (right) in case of the Burr dis-

tribution with ξ = 0.75 for sample sizes n = 200 (top), n = 500 (middle)
and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML estima-

tor ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum vari-

ance reduced bias estimator CHk (CH).
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Figure 4: Bias (left) and root mean squared error (right) in case of the loggamma

distribution with ξ = 0.5 for sample sizes n = 200 (top), n = 500 (mid-
dle) and n = 1000 (bottom) for the Hill estimator (H), the EPD-ML esti-

mator ξ̂ML
k (ML), the penalized ML estimator ξ̂P

k (1) with ω = 1 (PML),

the Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum variance

reduced bias estimator CHk (CH).
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Figure 5: Bias (left) and root mean squared error (right) in case of the
Fréchet distribution with ξ = 0.5 (top) and Burr distribu-
tion with ξ = 0.75 (bottom) for sample size n = 200 comparing

the penalized ML estimator ξ̂P
k (1) with ω = 1, ω = ωmv from

(2.9), and the optimal asymptotic RMSE from (2.8) replacing
λ by Ca

√
k(k/n)−ρ.

The results in case of the loggamma distribution are quite good. Hence it

appears that the proposed method exhibits some robustness against deviations

from the underlying model.

When the plots of the shrinkage estimators are not systematically increasing

with increasing k as in the case of the Fréchet and the Burr distribution, it is

useful to use the choice ω = ωmv when using the penalized ML estimator. In

the case of the Fréchet distribution with ωopt = 16, this adaptive choice of ω

leads to a clear RMSE improvement in the transition zone (in k) between the

Hill and EPD-ML RMSE behaviour (see Figure 5, top). In the Burr case (see

Figure 5, bottom) where Ca = 1 and hence ωopt = 1 the choice ω = 1 is best,

but the adaptive minimum variance choice ω = ωmv is almost as good in RMSE

behaviour.

Overall, the proposed shrinkage estimators are competitive with respect to

the minimum variance reduced bias estimator CHk.
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In order to illustrate the use of the proposed method we consider the Secura

Belgian Re data introduced in section 6.2 in Beirlant et al. (2004). For k ≤ 100

the penalized ML estimator ξ̂P
k (1) is quite constant and follows the Hill estimator

quite closely. This is in contrast with the EPD-ML estimates which vary a lot

in that region. The Bayesian estimates ξ̂B
k (1) and CH estimates show somewhat

lower estimates. Beirlant et al. (2004) concluded that the Hill estimate in this

k-region is an appropriate choice and the adaptive choice k̂ = 98 was proposed

as one of the largest k-values in this region. This proposal is also supported by

the present analysis, leading to an estimate ξ̂P (1) = 0.28.

Figure 6: Estimates of ξ for Secura Belgian Re data set: results for
the Hill estimator (H), the EPD-ML estimator ξ̂ML

k (ML),

the penalized ML estimator ξ̂P
k (1) with ω = 1 (PML), the

Bayesian estimator ξ̂B
k (1) with ω = 1 (B), and the minimum

variance reduced bias estimator CHk (CH) (left), focused plot
for k = 1, ..., 100 (right).

4. CONCLUSION

We introduced the use of shrinkage estimators in tail estimation, in order

to obtain bias reduction jointly with good MSE behaviour. Shrinkage estimators

can be obtained through a penalized ML approach, or through a Bayesian imple-

mentation. For larger thresholds the proposed estimators follow the behaviour of

the classical Hill estimator with small bias and minimal variance, while the new

estimators are never worse than the corresponding bias reduced ML estimators

without penalization. The simulated MSE results are competitive with those of

other bias reduced estimators. In contrast to existing minimum variance bias

reduced estimators we only use second order slow variation conditions.
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APPENDIX

Derivation of the expressions of (ξ̂P
k , δ̂P

k ). First consider the asymptotic

approximations of the penalize ML estimator of ξ based on maximization of

(2.2). From (2.1)–(2.2) using expansions in δ → 0 we obtain

1

k
log lpen(ξ, δ|y) = −(1 +

1

k
) log ξ − 1

k
(1 + ξ) − (

1

ξ
+ 1)

1

k

k
∑

j=1

log yj,k

− δ

1 + ξ

1

k

k
∑

j=1

(1 − yτ
j,k) + δ

1

k

k
∑

j=1

(1 − (1 + τ)yτ
j,k)

− ωδ2

2kσ2
k,n

+
δ2

2(1+ξ)

1

k

k
∑

j=1

(1−yτ
j,k)

2− δ2

2

1

k

k
∑

j=1

(1− (1+τ)yτ
j,k)

2

+ O(δ3) + c,

where c is a constant only depending on σ2
k,n and τ . Note that 1

k

∑k
j=1

log yj,k =Hk,n.

Then the score functions admit the following expansions in δ ↓ 0 for j = 1, ..., k:

∂

∂ξ
log lpen(ξ, δ|yj,k) = −1

ξ
+

1

ξ2
log yj,k +

δ

ξ2
(1 − yτ

j,k) + O(δ2),

∂

∂δ
log lpen(ξ, δ|yj,k) = −1

ξ

(

1 − (1 − ξτ)yτ
j,k

)

− ωδ

kσ2
k,n

+
δ

ξ

(

1 − 2(1 − ξτ)yτ
j,k + (1 − 2ξτ − ξτ2)y2τ

j,k

)

+ O(δ2).

Derivation of Theorem. Note that as k, n→∞, k/n→ 0 and
√

ka(n/k)→ λ,

we also have kσ2
k,n → λ2C−2

a . Also as
√

ka(n/k) → λ we find using Ek,n(s) →
1/(1 − ξs) (see Theorem A.1 in Beirlant et al., 2009) that

DP
k,n = −ξC2

a

λ2
+

ρ4

ξ(1 − 2ρ)(1 − ρ)2
+ op(1).

Then, proceeding as in the proof of Theorem 3.1 in Beirlant et al. (2009), we

obtain with Γk,n =
√

k(Hk,n − ξ), Ek,n(s) =
√

k(Ek,n(s) − 1

1−ξs) (s < 0), that

√
k
(

ξ̂P
k − ξ

)

=
√

k

(

Hk,n − ξ − δ̂P
k

ρ

1 − ρ

)

= Γk,n − ρ

1 − ρ

√
kδ̂P

k

= Γk,n

(

1 +
ρ2

ξ(1 − ρ2)

1

ξC2
a/λ2 + ρ4/ξ(1 − 2ρ)(1 − ρ)2

)

− ρ

ξC2
a/λ2 + ρ4/ξ(1 − 2ρ)(1 − ρ)2

Ek,n(τ̂) + op(1)

= Γk,n

(

1+
ρ2(1−2ρ)

ζ + ρ4

)

+ Ek,n(τ̂)

(

(−ρ)ξ(1−2ρ)(1−ρ)2

ρ4 + ζ

)

+ op(1).

UsingTheoremA.1inBeirlantetal.(2009),(2.6)and(2.7)followunder
√

ka(n/k)→λ.
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