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Abstract:

• The generalized linear mixed effects model (GLMM) approach is widely used to an-
alyze longitudinal binary data when the goal of the study is a subject-specific inter-
pretation because it allows missing values on the response, provided they are missing
at random (MAR), and accounts the correlation among the repeated observations of
the same subject by the inclusion of random effects in the linear predictor. However,
in GLMM it is assumed that the observations of the same subject are independent
conditional to the random effects and covariates which may be not true. To over-
come this problem [9] extended this model using binary Markov chains as the basic
stochastic mechanism. The aim of this paper is to give a statistical assessment of
both approaches in terms of properties such as efficiency and coverage probability, as
well as, to give some guidelines for the choice of the statistical approach to an applied
researcher. Both procedures are described and a simulation study is carried out to
compare their performance. An analysis of a longitudinal binary data set illustrates
the performance of both procedures in a practical example. The R packages lme4 and
bild are used.
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1. INTRODUCTION

Longitudinal binary data studies are a powerful design and they have be-

come increasingly popular in a wide range of applications across all disciplines.

In these studies repeated observations of a response variable are taken over time

on each subject in one or more treatment groups. In such cases the repeated

measures of each vector of responses are likely to be correlated and the autocor-

relation structure for the repeated data plays a significant role in the estimation

of regression parameters. Although longitudinal studies are design to collect data

on every subject in the sample at each time of follow-up, many studies have miss-

ing data since it is difficult to have complete records of all subjects for a variety of

reasons. When longitudinal binary data are incomplete there are important im-

plications for their analysis and one of the main concerns is to distinguish different

reasons of missingness. The nature of missing data mechanism has been classified

by [16] and [13] as: missing completely at random (MCAR), missing at random

(MAR) and non missing at random (NMAR). Another important distinction is

whether missing values occur intermittently or as dropouts. When missing values

occur as dropouts, an individual is observed only at a certain time and misses

all the subsequent observations. When missing values occur as intermittently, an

individual may miss some measurement times among a common set of predefined

measurement times. To all these situations several methods have been proposed

([4], [5], [1], [6], [14]). A review of this topic is given in [12].

In [12] is argued that methods based on likelihood, such generalized lin-

ear mixed effects model [3], usually denoted by GLMM, are recommended when

the goal of the study is a subject-specific interpretation and missing values are

allowed on the response, provide they are MAR in the standard terminology of

[16]. In the GLMM the correlation among the repeated observations of the same

subject is account by the inclusion of random effects in the linear predictor and

it is assumed that observations to the same subject are independent conditional

to the random effects and covariates. Although in GLMM this independence

is assumed they may still be correlated. To overcome this problem [9] used a

binary Markov chain model to accommodate serial dependence and odds-ratio

to measure dependence between successive observations. This methodology is a

development of the alternative likelihood-based formulation for a logistic regres-

sion presented by [1] which allows: (i) a first order and a second order Markov

dependence; (ii) a random intercept term in the linear predictor; (iii) missing

values on the response, provided they are MAR. Both approaches, GLMM and

generalized linear mixed effects model with binary Markov chain (GLM3C) as

the basic stochastic mechanism, are implemented in R [18] packages. The goal of

this paper is to give information to the practitioners about which of the two pro-

cedures, GLMM or GLM3C, is more appropriate to use for their data at hand.
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To achieved that goal a simulation study was carried out to compare the two

aforementioned approaches in terms of properties such as efficiency and cover-

age probability. For GLM3C approach the estimates were obtained through the

bild function of the R package bild. When the GLMM approach was used the

estimates were achieved through the glmer function of the R package lme4 [2] as

well as the bild function of R package bild [11] with the independence structure

selected.

The paper is organized as follows: Section 2 gives a summary of the models

used. Section 3 reports a simulation study to assess the performance of the

procedures. In Section 4 a real data is used to illustrate the two procedures as

well as the key results of the simulation study. Section 5 concludes the paper.

2. MODEL FOR BINARY DATA

Suppose that n independent individuals are observed at times t = 1, ..., Ti,

which need not be the same for all n individual and, to establish notation, denote

by yit ∈ {0, 1} the binary response value at time t from individual i (i = 1, ..., n),

and by Yit its generating random variable whose mean value is Pr(Yit = 1) = θit.

The sequence (yi1, ..., yiTi
) will be collectively referred as the i-th individual profile

and associated with each observation time and each subject, a set of p covariates

is available, denoted by xit.

The logistic regression model which links the covariates and the marginal

mean of Yit assumes the form

(2.1) logit θit = x⊤it β,

where β is the p-dimensional parameter of interest and logit θ = log{θ/(1 − θ)}.

In longitudinal studies the repeated measures of each vector of responses

are likely to be correlated. To account for the within-subject association the

GLMM uses random effects, bi, in the linear predictor. The correlation among

observations from one subject can be thought of as arising from sharing a set of

underlying random effects.

In what follows only the random intercept model is considered.
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2.1. Generalized linear mixed effects model

The introduction of random effects can be formulated by adding a q × 1

vector bi of random effects in (2.1) associated to a q × 1 vector of covariates, zit,

(in general a subset of xit). In the random intercept model the vector bi is reduced

to a single (q = 1) random effect bi ∼ N(0, σ2) and zit = 1 for all i = 1, ..., n and

t = 1, ..., Ti leading to

(2.2) logit Pr(Yit = 1|bi) = x⊤itβ + bi, (i = 1, ..., n)

where the bi’s are assumed to be sampled independently from each other and that

conditioning on xit and bi, the Yit’s are independent.

The likelihood inference is based on a sample of n individual profiles that

are assumed to be independent from each other. The contribution of the i-th

subject to the likelihood of the random intercept model is

(2.3) LR
i (β, ω) =

1√
2π σ

∫

R

LF
i (βbi |bi) exp

(

− b2i
2σ2

)

dbi

where βbi is a p-vector of parameters like β, but where the first component is now

β0 + bi, instead of β0 and ω = log σ2. In expression (2.3) the term LF
i (βbi |bi) =

exp{ℓFi (βbi |bi)} where

ℓFi (βbi |bi) =

Ti
∑

t=1

[

yit logit(θit) + log(1 − θit)
]

.

The log-likelihood for the whole sample is given by

(2.4) ℓR(β, ω) =
n

∑

i=1

logLR
i (β, ω).

The integrals in (2.3) have no analytical solution and appropriate numerical

integration methods must be used.

This methodology is implemented in the R package bild [11] and the inte-

grals in (2.3) are computed using adaptive Gaussian quadrature. Other R pack-

ages have this procedure implemented and one of the most popular is the lme4

[2] package that also uses adaptive Gaussian quadrature to compute the integrals

in (2.3).
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2.2. Generalized linear mixed effects model with Markov chain corre-

lation

Although in GLMM it is assumed that conditioning on xit and bi, the

Yit’s are independent they may still be correlated. To overcome this problem [9]

proposed the use of binary by Markov chains to model the serial dependence be-

tween successive observations of the same subject. As they note Markov chains

provide the simplest stochastic mechanism to introduce serial dependence for

discrete random variables. In their approach the serial dependence between suc-

cessive observation can be regulated (i) by one dependence parameter (first order

dependence structure) or (ii) by two dependence parameters the (second order

dependence structure). In both cases the odds-ratio is the quantity used to mea-

sure dependence between variables. One advantage of odds-ratios as measures

of association is that, unlike marginal correlations, they are not constrained by

marginal probabilities ([1], [8]). Their approach can be summarized as follows.

To simplify notation the subscript i is dropped temporarily.

For the first order dependence structure (MC1), the serial dependence is

modeled using ψ1 = OR(Yt, Yt−1) where

OR(Yt, Yt−1) =
Pr (Yt−1 = Yt = 1) Pr (Yt−1 = Yt = 0)

Pr (Yt−1 = 0, Yt = 1) Pr (Yt−1 = 1, Yt = 0)
=
p1/(1 − p1)

p0/(1 − p0)

where pj are the transition probabilities given by

(2.5) pj = Pr(Yt = 1|Yt−1 = j), j = 0, 1; t = 2, ..., T.

For the second order dependence structure (MC2) is considered the joint

distribution of three components of the process at time, (Yt−2, Yt−1, Yt) and im-

pose the constraints

OR(Yt−1, Yt−2) = ψ1 = OR(Yt, Yt−1)

OR(Yt, Yt−2|Yt−1 = 0) = ψ2 = OR(Yt, Yt−2|Yt−1 = 1)

ψ1 and ψ2 denote two positive parameters. The transition probabilities are given

by

(2.6) phj = Pr(Yt = 1|Yt−2 = h, Yt−1 = j), h, j = 0, 1; t = 3, ..., T,

see [8] for a full account.

The serial dependence for MC2 models is regulated by λ = (λ1, λ2) =

(logψ1, logψ2), which are assume to be constant across time and subjects. When

λ2 = 0, the Markov chain reduces to MC1 models and the serial dependence is

regulated by λ1.
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The likelihood inference is based on a sample of n individual profiles that

are assumed to be independent from each other. The contribution of the i-th

subject to the likelihood of the random intercept model is

(2.7) LR
i (β, λ, ω) =

1√
2π σ

∫

R

LF
i (βbi , λ|bi) exp

(

− b2i
2σ2

)

dbi

where βbi and ω are defined as in Section 2.1. In expression (2.7) the term

LF
i (βbi , λ|bi) = exp{ℓFi (βbi , λ|bi)} is computed, under a serial dependence MC1,

from

(2.8) ℓFi (β, λ) = y1 logit (θ1) + log (1 − θ1) +

Ti
∑

t=2

[yt logit(pj) + log(1 − pj)]

and under a serial dependence MC2 from

(2.9)

ℓFi (β, λ) =
[

y1 logit(θ1) + log(1 − θ1)
]

+
[

y2 logit(pj) + log(1 − pj)
]

+

Ti
∑

t=3

[

yt logit(phj) + log(1 − phj)

]

where the three blocks on the right-hand side represent the contribution to the

log-likelihood from y1, y2, and (y3, ..., yT ), respectively, where phj is given by (2.6)

and pj by (2.5). The log-likelihood for the whole sample is given by (2.4). For a

full account see [8].

In this approach missing values are allowed on the response, provided they

are MAR. If missing data occur at the beginning or at the end of an individual

profile, this poses no problems, since this case is equivalent to a designed un-

balance in the length profile Ti for that individual. Some restrictions exist for

the presence of missing data when they occur in the middle of the profile due

to the imposed correlation structure. If MC1 model is considered and if there

is a missing value at time point t− 1, it is required that there are observations

at time points t− 2 and t. If MC2 model is considered and if there is a missing

value at time point t− 2, it is required that there are observations at time points

t− 4, t− 3, t− 1 and t, except for the two end portions of the observation period,

where no restriction is made.

This approach is implemented in the R package bild ([11]) and, as in the

previous approach, the integrals in (2.7) are computed using adaptive Gaussian

quadrature.
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3. A SIMULATION STUDY

A simulation study was carried out to compare both approaches when sim-

ulated data has a serial dependence MC1 or MC2. The model considered in

the simulation included a dichotomous treatment, a linear effect time and an

interaction between time and treatment and is given by

(3.1) Pr(Yit = 1|t) =
exp(β0 + bi + β1t+ β2xi + β3(xi × t))

1 + exp(β0 + bi + β1t+ β2xi + β3(xi × t))

where xi = 0 for half the population and 1 for the remainder. The fixed effect co-

efficients were set at β0 = −1, β1 = 0.5, β2 = 1, β3 = 1 and the random effect dis-

tribution was simulated with bi ∼ N(0, σ2). In both serial dependence structures

several designs were considered to reflect the range of experimental data encoun-

tered in practice. The number of subjects was set to either small (n = 20) or large

(n = 50). The length of profile on each subject was short (T = 7) or long (T = 13)

and the time points were set for T = 7 at t = −1.5,−1,−0.5, 0, 0.5, 1, 1.5 and for

T = 13 at t = −1.5,−1.25,−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5.

In what concerns the variance of the random effect, σ2, three values were

considered σ2 = 0.5, 1 and 2.

1. Under MC1 models on each run were generated T binary correlated

data under the i-th subject following a first order serial dependence

regulated by λ1. The values considered for λ1 were 0.05, 0.25, 0.5, 0.75

and 1.

2. Under MC2 models on each run were generated T binary correlated

data under the i-th subject following a second order serial depen-

dence regulated by λ = (λ1, λ2). For the pair (λ1, λ2) the combinations

(0.05, 0.05), (0.25, 0.25), (0.5, 0.5), (0.75, 0.75) and (1, 1) were consid-

ered.

In both cases the whole estimation procedure was repeated for 1000 runs

and the sample mean of estimate parameter (Mean), the sample mean of bias

(Bias) and the sample mean square error (MSE) were computed, as well as, the

coverage probabilities of nominal 95% confidence intervals (CI). For each data

set the relative efficiency (RE) of the estimators was computed, as usual, by the

ratio of the respective MSE. RE> 1 means GLM3C estimator is preferred. The

coverage probabilities of nominal 95% confidence intervals were computed as the

proportion of simulated intervals that cover the true parameter used to generate

the simulated data.

For the GLM3C approach the estimates of the parameters were obtained

through the function bild in the R package bild and the dependence structure
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was chosen trough the argument dependence in the function bild, MC1R (MC1

with random intercept) MC2R (MC2 with random intercept), for details see [10].

When GLMM approach (which ignores the conditional dependence between re-

peated measures in terms of numerical analysis) was considered the estimates were

obtained through the bild function with the dependence argument set at indR

(independence structure with random intercept) as well as through the glmer

function in the R package lme4, the results obtained were exactly the same.

The results of simulation are displayed from Figures 1–6 and Tables 1–8

for the time effect (β1) and group-time interaction effect (β3) the effects usually

of most interest in a longitudinal study. Each table lists the following: Mean,

Bias, MSE and coverage probability of nominal 95% confidence intervals for β1

and β3 over the 1000 simulations to both approaches (GLMM and GLMC3).

The GLM3C approach is denoted by GLM3C-MC1 or GLM3C-MC2 if a serial

dependence MC1 or MC2, respectively, is considered. The Figures display the

results concerned to σ2 = 0.5 and σ2 = 2, the two extreme values considered to

the variance of the random effect bi.

Taking into account that the goal of the simulation study is to give a sta-

tistical assessment of both approaches the main conclusions to serial dependence

MC1 and MC2 are given, respectively, in Sections 3.1 and 3.2.

3.1. Serial dependence MC1

Under a serial dependence MC1 and to β1 and β3 parameters the main

conclusions, based on the approaches GLM3C-MC1 and GLMM, are:

(i) The coverage probabilities of both approaches are similar when the

dependence structure established by λ1 is low (0.05-0.25). When λ1

increases the GLM3C approach gives coverage probabilities closer to

nominal than the GLMM approach (Figures 1–2 and Tables 1–4).

(ii) When λ1 is low (0.05) the efficiency of both approaches is similar

with the GLMM estimators more efficient in some configurations. As

λ1 increases the GLM3C estimators becomes more efficient than the

GLMM for all the design configurations (Figure 3 and Tables 1–4).

(iii) In terms of bias the behavior of both approaches is very similar with

a slight decrease of the estimated bias associated with the GLM3C

approach when λ1 increases. The exception is for β̂1 when T = 7,

n = 50 and for all σ2 considered (Tables 1–4).
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Table 1: Results of the simulation study under a serial dependence MC1
for n = 20, T = 7.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.521 0.520 0.513 0.514 0.513 0.519 0.523 0.525 0.532 0.537

β̂3 1.110 1.108 1.111 1.109 1.082 1.111 1.120 1.137 1.152 1.132

Bias
β̂1 0.021 0.020 0.013 0.014 0.013 0.019 0.023 0.025 0.032 0.037

β̂3 0.110 0.108 0.111 0.109 0.082 0.111 0.120 0.137 0.152 0.132

MSE
β̂1 0.090 0.094 0.098 0.106 0.112 0.087 0.094 0.100 0.112 0.125

β̂3 0.279 0.289 0.311 0.322 0.325 0.279 0.297 0.330 0.356 0.361

CI
β1 0.947 0.951 0.947 0.951 0.951 0.950 0.945 0.927 0.928 0.927

β3 0.953 0.959 0.952 0.952 0.953 0.957 0.950 0.932 0.934 0.929

σ2 = 1

Mean
β̂1 0.511 0.522 0.514 0.512 0.509 0.508 0.524 0.527 0.536 0.536

β̂3 1.135 1.074 1.109 1.106 1.048 1.135 1.084 1.141 1.158 1.108

Bias
β̂1 0.011 0.022 0.014 0.012 0.009 0.008 0.024 0.027 0.036 0.036

β̂3 0.135 0.074 0.109 0.106 0.048 0.135 0.084 0.141 0.158 0.108

MSE
β̂1 0.105 0.100 0.106 0.105 0.131 0.104 0.100 0.111 0.116 0.147

β̂3 0.315 0.281 0.329 0.324 0.327 0.313 0.284 0.354 0.369 0.363

CI
β1 0.947 0.948 0.950 0.949 0.955 0.945 0.942 0.927 0.928 0.916

β3 0.947 0.951 0.951 0.957 0.950 0.941 0.940 0.930 0.938 0.922

σ2 = 2

Mean
β̂1 0.529 0.527 0.528 0.497 0.500 0.527 0.531 0.539 0.516 0.531

β̂3 1.056 1.060 1.036 1.066 1.045 1.053 1.070 1.064 1.113 1.111

Bias
β̂1 0.029 0.027 0.028 −0.003 0.000 0.027 0.031 0.039 0.016 0.031

β̂3 0.055 0.060 0.036 0.066 0.04 0.053 0.070 0.064 0.113 0.111

MSE
β̂1 0.119 0.121 0.130 0.115 0.131 0.118 0.121 0.136 0.125 0.149

β̂3 0.308 0.292 0.326 0.304 0.315 0.300 0.294 0.347 0.334 0.3623

CI
β1 0.955 0.948 0.955 0.944 0.948 0.953 0.949 0.949 0.914 0.897

β3 0.948 0.955 0.960 0.960 0.962 0.953 0.960 0.951 0.933 0.927
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Table 2: Results of the simulation study under a serial dependence MC1
for n = 20, T = 13.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.500 0.502 0.497 0.495 0.496 0.501 0.505 0.505 0.508 0.516

β̂3 1.041 1.041 1.045 1.052 1.051 1.041 1.048 1.060 1.078 1.091

Bias
β̂1 0.000 0.002 −0.003 −0.005 −0.004 0.001 0.005 0.005 0.008 0.016

β̂3 0.041 0.041 0.045 0.052 0.051 0.041 0.048 0.060 0.078 0.091

MSE
β̂1 0.050 0.055 0.054 0.060 0.061 0.050 0.055 0.056 0.063 0.067

β̂3 0.134 0.142 0.147 0.160 0.178 0.133 0.143 0.152 0.173 0.200

CI
β1 0.958 0.946 0.953 0.947 0.950 0.951 0.932 0.936 0.913 0.916

β3 0.960 0.950 0.956 0.957 0.956 0.953 0.944 0.933 0.937 0.910

σ2 = 1

Mean
β̂1 0.501 0.502 0.500 0.501 0.498 0.501 0.505 0.508 0.515 0.518

β̂3 1.043 1.046 1.044 1.051 1.047 1.044 1.053 1.061 1.077 1.088

Bias
β̂1 0.001 0.002 0.000 0.001 −0.002 0.001 0.005 0.008 0.015 0.018

β̂3 0.043 0.046 0.044 0.051 0.047 0.044 0.053 0.061 0.077 0.088

MSE
β̂1 0.052 0.056 0.057 0.061 0.071 0.052 0.056 0.059 0.065 0.079

β̂3 0.142 0.150 0.158 0.166 0.184 0.142 0.153 0.166 0.181 0.207

CI
β1 0.951 0.954 0.962 0.964 0.942 0.944 0.939 0.934 0.924 0.894

β3 0.964 0.960 0.960 0.968 0.957 0.959 0.949 0.938 0.934 0.913

σ2 = 2

Mean
β̂1 0.510 0.504 0.506 0.506 0.508 0.510 0.507 0.513 0.519 0.528

β̂3 1.039 1.044 1.048 1.049 1.042 1.038 1.051 1.064 1.075 1.082

Bias
β̂1 0.010 0.004 0.006 0.006 0.008 0.010 0.007 0.013 0.019 0.028

β̂3 0.039 0.044 0.048 0.049 0.042 0.038 0.051 0.064 0.795 0.082

MSE
β̂1 0.058 0.059 0.064 0.072 0.080 0.058 0.060 0.066 0.076 0.089

β̂3 0.175 0.180 0.194 0.213 0.225 0.173 0.183 0.202 0.229 0.255

CI
β1 0.960 0.955 0.952 0.947 0.953 0.962 0.946 0.946 0.923 0.905

β3 0.954 0.957 0.946 0.946 0.945 0.960 0.956 0.939 0.921 0.907
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Table 3: Results of the simulation study under a serial dependence MC1
for n = 50, T = 7.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.492 0.489 0.484 0.483 0.481 0.493 0.495 0.498 0.505 0.513

β̂3 1.068 1.062 1.056 1.048 1.040 1.070 1.074 1.084 1.092 1.102

Bias
β̂1 −0.008 −0.011 −0.016 −0.017 −0.019 −0.007 −0.005 −0.002 0.005 0.013

β̂3 0.068 0.062 0.056 0.048 0.040 0.070 0.074 0.084 0.092 0.102

MSE
β̂1 0.032 0.033 0.036 0.037 0.039 0.032 0.033 0.038 0.040 0.045

β̂3 0.100 0.102 0.107 0.116 0.115 0.099 0.105 0.115 0.130 0.139

CI
β1 0.959 0.962 0.960 0.957 0.956 0.956 0.954 0.945 0.938 0.926

β3 0.951 0.951 0.951 0.947 0.958 0.944 0.936 0.931 0.916 0.911

σ2 = 1

Mean
β̂1 0.489 0.495 0.482 0.480 0.477 0.499 0.502 0.496 0.503 0.506

β̂3 1.057 1.045 1.062 1.055 1.021 1.058 1.057 1.091 1.100 1.088

Bias
β̂1 −0.011 −0.005 −0.018 −0.020 −0.023 −0.001 0.002 −0.004 0.003 0.006

β̂3 0.057 0.045 0.062 0.055 0.021 0.058 0.057 0.091 0.100 0.088

MSE
β̂1 0.032 0.038 0.039 0.040 0.046 0.032 0.039 0.041 0.043 0.052

β̂3 0.103 0.106 0.101 0.106 0.115 0.101 0.109 0.111 0.121 0.136

CI
β1 0.953 0.948 0.947 0.957 0.955 0.949 0.938 0.938 0.937 0.916

β3 0.937 0.941 0.956 0.954 0.950 0.935 0.929 0.939 0.925 0.922

σ2 = 2

Mean
β̂1 0.496 0.490 0.488 0.486 0.469 0.499 0.497 0.503 0.506 0.499

β̂3 1.028 1.081 1.074 1.026 1.041 1.030 1.093 1.102 1.072 1.108

Bias
β̂1 −0.004 −0.010 −0.012 −0.014 −0.031 −0.001 −0.003 0.003 0.006 −0.001

β̂3 0.028 0.081 0.074 0.026 0.041 0.030 0.093 0.102 0.072 0.108

MSE
β̂1 0.038 0.040 0.044 0.044 0.051 0.037 0.042 0.046 0.047 0.057

β̂3 0.097 0.115 0.119 0.110 0.124 0.095 0.118 0.129 0.124 0.151

CI
β1 0.948 0.962 0.953 0.945 0.942 0.938 0.955 0.929 0.926 0.893

β3 0.953 0.955 0.952 0.953 0.945 0.946 0.943 0.933 0.927 0.905
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Table 4: Results of the simulation study under a serial dependence MC1
for n = 50, T = 13.

GLM3C-MC1 GLMM

λ1 λ1

.05 .25 .50 .75 1 .05 .25 .50 .75 1

σ2 = 0.5

Mean
β̂1 0.497 0.496 0.495 0.494 0.500 0.498 0.500 0.503 0.508 0.521

β̂3 1.043 1.040 1.037 1.035 1.028 1.044 1.048 1.055 1.063 1.067

Bias
β̂1 −0.003 −0.004 −0.005 −0.006 0.000 −0.002 0.000 0.003 0.008 0.021

β̂3 0.043 0.040 0.037 0.035 0.028 0.044 0.048 0.055 0.063 0.067

MSE
β̂1 0.022 0.023 0.026 0.028 0.029 0.022 0.024 0.027 0.030 0.032

β̂3 0.057 0.060 0.064 0.070 0.074 0.058 0.062 0.068 0.078 0.084

CI
β1 0.953 0.949 0.945 0.942 0.949 0.949 0.939 0.919 0.905 0.890

β3 0.942 0.943 0.943 0.944 0.951 0.937 0.932 0.926 0.910 0.900

σ2 = 1

Mean
β̂1 0.496 0.496 0.496 0.495 0.493 0.497 0.500 0.504 0.508 0.513

β̂3 1.053 1.050 1.046 1.044 1.040 1.055 1.058 1.064 1.072 1.079

Bias
β̂1 −0.004 −0.005 −0.004 −0.005 −0.007 −0.003 0.000 0.004 0.008 0.013

β̂3 0.053 0.050 0.046 0.044 0.040 0.055 0.058 0.064 0.072 0.079

MSE
β̂1 0.022 0.025 0.028 0.029 0.030 0.022 0.025 0.029 0.031 0.033

β̂3 0.060 0.064 0.069 0.073 0.078 0.060 0.066 0.074 0.081 0.090

CI
β1 0.955 0.949 0.949 0.951 0.952 0.951 0.934 0.925 0.914 0.891

β3 0.955 0.940 0.943 0.950 0.946 0.948 0.930 0.924 0.912 0.902

σ2 = 2

Mean
β̂1 0.497 0.496 0.495 0.492 0.494 0.498 0.500 0.504 0.505 0.513

β̂3 1.059 1.058 1.062 1.060 1.055 1.061 1.066 1.080 1.090 1.096

Bias
β̂1 −0.003 −0.004 −0.005 −0.008 −0.006 −0.002 0.000 0.004 0.005 0.013

β̂3 0.059 0.058 0.062 0.060 0.055 0.061 0.066 0.080 0.090 0.096

MSE
β̂1 0.025 0.027 0.029 0.032 0.035 0.025 0.027 0.030 0.035 0.039

β̂3 0.068 0.070 0.077 0.085 0.088 0.066 0.072 0.082 0.095 0.103

CI
β1 0.959 0.964 0.954 0.953 0.955 0.950 0.949 0.938 0.927 0.895

β3 0.955 0.952 0.953 0.944 0.950 0.951 0.940 0.928 0.909 0.896
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Figure 1: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using
GLM3C and GLMM estimation procedures (T = length of pro-
file on each subject, n = number of subjects, σ2 = variance of
the random effect). Data set on each run has a serial depen-
dence MC1 regulated by λ1. Coding for estimation procedures:
MC1 (GLM3C) and Ind (GLMM).
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Figure 2: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using
GLM3C and GLMM estimation procedures (T = length of pro-
file on each subject, n = number of subjects, σ2 = variance of
the random effect). Data set on each run has a serial depen-
dence MC1 regulated by λ1. Coding for estimation procedures:
MC1 (GLM3C) and Ind (GLMM).
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Figure 3: Relative efficiency (see text for definition) of β̂1 and β̂3 based
on 1000 runs using GLM3C and GLMM estimation procedures
(T = length of profile on each subject, n = number of subjects,
σ2 = variance of the random effect). Data set on each run has
a serial dependence MC1 regulated by λ1.
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3.2. Serial dependence MC2

Under a serial dependence MC2 and to β1 and β3 parameters the main

conclusions, based on the approaches GLM3C-MC2 and GLMM, are:

(i) In both approaches the coverage probabilities are similar when the

dependence structure established by (λ1, λ2) is low, (0.05,0.05) and

(0.25,0.25). The exception occurs when(λ1, λ2) = (0.05,0.05) for β̂1

and β̂3 when T = 13, n = 20 and σ2 = 2, where the coverage proba-

bilities of GLMM approach are closer to nominal. When (λ1, λ2) is

greater than (0.25,0.25) and for all the design configurations the cov-

erage probabilities are closer to nominal for the GLM3C approach

than for the GLMM approach. This is so much better applied as

the length of the profile of each subject increases as well as the de-

pendence structure established by (λ1, λ2) (Figures 4–5 and Tables

5–8).

(ii) The results of simulation show that when (λ1, λ2) is greater than

(0.25,0.25) the GLM3C estimators are more efficient than the GLMM

estimators and this is so much better applied as (λ1, λ2) increases. For

values of (λ1, λ2) equal to (0.25,0.25) the efficiency of both approaches

is similar. When (λ1, λ2) is equal to (0.05,0.05) the GLMM estimators

are more efficient than the GLM3C in some design configurations

(Figure 6 and Tables 5–8).

(iii) The estimate bias for the GLMM approach becomes greater than

the associated with the GLM3C as (λ1, λ2) increases and for all the

designs configurations except for β̂3 when T = 13, n = 20 and σ2 = 2

(Tables 5–8).
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Table 5: Results of the simulation study under a serial dependence MC2
for n = 20, T = 7.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.522 0.514 0.531 0.537 0.546 0.518 0.518 0.550 0.576 0.605

β̂3 1.066 1.130 1.114 1.114 1.123 1.050 1.139 1.152 1.197 1.259

Bias
β̂1 0.021 0.014 0.031 0.037 0.046 0.018 0.018 0.050 0.076 0.105

β̂3 0.066 0.130 0.114 0.114 0.123 0.050 0.139 0.152 0.197 0.259

MSE
β̂1 0.091 0.106 0.115 0.127 0.140 0.085 0.104 0.123 0.147 0.177

β̂3 0.253 0.318 0.338 0.350 0.372 0.233 0.316 0.358 0.420 0.504

CI
β1 0.944 0.944 0.946 0.937 0.944 0.946 0.947 0.928 0.905 0.893

β3 0.963 0.941 0.946 0.954 0.961 0.974 0.928 0.925 0.914 0.913

σ2 = 1

Mean
β̂1 0.521 0.526 0.514 0.529 0.548 0.515 0.530 0.539 0.571 0.616

β̂3 1.066 1.067 1.130 1.105 1.112 1.060 1.080 1.177 1.198 1.254

Bias
β̂1 0.021 0.026 0.014 0.029 0.048 0.015 0.030 0.039 0.071 0.116

β̂3 0.066 0.067 0.130 0.105 0.112 0.060 0.080 0.177 0.198 0.254

MSE
β̂1 0.098 0.108 0.114 0.128 0.144 0.092 0.104 0.123 0.147 0.183

β̂3 0.267 0.276 0.364 0.413 0.372 0.263 0.278 0.391 0.482 0.487

CI
β1 0.944 0.943 0.936 0.938 0.939 0.942 0.944 0.919 0.910 0.892

β3 0.955 0.955 0.949 0.936 0.946 0.958 0.946 0.920 0.897 0.904

σ2 = 2

Mean
β̂1 0.507 0.525 0.524 0.496 0.522 0.505 0.536 0.558 0.550 0.601

β̂3 1.054 1.006 0.991 1.112 1.103 1.051 1.033 1.062 1.233 1.272

Bias
β̂1 0.007 0.025 0.024 −0.004 0.022 0.005 0.036 0.058 0.050 0.101

β̂3 0.054 0.006 −0.009 0.112 0.103 0.051 0.033 0.062 0.233 0.272

MSE
β̂1 0.099 0.098 0.096 0.124 0.132 0.094 0.100 0.109 0.149 0.173

β̂3 0.269 0.266 0.282 0.371 0.385 0.260 0.276 0.307 0.478 0.542

CI
β1 0.941 0.951 0.956 0.941 0.947 0.944 0.939 0.931 0.902 0.902

β3 0.954 0.956 0.952 0.945 0.963 0.957 0.945 0.924 0.904 0.906
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Table 6: Results of the simulation study under a serial dependence MC2
for n = 20, T = 13.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.501 0.497 0.501 0.507 0.538 0.501 0.503 0.521 0.540 0.594

β̂3 1.042 1.051 1.064 1.070 1.041 1.044 1.068 1.103 1.141 1.141

Bias
β̂1 0.001 −0.003 0.001 0.007 0.038 0.001 0.003 0.021 0.040 0.094

β̂3 0.042 0.051 0.064 0.070 0.041 0.044 0.068 0.103 0.141 0.141

MSE
β̂1 0.051 0.057 0.064 0.073 0.081 0.051 0.058 0.071 0.086 0.112

β̂3 0.136 0.155 0.177 0.198 0.210 0.134 0.160 0.199 0.242 0.275

CI
β1 0.948 0.951 0.947 0.950 0.953 0.946 0.942 0.915 0.876 0.842

β3 0.956 0.948 0.956 0.950 0.961 0.955 0.941 0.922 0.895 0.865

σ2 = 1

Mean
β̂1 0.506 0.505 0.535 0.532 0.516 0.507 0.512 0.556 0.569 0.567

β̂3 1.025 1.044 0.944 0.996 1.087 1.030 1.060 0.991 1.07 1.199

Bias
β̂1 0.006 0.005 0.035 0.032 0.016 0.007 0.012 0.056 0.069 0.067

β̂3 0.025 0.044 −0.056 −0.004 0.087 0.030 0.060 −0.009 0.077 0.199

MSE
β̂1 0.054 0.058 0.071 0.076 0.087 0.053 0.060 0.077 0.091 0.114

β̂3 0.145 0.157 0.156 0.196 0.242 0.144 0.164 0.169 0.231 0.324

CI
β1 0.942 0.953 0.930 0.939 0.951 0.946 0.938 0.891 0.868 0.847

β3 0.936 0.959 0.950 0.948 0.948 0.937 0.948 0.919 0.891 0.854

σ2 = 2

Mean
β̂1 0.536 0.510 0.549 0.549 0.553 0.537 0.516 0.571 0.585 0.608

β̂3 0.981 1.048 0.894 0.882 0.883 0.980 1.063 0.947 0.980 1.024

Bias
β̂1 0.036 0.010 0.049 0.049 0.053 0.037 0.016 0.071 0.085 0.108

β̂3 −0.019 0.048 −0.106 −0.118 −0.117 −0.020 0.063 −0.053 −0.020 0.024

MSE
β̂1 0.068 0.066 0.072 0.078 0.089 0.067 0.068 0.080 0.094 0.119

β̂3 0.164 0.194 0.168 0.183 0.216 0.159 0.199 0.177 0.205 0.262

CI
β1 0.939 0.939 0.937 0.948 0.946 0.948 0.928 0.900 0.870 0.835

β3 0.933 0.949 0.939 0.948 0.943 0.946 0.946 0.923 0.912 0.880
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Table 7: Results of the simulation study under a serial dependence MC2
for n = 50, T = 7.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.506 0.495 0.496 0.513 0.532 0.506 0.509 0.528 0.567 0.612

β̂3 1.018 1.070 1.077 1.052 1.045 1.017 1.098 1.142 1.163 1.210

Bias
β̂1 0.006 −0.005 −0.003 0.013 0.032 0.006 0.009 0.028 0.067 0.112

β̂3 0.018 0.070 0.077 0.052 0.045 0.017 0.098 0.142 0.163 0.210

MSE
β̂1 0.037 0.035 0.039 0.043 0.049 0.037 0.036 0.043 0.055 0.074

β̂3 0.101 0.111 0.123 0.115 0.124 0.099 0.117 0.146 0.157 0.196

CI
β1 0.953 0.956 0.951 0.946 0.950 0.947 0.946 0.933 0.907 0.874

β3 0.947 0.952 0.941 0.953 0.957 0.943 0.924 0.912 0.909 0.881

σ2 = 1

Mean
β̂1 0.503 0.512 0.520 0.517 0.520 0.505 0.527 0.554 0.572 0.598

β̂3 1.049 1.045 1.044 1.063 1.070 1.050 1.072 1.114 1.176 1.237

Bias
β̂1 0.003 0.012 0.020 0.017 0.020 0.005 0.027 0.054 0.072 0.098

β̂3 0.049 0.045 0.044 0.063 0.070 0.050 0.072 0.114 0.176 0.237

MSE
β̂1 0.036 0.040 0.044 0.043 0.049 0.036 0.042 0.051 0.057 0.070

β̂3 0.101 0.099 0.123 0.133 0.151 0.098 0.103 0.141 0.174 0.229

CI
β1 0.952 0.943 0.947 0.961 0.949 0.950 0.926 0.922 0.910 0.885

β3 0.955 0.948 0.938 0.944 0.937 0.945 0.932 0.914 0.897 0.866

σ2 = 2

Mean
β̂1 0.509 0.506 0.498 0.510 0.524 0.511 0.522 0.535 0.568 0.609

β̂3 1.062 1.047 1.065 1.049 1.038 1.063 1.076 1.144 1.171 1.215

Bias
β̂1 0.009 0.006 −0.002 0.010 0.024 0.011 0.022 0.035 0.068 0.109

β̂3 0.062 0.047 0.065 0.049 0.038 0.063 0.076 0.144 0.171 0.215

MSE
β̂1 0.040 0.039 0.042 0.046 0.049 0.040 0.041 0.048 0.059 0.075

β̂3 0.105 0.103 0.117 0.129 0.140 0.102 0.107 0.145 0.170 0.215

CI
β1 0.949 0.941 0.938 0.955 0.966 0.943 0.929 0.917 0.909 0.883

β3 0.951 0.953 0.951 0.953 0.951 0.947 0.939 0.909 0.902 0.873
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Table 8: Results of the simulation study under a serial dependence MC2
for n = 50, T = 13.

GLM3C-MC2 GLMM

(λ1, λ2) (λ1, λ2)

(.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1) (.05, .05) (.25, .25) (.5, .5) (.75, .75) (1, 1)

σ2 = 0.5

Mean
β̂1 0.497 0.499 0.503 0.506 0.510 0.498 0.507 0.523 0.541 0.564

β̂3 1.042 1.044 1.041 1.038 1.044 1.045 1.062 1.083 1.113 1.160

Bias
β̂1 −0.003 −0.001 0.003 0.006 0.010 −0.001 0.007 0.023 0.041 0.064

β̂3 0.042 0.044 0.041 0.038 0.044 0.045 0.062 0.083 0.113 0.160

MSE
β̂1 0.022 0.024 0.028 0.030 0.035 0.022 0.025 0.031 0.038 0.049

β̂3 0.058 0.065 0.073 0.079 0.089 0.059 0.069 0.085 0.104 0.138

CI
β1 0.950 0.953 0.952 0.949 0.949 0.953 0.934 0.901 0.884 0.836

β3 0.944 0.945 0.943 0.938 0.948 0.941 0.919 0.900 0.867 0.818

σ2 = 1

Mean
β̂1 0.498 0.506 0.506 0.499 0.507 0.500 0.516 0.527 0.536 0.562

β̂3 1.035 1.025 1.027 1.056 1.044 1.038 1.043 1.069 1.129 1.160

Bias
β̂1 −0.002 0.006 0.006 −0.001 0.007 0.000 0.016 0.027 0.036 0.062

β̂3 0.035 0.025 0.027 0.056 0.044 0.038 0.043 0.069 0.129 0.160

MSE
β̂1 0.022 0.025 0.028 0.028 0.033 0.022 0.026 0.031 0.034 0.045

β̂3 0.051 0.060 0.068 0.071 0.083 0.052 0.063 0.078 0.094 0.128

CI
β1 0.950 0.941 0.943 0.952 0.954 0.940 0.922 0.901 0.883 0.856

β3 0.954 0.953 0.944 0.956 0.942 0.953 0.926 0.889 0.874 0.828

σ2 = 2

Mean
β̂1 0.492 0.500 0.503 0.503 0.513 0.493 0.509 0.524 0.539 0.568

β̂3 1.048 1.036 1.038 1.041 1.037 1.051 1.054 1.079 1.114 1.148

Bias
β̂1 −0.008 0.000 0.003 0.003 0.013 −0.007 0.009 0.024 0.039 0.068

β̂3 0.048 0.036 0.038 0.041 0.037 0.051 0.054 0.079 0.114 0.148

MSE
β̂1 0.024 .030 0.033 0.038 0.042 0.024 0.031 0.037 0.045 0.055

β̂3 0.060 0.071 0.079 0.088 0.097 0.061 0.076 0.091 0.114 0.143

CI
β1 0.952 0.936 0.939 0.943 0.948 0.951 0.928 0.900 0.876 0.848

β3 0.944 0.951 0.956 0.959 0.950 0.942 0.935 0.915 0.880 0.844
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Figure 4: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using
GLM3C and GLMM estimation procedures (T = length of pro-
file on each subject, n = number of subjects, σ2 = variance of
the random effect). Data set on each run has a serial depen-
dence MC2 regulated by λ = (λ1, λ2). Coding for estimation
procedures: MC2 (GLM3C) and Ind (GLMM).
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Figure 5: Coverage probabilities of nominal 95% confidence intervals (CI

coverage) for β1 (β̂1) and β3 (β̂3) based on 1000 runs using
GLM3C and GLMM estimation procedures (T = length of pro-
file on each subject, n = number of subjects, σ2 = variance of
the random effect). Data set on each run has a serial depen-
dence MC2 regulated by λ = (λ1, λ2). Coding for estimation
procedures: MC2 (GLM3C) and Ind (GLMM).
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Figure 6: Relative efficiency (see text for definition) of β̂1 and β̂3 based
on 1000 runs using GLM3C and GLMM estimation procedures
(T = length of profile on each subject, n = number of subjects,
σ2 = variance of the random effect). Data set on each run has
a serial dependence MC2 regulated by λ = (λ1, λ2).



GLMM for Longitudinal Binary Data Using Different Correlation Structures 511

4. ANALYSIS OF CONTRACEPTING WOMEN DATA

The key results of the simulation study are illustrated, using data from a

longitudinal clinical trial of contracepting women given in [7]. In this trial, and

following their description, women received an injection of either 100 mg or 150

mg of depot-medroxyprogesterone acetate (DMPTA) on the day of randomization

and three additional injections at 90-day intervals. There was a final follow-up

visit 90 days after the fourth injection. The outcome of interest is a binary re-

sponse indicating whether the ith woman experienced amenorrhea (Yij = 1) in

the jth four successive three-month intervals, or not (Yij = 0). A feature of this

clinical trial is that there was substantial dropout (17% dropped out after receiv-

ing one injection of DMPA, 13% dropped out after receiving only two injections,

and 7% dropped out after receiving three injections).

The mixed effects logistic model proposed by [7]

logit [E(Yij |bi)] = β0 + β1timeij + β2time
2
ij + β3(timeij × dosei)

+ β4(time
2
ij × dosei) + bi

with j = 1, ..., 4, time = 1, 2, 3, 4 and dose a binary variable taking the value 1 if

the i-th woman is randomized to 150mg of DMPA and 0 otherwise, was fitted to

data with different dependence structures:

(i) Independence (Model I).

(ii) Serial dependence MC1 (Model II).

(iii) Serial dependence MC2 (Model III).

Models I correspond to the GLMM approach (model fitted by [7]), Models

II and III correspond to the GLM3C approach. The analysis of all models was

performed using the bild function of the R package bild with the dependence

argument sated to indR to Model I, MC1R and MC2R, respectively to Models II and

III.

Tables 9 and 10 display the results of fitting the different models to data.

Table 9 reports the log-likelihood, the change in deviance with corresponding

p-values. The estimated values of the parameters, as well as their standard errors,

t-ratio and corresponding p-values are given in Table 10.

The first step of the analysis is to choose the appropriate serial dependence

to account correlation between successive observation of the same subject. The re-

sults of Table 10 show, among other things, that the estimates of λ1 and λ2 in MC2

model (Model III) as well as the estimate of λ1 in MC1 model (Model II) point

strongly to a first order serial dependence. The change of deviance between this

two models, compared with the χ2
1 reference distribution, produces a p-value=

0.3467 (Table 9) confirming that there is no significant difference between this
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two models at 5% level. To explore further this point Model II was compare to

Model I, which assume independence between successive observation of the same

subject. The change of deviance between this two models, compared with the

χ2
1 reference distribution, produces a p-value= 0.0001 (Table 9) and so Model II

with a serial dependence MC1 is significantly preferable to Model I.

Table 9: Log-likelihood and change in deviance between models.

Model LogL ∆ D p-value

I −1937.54

II −1930.108 14.866 0.0001

II −1930.108

III −1929.665 0.885 0.3467

The results displayed in Table 10 also show that the model with the ap-

propriate serial dependence (MC1 model–Model II) produce smaller standard

errors, as point out in the simulation study, as well as a decrease in the value of

the estimative of σ2 face a more complex serial dependence model as remarked

by Pinheiro and Bates (2000) ([17]).

Table 10: Parameters estimates, Standard errors, t-ratio and p-value
for models I, II and III.

Model Parameter Estimate SE t-ratio p-value

β0 −3.799 0.305 −12.471 0.0000

β1 1.131 0.268 4.221 0.0000

I
β2 −0.042 0.055 −0.763 0.4457

β3 0.562 0.192 2.932 0.0034

β4 −0.109 0.050 −2.206 0.0274

σ2
5.030

β0 −3.443 0.304 −11.328 0.0000

β1 1.033 0.247 4.188 0.0000

β2 −0.039 0.050 −0.781 0.4346

II
β3 0.522 0.177 2.943 0.0033

β4 0.105 0.177 2.943 0.0234

λ1 0.744 0.226 3.293 0.0009

σ2
3.598

β0 −3.384 0.397 −8.524 0.0000

β1 1.014 0.253 4.004 0.0000

β2 −0.038 0.049 −0.781 0.4349

III
β3 0.516 0.178 2.904 0.0037

β4 −0.105 0.046 −2.262 0.0237

λ1 0.820 0.397 2.068 0.0387

λ2 0.092 0.398 0.230 0.8178

σ2
3.376
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The model fitted by [7] corresponds to Model I. The estimated values of

the parameters, as well as, their standard errors reported in Table 10 are in close

agreement to those obtained by [7]. To fit Model I [7] used the PROC NLMIXED

procedure in SAS and the estimation was based on 50-point adaptive Gaussian

quadrature.

5. FINAL REMARKS

This paper is concerned with the asses of performance of the GLM3C and

GLMM approaches both implemented in R package bild for the analysis of longi-

tudinal binary data. The GLM3C approach seems to be preferable to GLMM in

the situations considered by checking that its performance is so much better the

higher the serial correlation between observations of the same subject, regard-

less of the number of subjects involved in the study, the length of their profile

or the variance of the random effect. In spite of the use of the adaptive Gaus-

sian quadrature method the users may be aware that this method needs careful

handling to ensure converge even in simple random-effects models for categorical

outcome data as referred in [15].

The results pointed out in the simulation study are illustrated in the ex-

ample analyzed where a MC1 model was need to account dependence between

successive observations of the same subject. The program codes for analysing the

data set are available under request from the authors.

Finally, the R package bild allows the practitioners to choose the serial

dependence adequate to use for their data at hand.
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