HIGHLY D-EFFICIENT WEIGHING DESIGNS FOR AN EVEN NUMBER OF OBJECTS

Authors: BRONISŁAW CERANKA

- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland bronicer@up.poznan.pl
- Małgorzata Graczyk
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland magra@up.poznan.pl

Abstract:

• In this paper we formulate how to add $a = 1, 2, 3$ runs to a near D-optimal weighing design to get a highly D-efficient weighing design when the number of objects p is even.

Key-Words:

• D-optimal design; efficiency; spring balance weighing design.

AMS Subject Classification:

• 62K05, 05B20.

1. INTRODUCTION

We study a weighing experiment where observations follow the linear model $\mathbf{y} = \mathbf{X}\mathbf{w} + \mathbf{e}$, where $\mathbf{y} = (y_1, y_2, ..., y_n)'$ is a $n \times 1$ random vector of observations, **X** is the model matrix identified by the weighing design $\mathbf{X} \in \Phi_{n \times p} \{0, 1\}$, where $\Phi_{n\times p}\{0,1\}$ denotes the set of all $n\times p$ matrices with elements 0 or 1, $rank(\mathbf{X})=p$, $\mathbf{w} = (w_1, w_2, ..., w_p)'$ is a $p \times 1$ vector of true unknown parameters (weights) and ${\bf e} = (e_1, e_2, ..., e_n)$ is $n \times 1$ random vector of errors. We assume, $E({\bf e}) = {\bf 0}_n$ and $Var(e) = \sigma^2 I_n$, where $\mathbf{0}_n$ is the $n \times 1$ zero vector and \mathbf{I}_n is the identity matrix of order n. The least squares estimator of **w** is of the form $\hat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ and the variance matrix of $\hat{\mathbf{w}}$ is given by the formula $\text{Var}(\hat{\mathbf{w}}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ and $\mathbf{X}'\mathbf{X}$ is called the information matrix for the design.

Our goal is to determine an optimal experimental plan X that minimizes the volume of the confidence region for w assuming that the errors are normally distributed. This is equivalent to the determining a design **X** such that $det(\mathbf{X}'\mathbf{X})$ is maximum. Such a design X is called D-optimal. D-optimality of weighing designs is studied in [3], [4], [6].

2. THE MAIN RESULT

Through the paper we assume that p is even. In [5], for even p it is shown that the maximum $\det(\mathbf{X}'\mathbf{X})$ is attained if $\mathbf{X}'\mathbf{X} = t(\mathbf{I}_p + \mathbf{J}_p)$ and each row of X contains k or $k+1$ ones, where $p=2k$ and **J** is a matrix of all 1s. For the design **X** having k ones in each row and even p, an upper bound for $det(\mathbf{X}'\mathbf{X})$ is given in [1]. In [1], the following theorem was also proven.

Theorem 2.1. For any $\mathbf{X} \in \Phi_{n \times p} \{0, 1\},\$

(2.1)
$$
\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{np}{4(p-1)}\right)^p
$$

if and only if

(2.2)
$$
\mathbf{X}'\mathbf{X} = \frac{n}{4(p-1)}\left(p\mathbf{I}_p + (p-2)\mathbf{J}_p\right),
$$

where $\frac{np}{4(p-1)}$ and $\frac{n(p-2)}{4(p-1)}$ are integers.

Here, we define $D_{\text{eff}}(\mathbf{X})$ as

(2.3)
$$
D_{\text{eff}}(\mathbf{X}) = \left(\frac{\det(\mathbf{X}'\mathbf{X})}{\det(\mathbf{Y}'\mathbf{Y})}\right)^{\frac{1}{p}},
$$

where **Y** is a regular D-optimal spring balance weighing design having k or $k + 1$ ones in each row $(p=2k)$ and $\overline{\mathbf{Y}}^{\prime}\mathbf{Y} = \frac{(p+2)n}{4(p+1)}(\mathbf{I}_p + \mathbf{J}_p)$, see [5].

Definition 2.1. Any nonsingular spring balance weighing design $X \in$ $\Phi_{n\times p}\{0,1\}$ for which p is even is said to be near D-optimal if $\det(\mathbf{X}'\mathbf{X}) =$ $(p-1)\left(\frac{np}{4(p-1)}\right)^p.$

In [1], some construction methods for near D-optimal weighing designs for certain values of n and p were provided. However, construction methods are needed for general n and p . Given a near D-optimal design for p objects and $n - a$ measurements we describe how to add a measurements in such way that the resulting design is highly D-efficient.

2.1. Adding $a = 1$ measurements

Let \mathbf{X}_1 be a near D-optimal design in $\Psi_{(n-1)\times p}\{0,1\}$. In order to locate highly D-efficient design in $\Phi_{n\times p}\{0,1\}$, we add one measurement, i.e. $p\times 1$ vector **x** of 0's or 1's having property $\mathbf{x}' \mathbf{1}_p = t$. So, $\mathbf{X} \in \Phi_{n \times p} \{0, 1\}$ is given in the following form

$$
\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x} \end{bmatrix}
$$

Thus for $\mathbf{X} \in \Phi_{n \times p}\{0, 1\}$ in (2.4), $\det(\mathbf{X}'\mathbf{X}) = \left(1 + \mathbf{x}'(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{x}\right) \cdot \det(\mathbf{X}_1'\mathbf{X}_1)$, by Theorem 18.1.1 in [2]. Then we have the following theorem.

.

.

Theorem 2.2. For any $X \in \Phi_{n \times p}\{0, 1\}$ given by (2.4),

(2.5)
$$
\det\left(\mathbf{X}^{\'}mathbf{X}\right) \leq (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{p^3 + 8}{(n-1)p^2}\right)
$$

Proof: By Theorem 2.1

(2.6)
$$
\det(\mathbf{X}_1'\mathbf{X}_1) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p
$$

implies

(2.7)
$$
\mathbf{X}'_1 \mathbf{X}_1 = \frac{n-1}{4(p-1)} \left(p \mathbf{I}_p + (p-2) \mathbf{J}_p \right),
$$

where $\frac{(n-1)p}{4(p-1)}$ and $\frac{(n-1)(p-2)}{4(p-1)}$ are integers. Apply the formula given in (2.6) to compute the determinant of the information matrix. So,

$$
\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \mathbf{x}'(\mathbf{X}'_1\mathbf{X}_1)^{-1}\mathbf{x}\right).
$$

Since $(\mathbf{X}_1' \mathbf{X}_1)^{-1} = \frac{4(p-1)}{(n-1)p}$ $\frac{4(p-1)}{(n-1)p} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)} \mathbf{J}_p \right)$, we obtain

(2.8) det
$$
(\mathbf{X}'\mathbf{X}) = (p-1) \left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{4(p-1)}{(n-1)p} \left(\mathbf{x}'\mathbf{x} - \frac{p-2}{p(p-1)} \mathbf{x}'\mathbf{J}_p \mathbf{x}\right)\right).
$$

To maximise (2.8), we determine the maximum value of the function

(2.9)
$$
\eta(\mathbf{x}) = \mathbf{x}'\mathbf{x} - \frac{p-2}{p(p-1)}\mathbf{x}'\mathbf{J}_p\mathbf{x}.
$$

Consequently, $\eta(\mathbf{x}) = t - \frac{p-2}{p(p-1)}t^2 \leq \frac{p^3+8}{4p(p-1)}$ and the equality holds if and only if $t = 0.5(p + 2)$. From the above and (2.8) we obtain (2.5) .

Corollary 2.1. For a spring balance weighing design $\mathbf{X} \in \Phi_{n \times p} \{0, 1\}$ given by (2.4), det $(X'X) = (p-1) \left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{p^3+8}{(n-1)p}\right)$ $\left(\frac{p^3+8}{(n-1)p^2}\right)$ provided that (2.7) holds and $\mathbf{x}'\mathbf{1}_p = 0.5(p+2)$.

2.2. Adding $a = 2$ measurements

Let $\mathbf{X}_1 \in \Phi_{(n-2)\times p}\{0,1\}$ be near D-optimal. Let $\mathbf{X} \in \Phi_{n\times p}\{0,1\}$ be in the following form

(2.10)
$$
\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x}' \\ \mathbf{y}' \end{bmatrix},
$$

where **x** and **y** are vectors of 0's and 1's and $\mathbf{x}'\mathbf{1}_p = t$, $\mathbf{y}'\mathbf{1}_p = u$, $\mathbf{x}'\mathbf{y} = m$, $0 \leq m \leq \min(t, u).$

Theorem 2.3. For any $X \in \Phi_{n \times p}\{0, 1\}$ given by (2.10)

$$
\det\left(\mathbf{X}^{\prime}\mathbf{X}\right) \leq \begin{cases} Q(n,p)R(n,p) & \text{if } p = 0 \bmod 4 \\ Q(n,p)L(n,p) & \text{if } p+2 = 0 \bmod 4, \end{cases}
$$

where

$$
Q(n, p) = (p - 1) \left(\frac{(n - 2)p}{4(p - 1)}\right)^p,
$$

(2.11)
$$
R(n, p) = \left(1 + \frac{p^3 + p^2 + 16}{(n - 2)p^2}\right) \left(1 + \frac{p - 1}{n - 2}\right),
$$

$$
L(n, p) = \left(1 + \frac{(p - 1)(p + 2)}{(n - 2)p}\right) \left(1 + \frac{(p + 2)(p^2 - 3p + 8)}{(n - 2)p^2}\right).
$$

Proof: By Theorem 2.1

(2.12)
$$
\det\left(\mathbf{X}_1'\mathbf{X}_1\right) = (p-1)\left(\frac{(n-2)p}{4(p-1)}\right)^p
$$

implies

(2.13)
$$
\mathbf{X}'_1 \mathbf{X}_1 = \frac{n-2}{4(p-1)} \left(p \mathbf{I}_p + (p-2) \mathbf{J}_p \right),
$$

where $\frac{(n-2)p}{4(p-1)}$ and $\frac{(n-2)(p-2)}{4(p-1)}$ are integers. By Theorem 18.1.1 in [2]

$$
\det(\mathbf{X}^{'}\mathbf{X}) = \det(\mathbf{X}^{'}_{1}\mathbf{X}_{1})\det\left(\mathbf{I}_{2} + \begin{bmatrix} \mathbf{x}^{'} \\ \mathbf{y}^{'} \end{bmatrix} \left(\mathbf{X}^{'}_{1}\mathbf{X}_{1}\right)^{-1} [\begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix}\right)
$$

and

$$
\left(\mathbf{X}_1'\mathbf{X}_1\right)^{-1} = \frac{4(p-1)}{(n-2)p} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)}\mathbf{J}_p\right).
$$

Next, by the formula given in (2.12) we have

(2.14)
$$
\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{(n-2)p}{4(p-1)}\right)^p \cdot \det(\mathbf{\Omega}),
$$

where

$$
\Omega = \begin{bmatrix} 1 + \frac{4(p-1)}{(n-2)p} \left(t - \frac{p-2}{p(p-1)} t^2 \right) & \frac{4(p-1)}{(n-2)p} \left(m - \frac{p-2}{p(p-1)} t u \right) \\ \frac{4(p-1)}{(n-2)p} \left(m - \frac{p-2}{p(p-1)} t u \right) & 1 + \frac{4(p-1)}{(n-2)p} \left(u - \frac{p-2}{p(p-1)} u^2 \right) \end{bmatrix}.
$$

As we want to maximise (2.14), we determine the maximum values of

(2.15)
$$
t - \frac{p-2}{p(p-1)}t^2
$$
 and $u - \frac{p-2}{p(p-1)}u^2$

and concomitantly the minimum value of

$$
(2.16)\qquad \qquad \left(m-\frac{p-2}{p(p-1)}tu\right)^2.
$$

The maximum values in (2.15) each as a function of p is attained if and only if $t = u = 0.5(p+2)$. If $p = 0 \mod 4$, then the minimum value of (2.16) is equal to $\frac{(p^2+8)^2}{16n^2(n-1)}$ $\frac{(p^2+8)^2}{16p^2(p-1)^2}$ when $m=0.25(p+4)$. Hence $\det(\mathbf{\Omega}) \leq \left(1+\frac{p^3+p^2+16}{(n-2)p^2}\right)$ $\frac{(n-2)p^2+16}{(n-2)p^2}\left(1+\frac{p-1}{n-2}\right)$ and

$$
(2.17) \quad \det(\mathbf{X}'\mathbf{X}) \le (p-1)\left(1 + \frac{p^3 + p^2 + 16}{(n-2)p^2}\right)\left(1 + \frac{p-1}{n-2}\right)\left(\frac{(n-2)p}{4(p-1)}\right)^p.
$$

The equality in (2.17) holds if and only if $t = u = 0.5(p+2)$ and $m = 0.25(p+4)$.

If $p+2=0 \mod 4$, then the minimum value of (2.16) is equal to $\frac{(p+2)^2(p-4)^2}{16n^2(p-1)^2}$ $\frac{16p^2(p-1)^2}{p^2}$ when $m = 0.25(p+2)$. Therefore, $\det(\mathbf{\Omega}) \le \left(1 + \frac{(p-1)(p+2)}{(n-2)p}\right) \left(1 + \frac{(p+2)(p^2-3p+8)}{(n-2)p^2}\right)$ $\frac{2(p^2-3p+8)}{(n-2)p^2}$ and

(2.18)
$$
\det(\mathbf{X}'\mathbf{X}) \le (p-1)\left(1 + \frac{(p-1)(p+2)}{(n-2)p}\right) \times \left(1 + \frac{(p+2)(p^2 - 3p + 8)}{(n-2)p^2}\right) \left(\frac{(n-2)p}{4(p-1)}\right)^p
$$

The equality in (2.18) holds if and only if $t = u = 0.5(p+2)$ and $m =$ $0.25(p+2)$. \Box

Corollary 2.2. Let $Q(n, p)$, $R(n, p)$, $L(n, p)$ be of the form (2.11) and p be even. Then for a spring balance weighing design $\mathbf{X} \in \Phi_{n \times p} \{0, 1\}$ given by $(2.10),$

$$
\det\left(\mathbf{X}^{\'}\mathbf{X}\right) = \begin{cases} Q(n,p)R(n,p) & \text{if } p = 0 \bmod 4 \\ Q(n,p)L(n,p) & \text{if } p+2 = 0 \bmod 4, \end{cases}
$$

provided (2.13) holds and

$$
\begin{cases}\n\mathbf{x}'\mathbf{1}_p = \mathbf{y}'\mathbf{1}_p = 0.5(p+2) \\
\text{and} \\
\mathbf{x}'\mathbf{y} = 0.25(p+4) & \text{if } p = 0 \text{ mod } 4, \\
\mathbf{x}'\mathbf{y} = 0.25(p+2) & \text{if } p+2 = 0 \text{ mod } 4.\n\end{cases}
$$

2.3. Adding $a = 3$ measurements

Next, we assume that there exists a near D-optimal spring balance weighing design \mathbf{X}_1 for p objects and $n-3$ measurements in the class $\Phi_{(n-3)\times p}\{0,1\}$. So, $\mathbf{X} \in \mathbf{\Phi}_{n \times p} \{0, 1\}$ is given in the form

(2.19)
$$
\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix},
$$

where x , y and z are vectors of 0's and 1's and

(2.20)
$$
\begin{cases} \mathbf{x}'\mathbf{1}_p = t, & \mathbf{x}'\mathbf{y} = m, \ 0 \le m \le \min(t, u) \\ \mathbf{y}'\mathbf{1}_p = u, & \mathbf{x}'\mathbf{z} = q, \ 0 \le q \le \min(t, w) \\ \mathbf{z}'\mathbf{1}_p = w, & \mathbf{y}'\mathbf{z} = h, \ 0 \le h \le \min(u, w). \end{cases}
$$

.

By Theorem 2.1

(2.21)
$$
\det(\mathbf{X}_1'\mathbf{X}_1) = (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^p,
$$

implies

(2.22)
$$
\mathbf{X}'_1 \mathbf{X}_1 = \frac{n-3}{4(p-1)} \left(p \mathbf{I}_p + (p-2) \mathbf{J}_p \right),
$$

where $\frac{n-3}{4(p-1)}$ and $\frac{(n-3)(p-2)}{4(p-1)}$ are integers. By using the formula given in (2.21) and Theorem 18.1.1 in [2], we obtain

$$
\det(\mathbf{X}'\mathbf{X}) = (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^p \det\left(\mathbf{I}_3 + \begin{bmatrix} \mathbf{x}'\\ \mathbf{y}'\\ \mathbf{z}' \end{bmatrix} \left(\mathbf{X}_1'\mathbf{X}_1\right)^{-1} \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix}\right).
$$

Because
$$
\left(\mathbf{X}_1'\mathbf{X}_1\right)^{-1} = \frac{4(p-1)}{(n-3)p} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)}\mathbf{J}_p\right), \text{ we have}
$$

(2.23)
$$
\det(\mathbf{X}'\mathbf{X}) = (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^p \det(\mathbf{T}),
$$

where
$$
\mathbf{T} = \mathbf{I}_3 + \frac{4(p-1)}{(n-3)p} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)} \mathbf{J}_p \right) \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{bmatrix}
$$
. By (2.20),

$$
det(\mathbf{T}) = \left(1 + \frac{4(p-1)}{(n-3)p} \left(t - \frac{p-2}{p(p-1)}t^2\right)\right) \left(1 + \frac{4(p-1)}{(n-3)p} \left(u - \frac{p-2}{p(p-1)}u^2\right)\right) \n\cdot \left(1 + \frac{4(p-1)}{(n-3)p} \left(w - \frac{p-2}{p(p-1)}w^2\right)\right) \n+ 2\left(\frac{4(p-1)}{(n-3)p}\right)^3 \left(m - \frac{p-2}{p(p-1)}tu\right) \left(q - \frac{p-2}{p(p-1)}tw\right) \left(h - \frac{p-2}{p(p-1)}uw\right) \n- \left(1 + \frac{4(p-1)}{(n-3)p} \left(t - \frac{p-2}{p(p-1)}t^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(h - \frac{p-2}{p(p-1)}uw\right)^2 \n- \left(1 + \frac{4(p-1)}{(n-3)p} \left(u - \frac{p-2}{p(p-1)}u^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(q - \frac{p-2}{p(p-1)}tw\right)^2 \n- \left(1 + \frac{4(p-1)}{(n-3)p} \left(w - \frac{p-2}{p(p-1)}w^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(m - \frac{p-2}{p(p-1)}tu\right)^2.
$$

As we want to maximise (2.23), we simultaneously determine the maximum values of

(2.24)
$$
t - \frac{p-2}{p(p-1)}t^2
$$
, $u - \frac{p-2}{p(p-1)}u^2$ and $w - \frac{p-2}{p(p-1)}w^2$

and the minimum values of

(2.25)
$$
\left(h - \frac{p-2}{p(p-1)}uw\right)^2
$$
, $\left(q - \frac{p-2}{p(p-1)}tw\right)^2$ and $\left(m - \frac{p-2}{p(p-1)}tu\right)^2$.

The maximum values in (2.24) are all attained if and only if $t = u = w = 0.5(p+2)$. If $p = 0 \mod 4$, then the minimum values in (2.25) are equal to $\frac{(p^2+8)^2}{16n^2(n-1)}$ $\frac{(p^{-}+8)^{-}}{16p^{2}(p-1)^{2}}$ when $m = q = h = 0.25(p+4)$. Then

$$
\det(\mathbf{T}) \le \left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)^3 + 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^3 - 3\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2
$$

$$
= \left(1 - \frac{p-1}{n-3}\right)\left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(1 + \frac{p^3 + p^2 + 16}{(n-3)p^2}\right) - 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2\right)
$$

and

$$
\det(\mathbf{X}'\mathbf{X}) \le (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^p \left(1 + \frac{p-1}{n-3}\right)
$$

(2.26)

$$
\cdot \left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right) \left(1 + \frac{p^3 + p^2 + 16}{(n-3)p^2}\right) - 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2 \right).
$$

The equality in (2.26) holds if and only if $t = u = w = 0.5(p+2)$ and $m = q =$ $h = 0.25(p+4).$

If $p + 2 = 0 \mod 4$, then the minimum values in (2.25) are all equal to $\frac{(p+2)^2(p-4)^2}{16n^2(p-1)^2}$ $\frac{16p^2(p-1)^2}{p^2}$ when $m = q = h = 0.25(p+2)$. An easy computation shows that

$$
\det(\mathbf{T}) \le \left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)^3 - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^3 - 3\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2
$$

$$
= \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right)\left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(1 + \frac{(p+2)(p^2 - 3p + 8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2\right)
$$

and consequently

$$
(2.27) \quad \det(\mathbf{X}'\mathbf{X}) \le (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^p \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right) \\ \cdot \left(\left(1 + \frac{p^3+8}{(n-3)p^2}\right) \left(1 + \frac{(p+2)(p^2-3p+8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2\right).
$$

The equality in (2.27) holds if and only if $t = u = w = 0.5(p+2)$ and $m = q =$ $h = 0.25(p+2)$. So, the following theorem is obtained.

Theorem 2.4. For any $X \in \Phi_{n \times p}\{0, 1\}$ given by (2.19)

(2.28)
$$
\det\left(\mathbf{X}^{\prime}\mathbf{X}\right) \leq \begin{cases} W(n,p)S(n,p) & \text{if } p=0 \text{ mod } 4 \\ W(n,p)Q(n,p) & \text{if } p+2=0 \text{ mod } 4, \end{cases}
$$

where

$$
(2.29)
$$

\n
$$
W(n,p) = (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^p,
$$

\n
$$
S(n,p) = \left(1 + \frac{p-1}{n-3}\right) \left[\left(1 + \frac{p^3+8}{(n-3)p^2}\right) \left(1 + \frac{p^3+p^2+16}{(n-3)p^2}\right) - 2\left(\frac{p^2+8}{(n-3)p^2}\right)^2 \right],
$$

\n
$$
Q(n,p) = \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right) \left[\left(1 + \frac{p^3+8}{(n-3)p^2}\right) \left(1 + \frac{(p+2)(p^2-3p+8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2 \right].
$$

Corollary 2.3. Let $W(n,p)$, $S(n,p)$, $Q(n,p)$ be of the form (2.29) and $\mathbf{X} \in \mathbf{\Phi}_{n \times p} \{0, 1\}$ by (2.19). Then

$$
\det\left(\mathbf{X}^{\prime}\mathbf{X}\right) = \begin{cases} W(n,p)S(n,p) & \text{if } p = 0 \text{ mod } 4 \\ W(n,p)Q(n,p) & \text{if } p + 2 = 0 \text{ mod } 4 \end{cases}
$$

provided that (2.22) holds and

$$
\begin{cases}\n\mathbf{x}'\mathbf{1}_p = \mathbf{y}'\mathbf{1}_p = \mathbf{z}'\mathbf{1}_p = 0.25(p+2) \\
\text{and} \\
\mathbf{x}'\mathbf{y} = \mathbf{x}'\mathbf{z} = \mathbf{y}'\mathbf{z} = 0.25(p+4) & \text{if } p = 0 \text{ mod } 4 \\
\mathbf{x}'\mathbf{y} = \mathbf{x}'\mathbf{z} = \mathbf{y}'\mathbf{z} = 0.25(p+2) & \text{if } p+2 = 0 \text{ mod } 4.\n\end{cases}
$$

Some construction methods of X_1 satisfying 2.2 are based on the incidence matrix of a balanced incomplete block design, see [1], Theorem 4. Such a matrix X_1 exists only for certain values of p and n. Hence, if X_1 does not exist in $\Phi_{n\times p}\{0,1\}$ but exists among $\Phi_{n-1\times p}\{0,1\}$, $\Phi_{n-2\times p}\{0,1\}$ or $\Phi_{n-3\times p}\{0,1\}$, then we can construct a highly D-efficient spring balance weighing design $X \in$ $\Phi_{n\times p}\{0,1\}$. This construction is based on corollaries 2.2, 2.3 and 2.4.

3. EXAMPLES

surements.

Example 3.1. Consider the problem of weighing $p = 4$ objects in $n = 7$ measurements. Since $\frac{np}{4(p-1)} = \frac{7}{3}$ $rac{7}{3}$ and $rac{n(p-2)}{4(p-1)} = \frac{7}{6}$ $\frac{7}{6}$ are not integers, the matrix $\mathbf{X} \in \mathbf{\Phi}_{7\times 4}\{0,1\}$ for which (2.2) is satisfied does not exist. Now, let \mathbf{X}_1 be a matrix for $p = 4$ objects and $n - 1 = 6$ measurements. Then $\frac{(n-1)p}{4(p-1)} = 2$, $\frac{(n-1)(p-2)}{4(p-1)} = 1$ and for

(3.1)
$$
\mathbf{X}_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}
$$

the condition (2.2) is fulfilled. By Corollary 2.1, the design $\mathbf{X} \in \Phi_{7\times 4}\{0,1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ 1 & 1 & 1 \end{bmatrix}$ is highly D-efficient.

Example 3.2. By Corollary 2.2, $\mathbf{X} \in \Phi_{8\times 4}\{0,1\}$ such that $\mathbf{X} =$ \lceil $\overline{1}$ \mathbf{X}_1 1 1 1 0 1 1 0 1 1 \vert , where X_1 is given in (3.1), is highly D-efficient for weighing 4 objects in 8 mea-

Example 3.3. In order to weigh 4 objects in $n = 9$ measurements, let $\mathbf{X} \in \mathbf{\Phi}_{9\times 4}\{0,1\}$ be of the form $\mathbf{X} =$ $\sqrt{ }$ $\begin{matrix} \end{matrix}$ \mathbf{X}_1 1 1 1 0 1 1 0 1 1 0 1 1 1 \parallel , where X_1 is of the form (3.1) .

Hence X is highly D-efficient.

Example 3.4. Consider the problem of measuring 6 objects in $n = 11$ measurements. Since $\frac{np}{4(p-1)} = \frac{33}{10}$ is not an integer, the matrix $\mathbf{X} \in \Phi_{11 \times 6}\{0, 1\}$ for which (2.2) is satisfied does not exist. Now, let \mathbf{X}_2 be a matrix for $p = 6$ objects and $n-1=10$ measurements. In this case $\frac{(n-1)\overline{p}}{4(p-1)}=3$ and $\frac{(n-1)(p-2)}{4(p-1)}=2$ and for the matrix

(3.2)
$$
\mathbf{X}_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}
$$

the condition (2.2) is fulfilled. By Corollary 2.1, the design $\mathbf{X} \in \Phi_{11 \times 6}\{0,1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_2 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$ is highly D-efficient.

Example 3.5. For weighing $p = 6$ objects using $n = 12$ measurements the design $\mathbf{X} \in \Phi_{12 \times 6}\{0, 1\}$ of the form $\mathbf{X} =$ $\sqrt{ }$ $\overline{1}$ \mathbf{X}_2 1 1 1 1 0 0 1 1 0 0 1 1 1 is highly D-efficient, by Corollary 2.2.

Example 3.6. For weighing $p = 6$ objects in $n = 13$ measurements $X \in$ $\mathbf{\Phi}_{13\times 4}\{0,1\}$ of the form $\mathbf{X} =$ $\sqrt{ }$ \mathbf{X}_2 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 $\overline{}$, where X_1 is given in (3.2) , is highly D-efficient, by Corollary 2.3.

4. DISCUSSION

For each p and n , the resulting D_{eff} based on the provided designs in Theorem 2.2, 2.3 and 2.4 are summarized in Table 1.

$p=4$					
\boldsymbol{n}	6	7	8	9	10
$D_{\rm eff}(\mathbf{X})$	0.9779	0.9641	0.9652	0.9779	1
$p=6$					
\boldsymbol{n}	10	11	12	13	14
$D_{\rm eff}(\mathbf{X})$	0.9927	0.9783	0.9719	0.9723	1
$p=8$					
\boldsymbol{n}	14	15	16	17	18
$\mathrm{D}_{\mathrm{eff}}(\mathbf{X})$	0.9968	0.9849	0.9776	0.9701	1

Table 1: $D_{\text{eff}}(\mathbf{X})$ of the design **X** for each p and n.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to an anonymous Reviewer for many helpful suggestions and comments that improved the readability of the manuscript.

REFERENCES

- [1] Ceranka, B. and Graczyk, M. (2016). Recent developments in D-optimal spring balance weighing designs, Brazilian Journal of Probability and Statistics, to appear.
- [2] Harville, D.A. (1997). Matrix Algebra from Statistician's Perspective, Springer-Verlag, New York, Inc.
- [3] HUDELSON, M.; KLEE, V. and LARMAN, D. (1996). Largest j-simplices in dcubes: Some relatives to the Hadamard determinant problem, Linear Algebra and its Applications, 24, 519–598.
- [4] JACROUX, M. and NOTZ, W. (1983). On the optimality of spring balance weighing designs, The Annals of Statistics, 11, 970–978.
- [5] Neubauer, M.G.; Watkins,W. and Zeitlin, J. (1997). Maximal j-simpplices in the real d-dimensional unit cube, *Journal of Combinatorial Theory, Ser. A*, **80**, 1–12.
- [6] Neubauer, M.G.; Watkins, W. and Zeitlin, J. (1998). Notes on D-optimal designs, Linear Algebra and its Applications, 280, 109–127.