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Abstract:

e In this paper we formulate how to add a =1, 2, 3 runs to a near D-optimal weigh-
ing design to get a highly D-efficient weighing design when the number of objects p
is even.
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1. INTRODUCTION

We study a weighing experiment where observations follow the linear model
y = Xw + e, where y = (y1,¥2, ..., yn)/ is a n x 1 random vector of observations,
X is the model matrix identified by the weighing design X € ®,,,,{0, 1}, where
®,,,{0, 1} denotes the set of all n x p matrices with elements 0 or 1, rank(X) = p,
w = (wy, wa, ..., wr,p)/ is a p x 1 vector of true unknown parameters (weights) and
e = (e1,€2,...,e,) is n x 1 random vector of errors. We assume, E(e) = 0,, and
Var(e) = 0%I,,, where 0,, is the n x 1 zero vector and I,, is the identity matrix of
order n. The least squares estimator of w is of the form w = (X'X)~'X'y and
the variance matrix of W is given by the formula Var(w) = ¢2(X'X)~! and X'X
is called the information matrix for the design.
Our goal is to determine an optimal experimental plan X that minimizes the
volume of the confidence region for w assuming that the errors are normally
distributed. This is equivalent to the determining a design X such that det(X X)
is maximum. Such a design X is called D-optimal. D-optimality of weighing
designs is studied in [3], [4], [6].

2. THE MAIN RESULT

Through the paper we assume that p is even. In [5], for even p it is shown
that the maximum det(X X) is attained if X'X =t (I, + J,) and each row of X
contains k or k 4 1 ones, where p = 2k and J is a matrix of all 1s. For the design
X having k ones in each row and even p, an upper bound for det(X/X) is given
in [1]. In [1], the following theorem was also proven.

Theorem 2.1. For any X € ®,,,,{0,1},

(2.1) det(X'X) = (p— 1) <4(p”f1))

if and only if

(2.2) X'X = m (PIp + (- 2)Jp) )

are integers.

n n(p—2
where 4(p£1) and 4((571))

Here, we define Dqg(X) as

(2.3) Dt (X) = <det(Y'Y)
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where Y is a regular D-optimal spring balance weighing design having k or k+ 1

ones in each row (p = 2k) and Y'Y = Efé;i)f; (I, +J,), see [5].

Definition 2.1. Any nonsingular spring balance weighing design X €
®,,,,{0,1} for which p is even is said to be near D-optimal if det(X X) =

»-1) ()"

In [1], some construction methods for near D-optimal weighing designs for
certain values of n and p were provided. However, construction methods are
needed for general n and p. Given a near D-optimal design for p objects and
n — a measurements we describe how to add a measurements in such way that
the resulting design is highly D-efficient.

2.1. Adding a = 1 measurements

Let X; be a near D-optimal design in W, _1),,{0,1}. In order to locate
highly D-efficient design in ®,,4,{0,1}, we add one measurement, i.e. p x 1 vector
x of 0’s or 1’s having property x’lp =t. So, X € ®,,,,{0,1} is given in the
following form

(2.4) X = [)j]

Thus for X € ®,5,{0,1} in (2.4), det(X'X) = (1 +x (X’le)_lx> - det(X, X)),
by Theorem 18.1.1 in [2]. Then we have the following theorem.

Theorem 2.2. For any X € ®,,,,{0,1} given by (2.4),

(2.5) det (XX) <(p-1) (H)p (1 + m> .

Proof: By Theorem 2.1

’ (TL — 1)p p
2. X Xy)=(p—-1) | —~
(2.6 (%) = (o~ 1) (G0
implies
(2.7) XX, = 2L+ —2)3)
. 141 — 4(p_ 1) p D p )
where E&;_liz)j and (nz(giplf) are integers. Apply the formula given in (2.6) to

compute the determinant of the information matrix. So,

(n = 1)p>p (1 + x/(XllX1)71x> :

det(X'X) = (p— 1) <4(p_1)
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(n=1)p

(2.8)  det (XX) — (p—1) (Eﬁp__lif)’ )p (1 + El?ip_—l ;; (x’x _ pg) __21) X J, x>> .

To maximise (2.8), we determine the maximum value of the function

Since (X, X;)~! = 4=V (Ip 2, ) we obtain

/ - 2 /
(2.9) n(x) =xx — ppix Jpx.

Consequently, n(x) =t — é’; 21)752 4”(' 77 and the equality holds if and only if
t =0.5(p+ 2). From the above and (2.8) we obtain (2.5). O

Corollary 2.1. For a spring balance weighing design X € ®,,,,{0,1} given
by (2.4), det <X’X) (p—1) (El(p E) (1 + (npj%) provided that (2.7) holds
and x'1, = 0.5(p + 2).

2.2. Adding a = 2 measurements

Let X1 € ®(;,_9)xp10, 1} be near D-optimal. Let X € ®,,x,{0,1} be in the
following form

X1
(2.10) X=|x
y

)

where x and y are vectors of 0’s and 1’s and xllp =, yllp —u, Xy =nm,
0 <m < min(t,u).

Theorem 2.3. For any X € ®,,5,{0,1} given by (2.10)

, n,p)R(n, if p=0mod 4
et (X X) - Q(n,p)R(n,p) if p
Q(n,p)L(n,p) if p+2=0mod4,

where
o - -0 (422
(211)  R(n,p) = (1+W> <1+§:;>’

(p—D(p+2) (p+2)(p* —3p+38)
by = (14 O (14 TSRS,
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Proof: By Theorem 2.1

/ (n—2)p\?
2.12 det [ X;X1)=(p—1)| —/—=
implies
(2.13) X X1 = 22 0+ (p—2)3,)
. 1421 — 4(p_ 1) p D p p)
where Ef(lp__QK and (”;(228’1;2) are integers. By Theorem 18.1.1 in [2]

’

det(X'X) = det(XX;)det <12 + [ﬂ (X’lxl)_1 [x y])

(ax) " = G (b= 1%).

Next, by the formula given in (2.12) we have

and

(2.14) det(X'X) = (p— 1) <m> - det(€2),

where

4p=1) (4 _ _p=2 42 4(p—1) _p=2
1+ 5o <t p(p—l)t> (n=2)p (m P(P—l)tu)

4(p—1) p—2 4(p—1) p—2 2
(n—2)p (m o p(p—l)tu) 1+ (n—=2)p (u “ DY )

As we want to maximise (2.14), we determine the maximum values of

-2 -2
P t2 and u — P 2

(2.15) L 1) p(p—1)

and concomitantly the minimum value of
2
p—2 >
2.16 m — tu | .
(210) < p(p—1)

The maximum values in (2.15) each as a function of p is attained if and only
if t =u=0.5(p+2). If p=0mod 4, then the minimum value of (2.16) is equal

to LS)Z when m = 0.25(p + 4). Hence det(2) < (1 + M) (1 + %)

R (-2

an

(2.17)  det(X'X) < (p—1) 1+M L =LY ((n=2)p P
| -7 (n —2)p? n—2)\4(p—-1)) °

The equality in (2.17) holds if and only if ¢ = v = 0.5(p+ 2) and m = 0.25(p +4).
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(p+2)%(p—4)?
16p?(p—1)2

when m = 0.25(p+2). Therefore, det(2) < (1 + %) (1 + WM—Q;?W>

If p+2 = 0 mod 4, then the minimum value of (2.16) is equal to

and
det(X'X) < (p—1) <1 + W)

(o) (2

The equality in (2.18) holds if and only if t=u=0.5(p+2) and m =
0.25(p + 2). O

(2.18)

Corollary 2.2. Let Q(n,p), R(n,p), L(n,p) be of the form (2.11) and
p be even. Then for a spring balance weighing design X € ®,,4,{0,1} given by
(2.10),

, Q(n,p)R(n,p) if p=0mod4
det (X'X) = (2, 2) B, )
Q(n,p)L(n,p) if p+2=0mod 4,

provided (2.13) holds and

xllp = yllp =0.5(p+2)

and
Xy = 0.25(p + 4) if p=0mod 4,
Xy = 0.25(p + 2) if p+2=0mod 4.

2.3. Adding a = 3 measurements

Next, we assume that there exists a near D-optimal spring balance weighing
design X for p objects and n — 3 measurements in the class <I>(n,3)xp{0, 1}. So,
X € ®,,4,{0,1} is given in the form

(2.19) X=|"1,

where x, y and z are vectors of 0’s and 1’s and

xllp =t, xXy=m, 0<m < min(t,u)
(2.20) y1,=u, xz=g¢q, 0<q<min(tw)
z1,=w, yz=~h, 0<h < min(u,w).
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By Theorem 2.1

’ (TZ — 3)p>p

2.21 det(X;X1)=(p—1 ( ,
2.21) xix) = (o) (=2
implies

’ n —
2.22 X Xi=—(pl -2
( ) 141 4(p 1) (p p T (p )JP)7
where 4(’;;_31) and (”4_5’]))5’)1;2) are integers. By using the formula given in (2.21)

and Theorem 18.1.1 in [2], we obtain

det(X'X) = (p— 1) <E[(Lp_3i};>pdet (Ig + {;] (XIIX1>_1 [xy z]) .

z

Because (X;Xl)il = égp__?);) (I o)) 21)J > we have

(2.23) det(X'X) = (p — 1) <Efzp__3i])9 )p det(T),

!

where T = I3 + 4(p—1)

Y (L - 52%53,) [x ¥ 2]. By (220,

7)) (5 (-5

x
Y
z

dem) = (14200 (o2
. 1+4(p—1) w—
< 4((;;)103( ;p 21 )) - s
+2<(n—3)p> " 1tu) <q p(p—1) ><h p(p—l)uw)

(ot

1+
(i () () (- ).
B <1+ <r(z 3;; w_pé‘j)w)) (?vip—;);;) (m‘pgo_—21>t“> |

As we want to maximise (2.23), we simultaneously determine the maximum values

of

(

_?jz)? <t pgﬁ 21 g > <4T(LP 3;1)9 2 <hp£9_—21)uw>2
(
(

-2 -2 -2
b 2, u b u? and w— b w?
p(p—1) p(p—1) pp—1)

and the minimum values of

02 (h g ge) (o) (n i)

(2.24) t—
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The maximum values in (2.24) are all attained if and only if t =u=w=0.5(p+2).

2 2
(0"+8)°  when

If p =0 mod 4, then the minimum values in (2.25) are equal to 6201

m=q=h=0.25(p+4). Then
<1+ (P:“r)82>3+ ? (mf_ ’ <1+ (53+3pr> ((75%?:)8292 )2

- (- 25) () () (555
and

det(X'X) < (p—1) <M)p (1 N _;)

(2.26)
(-5 (558 (25

The equality in (2.26) holds if and only if ¢t = v = w = 0.5(p + 2) and m
h =0.25(p + 4).
If p4+ 2 = 0 mod 4, then the minimum values in (2.25) are all equal to

det(T)

IN

(p+2)*(p—4)*
16p?(p—1)2
when m = ¢ = h = 0.25(p + 2). An easy computation shows that

(1 ea) — 2 (20 — 8 (1 255 (2 :
2 —
- (122 (i) (e 25852 - 25245 )

det(T)

IN

and consequently

, ne3)p\ P _
det(X'X) < (p—1) (§20)" (1 + gt

(1) (1 i) 2 (250)').

The equality in (2.27) holds if and only if t =u =w =0.5(p+ 2) and m = ¢ =
h = 0.25(p + 2). So, the following theorem is obtained.

(2.27)

Theorem 2.4. For any X € ®,5,{0,1} given by (2.19)

/ W(n,p)S(n,p) if p=0mod4
(2.28) det <X X) < (n,p)S(n. p)
W(n,p)Q(n,p) if p+2=0mod 4,
where
(2.29)

Win,p) = (- 1) (522)
st = (1528 [(10 2 (1 ) 2 (5]

= (14 5252) (o o) (14 ) ()]
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Corollary 2.3. Let W(n,p), S(n,p), Q(n,p) be of the form (2.29) and
X € ®,,,{0,1} by (2.19). Then

det (X/X> _ { W(n,p)S(n,p) if p=0mod4
W(n,p)Q(n,p) if p+2=0mod 4
provided that (2.22) holds and
x1,=y1,=21,=025(p+2)
and
Xy=xz=yz=025(p+4) if p=0mod4
Xy=xz=yz=025(p+2) if p+2=0mod4.

Some construction methods of X; satisfying 2.2 are based on the incidence
matrix of a balanced incomplete block design, see [1], Theorem 4. Such a ma-
trix X exists only for certain values of p and n. Hence, if X; does not exist
in ®,5,{0,1} but exists among ®,_1xp{0,1}, ®p_2xp{0,1} or ®,_3.,{0,1},
then we can construct a highly D-efficient spring balance weighing design X &
®,,.»{0,1}. This construction is based on corollaries 2.2, 2.3 and 2.4.

3. EXAMPLES

Example 3.1. Consider the problem of weighing p = 4 objects inn =7

. np 7 n(p=2) _ 7 . .
measurements. Since -1 = 3 and Ip=1) = 6 are not integers, the matrix

X € ®7,4{0,1} for which (2.2) is satisfied does not exist. Now, let X; be a matrix
(n=1)p _ o (n=1)(p=2) _ 4

for p = 4 objects and n — 1 = 6 measurements. Then ip=1) = p-1)
and for
[1100]
1010
1001
(3.1) X = 0110
0101
10011

the condition (2.2) is fulfilled. By Corollary 2.1, the design X € ®7,4{0,1} of

Xy N .
the form X = [ 111 0] is highly D-efficient.
X4
Example 3.2. By Corollary 2.2, X € ®g,4{0,1} suchthat X =] 1110 |,
1101

where X is given in (3.1), is highly D-efficient for weighing 4 objects in 8 mea-
surements.
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Example 3.3. In order to weigh 4 objects in n = 9 measurements, let
X1
1110
1101
1011

X € ®9,4{0,1} be of the form X = , where X is of the form (3.1).

Hence X is highly D-efficient.

Example 3.4. Consider the problem of measuring 6 objects in n =11

measurements. Since 4(1’21) = % is not an integer, the matrix X € ®11,6{0, 1}
for which (2.2) is satisfied does not exist. Now, let Xy be a matrix for p =6
objects and n — 1 = 10 measurements. In this case % =3 and % =2

and for the matrix

001
000
110
100

(3.2) Xa

OO == OOO K =

O = O = = O
_ =00 000k OFO

O OO OO - =

_ o = O = =

1
0
1
0
1
1

the condition (2.2) is fulfilled. By Corollary 2.1, the design X € ®1144{0,1} of

_ X Lo .
the form X = [1 1110 0] is highly D-efficient.

Example 3.5. For weighing p = 6 objects using n = 12 measurements
X2
the design X € ®19,6{0,1} of the form X = [ 111100 | is highly D-efficient,
110011
by Corollary 2.2.

Example 3.6. For weighing p = 6 objects in n = 13 measurements X €
X2
111100
110011
001111

®13,4{0, 1} of the form X = , where X is given in (3.2), is highly

D-efficient, by Corollary 2.3.
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4.

DISCUSSION

For each p and n, the resulting Deg based on the provided designs in The-

orem 2.2, 2.3 and 2.4 are summarized in Table 1.

Table 1: Dgg(X) of the design X for each p and n.

| p—t |
n 6 7 8 9 10
Des (X) 0.9779  0.9641 0.9652  0.9779 1

| p=6 |
n 10 11 12 13 14
Deg(X) 0.9927 09783 09719  0.9723 1

| p=8 |
n 14 15 16 17 18
Degt (X) 0.9968  0.9849  0.9776  0.9701 1
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