HIGHLY D-EFFICIENT WEIGHING DESIGNS FOR AN EVEN NUMBER OF OBJECTS

Authors: BRONISŁAW CERANKA

- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland bronicer@up.poznan.pl
- Małgorzata Graczyk
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland magra@up.poznan.pl

Received: April 2016	Revised: November 2016	Accepted: November 2016
----------------------	------------------------	-------------------------

Abstract:

• In this paper we formulate how to add a = 1, 2, 3 runs to a near D-optimal weighing design to get a highly D-efficient weighing design when the number of objects p is even.

Key-Words:

• D-optimal design; efficiency; spring balance weighing design.

AMS Subject Classification:

• 62K05, 05B20.

1. INTRODUCTION

We study a weighing experiment where observations follow the linear model $\mathbf{y} = \mathbf{X}\mathbf{w} + \mathbf{e}$, where $\mathbf{y} = (y_1, y_2, ..., y_n)'$ is a $n \times 1$ random vector of observations, \mathbf{X} is the model matrix identified by the weighing design $\mathbf{X} \in \Phi_{n \times p}\{0, 1\}$, where $\Phi_{n \times p}\{0, 1\}$ denotes the set of all $n \times p$ matrices with elements 0 or 1, $rank(\mathbf{X}) = p$, $\mathbf{w} = (w_1, w_2, ..., w_p)'$ is a $p \times 1$ vector of true unknown parameters (weights) and $\mathbf{e} = (e_1, e_2, ..., e_n)'$ is $n \times 1$ random vector of errors. We assume, $\mathbf{E}(\mathbf{e}) = \mathbf{0}_n$ and $Var(\mathbf{e}) = \sigma^2 \mathbf{I}_n$, where $\mathbf{0}_n$ is the $n \times 1$ zero vector and \mathbf{I}_n is the identity matrix of order n. The least squares estimator of \mathbf{w} is of the form $\hat{\mathbf{w}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$ and the variance matrix of $\hat{\mathbf{w}}$ is given by the formula $Var(\hat{\mathbf{w}}) = \sigma^2 (\mathbf{X}'\mathbf{X})^{-1}$ and $\mathbf{X}'\mathbf{X}$ is called the information matrix for the design.

Our goal is to determine an optimal experimental plan \mathbf{X} that minimizes the volume of the confidence region for \mathbf{w} assuming that the errors are normally distributed. This is equivalent to the determining a design \mathbf{X} such that det($\mathbf{X}'\mathbf{X}$) is maximum. Such a design \mathbf{X} is called D-optimal. D-optimality of weighing designs is studied in [3], [4], [6].

2. THE MAIN RESULT

Through the paper we assume that p is even. In [5], for even p it is shown that the maximum det($\mathbf{X}'\mathbf{X}$) is attained if $\mathbf{X}'\mathbf{X} = t(\mathbf{I}_p + \mathbf{J}_p)$ and each row of \mathbf{X} contains k or k + 1 ones, where p = 2k and \mathbf{J} is a matrix of all 1s. For the design \mathbf{X} having k ones in each row and even p, an upper bound for det($\mathbf{X}'\mathbf{X}$) is given in [1]. In [1], the following theorem was also proven.

1

Theorem 2.1. For any $\mathbf{X} \in \mathbf{\Phi}_{n \times p} \{0, 1\}$,

(2.1)
$$\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{np}{4(p-1)}\right)^p$$

if and only if

(2.2)
$$\mathbf{X}'\mathbf{X} = \frac{n}{4(p-1)}\left(p\mathbf{I}_p + (p-2)\mathbf{J}_p\right),$$

where $\frac{np}{4(p-1)}$ and $\frac{n(p-2)}{4(p-1)}$ are integers.

Here, we define $D_{\text{eff}}(\mathbf{X})$ as

(2.3)
$$D_{\text{eff}}(\mathbf{X}) = \left(\frac{\det(\mathbf{X}'\mathbf{X})}{\det(\mathbf{Y}'\mathbf{Y})}\right)^{\frac{1}{p}},$$

where **Y** is a regular D-optimal spring balance weighing design having k or k + 1 ones in each row (p = 2k) and $\mathbf{Y}'\mathbf{Y} = \frac{(p+2)n}{4(p+1)} (\mathbf{I}_p + \mathbf{J}_p)$, see [5].

Definition 2.1. Any nonsingular spring balance weighing design $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ for which p is even is said to be near D-optimal if $\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{np}{4(p-1)}\right)^p$.

In [1], some construction methods for near D-optimal weighing designs for certain values of n and p were provided. However, construction methods are needed for general n and p. Given a near D-optimal design for p objects and n-a measurements we describe how to add a measurements in such way that the resulting design is highly D-efficient.

2.1. Adding a = 1 measurements

Let \mathbf{X}_1 be a near D-optimal design in $\Psi_{(n-1)\times p}\{0,1\}$. In order to locate highly D-efficient design in $\Phi_{n\times p}\{0,1\}$, we add one measurement, i.e. $p \times 1$ vector \mathbf{x} of 0's or 1's having property $\mathbf{x}'\mathbf{1}_p = t$. So, $\mathbf{X} \in \Phi_{n\times p}\{0,1\}$ is given in the following form

(2.4)
$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x}' \end{bmatrix}$$

Thus for $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ in (2.4), $\det(\mathbf{X}'\mathbf{X}) = (1 + \mathbf{x}'(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{x}) \cdot \det(\mathbf{X}_1'\mathbf{X}_1)$, by Theorem 18.1.1 in [2]. Then we have the following theorem.

Theorem 2.2. For any $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ given by (2.4),

(2.5)
$$\det\left(\mathbf{X}'\mathbf{X}\right) \le (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{p^3 + 8}{(n-1)p^2}\right)$$

Proof: By Theorem 2.1

(2.6)
$$\det(\mathbf{X}_{1}'\mathbf{X}_{1}) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^{t}$$

implies

(2.7)
$$\mathbf{X}_{1}'\mathbf{X}_{1} = \frac{n-1}{4(p-1)}\left(p\mathbf{I}_{p} + (p-2)\mathbf{J}_{p}\right),$$

where $\frac{(n-1)p}{4(p-1)}$ and $\frac{(n-1)(p-2)}{4(p-1)}$ are integers. Apply the formula given in (2.6) to compute the determinant of the information matrix. So,

$$\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \mathbf{x}'(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{x}\right).$$

Since $(\mathbf{X}'_1\mathbf{X}_1)^{-1} = \frac{4(p-1)}{(n-1)p} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)} \mathbf{J}_p \right)$, we obtain

(2.8)
$$\det\left(\mathbf{X}'\mathbf{X}\right) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{4(p-1)}{(n-1)p}\left(\mathbf{x}'\mathbf{x} - \frac{p-2}{p(p-1)}\mathbf{x}'\mathbf{J}_p\mathbf{x}\right)\right).$$

To maximise (2.8), we determine the maximum value of the function

(2.9)
$$\eta(\mathbf{x}) = \mathbf{x}'\mathbf{x} - \frac{p-2}{p(p-1)}\mathbf{x}'\mathbf{J}_p\mathbf{x}.$$

Consequently, $\eta(\mathbf{x}) = t - \frac{p-2}{p(p-1)}t^2 \leq \frac{p^3+8}{4p(p-1)}$ and the equality holds if and only if t = 0.5(p+2). From the above and (2.8) we obtain (2.5).

Corollary 2.1. For a spring balance weighing design $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ given by (2.4), det $\left(\mathbf{X}'\mathbf{X}\right) = (p-1)\left(\frac{(n-1)p}{4(p-1)}\right)^p \left(1 + \frac{p^3+8}{(n-1)p^2}\right)$ provided that (2.7) holds and $\mathbf{x}'\mathbf{1}_p = 0.5(p+2)$.

2.2. Adding a = 2 measurements

Let $\mathbf{X}_1 \in \Phi_{(n-2) \times p}\{0,1\}$ be near D-optimal. Let $\mathbf{X} \in \Phi_{n \times p}\{0,1\}$ be in the following form

(2.10)
$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x}' \\ \mathbf{y}' \end{bmatrix},$$

where **x** and **y** are vectors of 0's and 1's and $\mathbf{x}' \mathbf{1}_p = t$, $\mathbf{y}' \mathbf{1}_p = u$, $\mathbf{x}' \mathbf{y} = m$, $0 \le m \le \min(t, u)$.

Theorem 2.3. For any $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ given by (2.10)

$$\det\left(\mathbf{X}'\mathbf{X}\right) \le \begin{cases} Q(n,p)R(n,p) & \text{if } p = 0 \mod 4\\ Q(n,p)L(n,p) & \text{if } p + 2 = 0 \mod 4 \end{cases}$$

where

$$Q(n,p) = (p-1) \left(\frac{(n-2)p}{4(p-1)}\right)^p,$$

$$(2.11) \qquad R(n,p) = \left(1 + \frac{p^3 + p^2 + 16}{(n-2)p^2}\right) \left(1 + \frac{p-1}{n-2}\right),$$

$$L(n,p) = \left(1 + \frac{(p-1)(p+2)}{(n-2)p}\right) \left(1 + \frac{(p+2)(p^2 - 3p + 8)}{(n-2)p^2}\right).$$

Proof: By Theorem 2.1

(2.12)
$$\det\left(\mathbf{X}_{1}'\mathbf{X}_{1}\right) = (p-1)\left(\frac{(n-2)p}{4(p-1)}\right)^{p}$$

implies

(2.13)
$$\mathbf{X}_{1}'\mathbf{X}_{1} = \frac{n-2}{4(p-1)}\left(p\mathbf{I}_{p} + (p-2)\mathbf{J}_{p}\right),$$

where $\frac{(n-2)p}{4(p-1)}$ and $\frac{(n-2)(p-2)}{4(p-1)}$ are integers. By Theorem 18.1.1 in [2]

$$\det(\mathbf{X}'\mathbf{X}) = \det(\mathbf{X}_{1}'\mathbf{X}_{1})\det\left(\mathbf{I}_{2} + \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} \left(\mathbf{X}_{1}'\mathbf{X}_{1}\right)^{-1} \begin{bmatrix} \mathbf{x} & \mathbf{y} \end{bmatrix}\right)$$

and

$$\left(\mathbf{X}_{1}'\mathbf{X}_{1}\right)^{-1} = \frac{4(p-1)}{(n-2)p} \left(\mathbf{I}_{p} - \frac{p-2}{p(p-1)}\mathbf{J}_{p}\right).$$

Next, by the formula given in (2.12) we have

(2.14)
$$\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{(n-2)p}{4(p-1)}\right)^p \cdot \det(\mathbf{\Omega}),$$

where

$$\mathbf{\Omega} = \begin{bmatrix} 1 + \frac{4(p-1)}{(n-2)p} \left(t - \frac{p-2}{p(p-1)} t^2 \right) & \frac{4(p-1)}{(n-2)p} \left(m - \frac{p-2}{p(p-1)} t u \right) \\ \frac{4(p-1)}{(n-2)p} \left(m - \frac{p-2}{p(p-1)} t u \right) & 1 + \frac{4(p-1)}{(n-2)p} \left(u - \frac{p-2}{p(p-1)} u^2 \right) \end{bmatrix}.$$

As we want to maximise (2.14), we determine the maximum values of

(2.15)
$$t - \frac{p-2}{p(p-1)}t^2 \text{ and } u - \frac{p-2}{p(p-1)}u^2$$

and concomitantly the minimum value of

(2.16)
$$\left(m - \frac{p-2}{p(p-1)}tu\right)^2.$$

The maximum values in (2.15) each as a function of p is attained if and only if t = u = 0.5(p+2). If $p = 0 \mod 4$, then the minimum value of (2.16) is equal to $\frac{(p^2+8)^2}{16p^2(p-1)^2}$ when m = 0.25(p+4). Hence $\det(\Omega) \leq \left(1 + \frac{p^3+p^2+16}{(n-2)p^2}\right) \left(1 + \frac{p-1}{n-2}\right)$ and

(2.17)
$$\det(\mathbf{X}'\mathbf{X}) \le (p-1)\left(1 + \frac{p^3 + p^2 + 16}{(n-2)p^2}\right)\left(1 + \frac{p-1}{n-2}\right)\left(\frac{(n-2)p}{4(p-1)}\right)^p.$$

The equality in (2.17) holds if and only if t = u = 0.5(p+2) and m = 0.25(p+4).

If $p+2 = 0 \mod 4$, then the minimum value of (2.16) is equal to $\frac{(p+2)^2(p-4)^2}{16p^2(p-1)^2}$ when m = 0.25(p+2). Therefore, $\det(\mathbf{\Omega}) \le \left(1 + \frac{(p-1)(p+2)}{(n-2)p}\right) \left(1 + \frac{(p+2)(p^2-3p+8)}{(n-2)p^2}\right)$ and

(2.18)
$$\det(\mathbf{X}'\mathbf{X}) \leq (p-1)\left(1 + \frac{(p-1)(p+2)}{(n-2)p}\right) \\ \times \left(1 + \frac{(p+2)(p^2 - 3p + 8)}{(n-2)p^2}\right)\left(\frac{(n-2)p}{4(p-1)}\right)^p$$

The equality in (2.18) holds if and only if t = u = 0.5(p+2) and m = 0.25(p+2).

Corollary 2.2. Let Q(n,p), R(n,p), L(n,p) be of the form (2.11) and p be even. Then for a spring balance weighing design $\mathbf{X} \in \Phi_{n \times p}\{0,1\}$ given by (2.10),

$$\det\left(\mathbf{X}'\mathbf{X}\right) = \begin{cases} Q(n,p)R(n,p) & \text{if } p = 0 \mod 4\\ Q(n,p)L(n,p) & \text{if } p+2 = 0 \mod 4, \end{cases}$$

provided (2.13) holds and

$$\begin{cases} \mathbf{x}' \mathbf{1}_p = \mathbf{y}' \mathbf{1}_p = 0.5(p+2) \\ \text{and} \\ \mathbf{x}' \mathbf{y} = 0.25(p+4) & \text{if } p = 0 \mod 4, \\ \mathbf{x}' \mathbf{y} = 0.25(p+2) & \text{if } p+2 = 0 \mod 4. \end{cases}$$

2.3. Adding a = 3 measurements

Next, we assume that there exists a near D-optimal spring balance weighing design \mathbf{X}_1 for p objects and n-3 measurements in the class $\mathbf{\Phi}_{(n-3)\times p}\{0,1\}$. So, $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0,1\}$ is given in the form

(2.19)
$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix},$$

where \mathbf{x} , \mathbf{y} and \mathbf{z} are vectors of 0's and 1's and

(2.20)
$$\begin{cases} \mathbf{x}' \mathbf{1}_p = t, \ \mathbf{x}' \mathbf{y} = m, \ 0 \le m \le \min(t, u) \\ \mathbf{y}' \mathbf{1}_p = u, \ \mathbf{x}' \mathbf{z} = q, \ 0 \le q \le \min(t, w) \\ \mathbf{z}' \mathbf{1}_p = w, \ \mathbf{y}' \mathbf{z} = h, \ 0 \le h \le \min(u, w). \end{cases}$$

By Theorem 2.1

(2.21)
$$\det(\mathbf{X}_{1}'\mathbf{X}_{1}) = (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^{p},$$

implies

(2.22)
$$\mathbf{X}_{1}'\mathbf{X}_{1} = \frac{n-3}{4(p-1)}\left(p\mathbf{I}_{p} + (p-2)\mathbf{J}_{p}\right),$$

where $\frac{n-3}{4(p-1)}$ and $\frac{(n-3)(p-2)}{4(p-1)}$ are integers. By using the formula given in (2.21) and Theorem 18.1.1 in [2], we obtain

$$\det(\mathbf{X}'\mathbf{X}) = (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^{p} \det\left(\mathbf{I}_{3} + \begin{bmatrix}\mathbf{x}'\\\mathbf{y}'\\\mathbf{z}'\end{bmatrix}\left(\mathbf{X}_{1}'\mathbf{X}_{1}\right)^{-1}\begin{bmatrix}\mathbf{x} \ \mathbf{y} \ \mathbf{z}\end{bmatrix}\right).$$

$$\left(\mathbf{Y}'\mathbf{X}_{1}\right)^{-1} = \frac{4(p-1)}{2}\left(\mathbf{I}_{1} - \frac{p-2}{2}\mathbf{I}_{2}\right) = 1$$

Because $\left(\mathbf{X}_{1}'\mathbf{X}_{1}\right)^{-1} = \frac{4(p-1)}{(n-3)p} \left(\mathbf{I}_{p} - \frac{p-2}{p(p-1)}\mathbf{J}_{p}\right)$, we have (2.23) $\det(\mathbf{X}'\mathbf{X}) = (p-1) \left(\frac{(n-3)p}{4(p-1)}\right)^{p} \det(\mathbf{T}),$

where
$$\mathbf{T} = \mathbf{I}_3 + \frac{4(p-1)}{(n-3)p} \begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \end{bmatrix} \left(\mathbf{I}_p - \frac{p-2}{p(p-1)} \mathbf{J}_p \right) \begin{bmatrix} \mathbf{x} \ \mathbf{y} \ \mathbf{z} \end{bmatrix}$$
. By (2.20),

$$\begin{aligned} \det(\mathbf{T}) &= \left(1 + \frac{4(p-1)}{(n-3)p} \left(t - \frac{p-2}{p(p-1)}t^2\right)\right) \left(1 + \frac{4(p-1)}{(n-3)p} \left(u - \frac{p-2}{p(p-1)}u^2\right)\right) \\ &\quad \cdot \left(1 + \frac{4(p-1)}{(n-3)p} \left(w - \frac{p-2}{p(p-1)}w^2\right)\right) \\ &\quad + 2\left(\frac{4(p-1)}{(n-3)p}\right)^3 \left(m - \frac{p-2}{p(p-1)}tu\right) \left(q - \frac{p-2}{p(p-1)}tw\right) \left(h - \frac{p-2}{p(p-1)}uw\right) \\ &\quad - \left(1 + \frac{4(p-1)}{(n-3)p} \left(t - \frac{p-2}{p(p-1)}t^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(h - \frac{p-2}{p(p-1)}uw\right)^2 \\ &\quad - \left(1 + \frac{4(p-1)}{(n-3)p} \left(u - \frac{p-2}{p(p-1)}u^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(q - \frac{p-2}{p(p-1)}tw\right)^2 \\ &\quad - \left(1 + \frac{4(p-1)}{(n-3)p} \left(w - \frac{p-2}{p(p-1)}w^2\right)\right) \left(\frac{4(p-1)}{(n-3)p}\right)^2 \left(m - \frac{p-2}{p(p-1)}tu\right)^2 \end{aligned}$$

As we want to maximise (2.23), we simultaneously determine the maximum values of

(2.24)
$$t - \frac{p-2}{p(p-1)}t^2, \ u - \frac{p-2}{p(p-1)}u^2 \text{ and } w - \frac{p-2}{p(p-1)}w^2$$

and the minimum values of

(2.25)
$$\left(h - \frac{p-2}{p(p-1)}uw\right)^2$$
, $\left(q - \frac{p-2}{p(p-1)}tw\right)^2$ and $\left(m - \frac{p-2}{p(p-1)}tu\right)^2$.

The maximum values in (2.24) are all attained if and only if t = u = w = 0.5(p+2). If $p = 0 \mod 4$, then the minimum values in (2.25) are equal to $\frac{(p^2+8)^2}{16p^2(p-1)^2}$ when m = q = h = 0.25(p+4). Then

$$\det(\mathbf{T}) \leq \left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)^3 + 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^3 - 3\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2 \\ = \left(1 - \frac{p-1}{n-3}\right)\left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(1 + \frac{p^3 + p^2 + 16}{(n-3)p^2}\right) - 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2\right)$$

and

$$\det(\mathbf{X}'\mathbf{X}) \leq (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^p \left(1 + \frac{p-1}{n-3}\right)$$
(2.26)

$$\cdot \left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right) \left(1 + \frac{p^3 + p^2 + 16}{(n-3)p^2}\right) - 2\left(\frac{p^2 + 8}{(n-3)p^2}\right)^2\right)$$

The equality in (2.26) holds if and only if t = u = w = 0.5(p+2) and m = q = h = 0.25(p+4).

If $p+2=0 \mod 4$, then the minimum values in (2.25) are all equal to $\frac{(p+2)^2(p-4)^2}{16p^2(p-1)^2}$ when m=q=h=0.25(p+2). An easy computation shows that

$$\det(\mathbf{T}) \leq \left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)^3 - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^3 - 3\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2 \\ = \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right)\left(\left(1 + \frac{p^3 + 8}{(n-3)p^2}\right)\left(1 + \frac{(p+2)(p^2 - 3p + 8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2\right)$$

and consequently

(2.27)
$$\det(\mathbf{X}'\mathbf{X}) \leq (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^p \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right) \\ \cdot \left(\left(1 + \frac{p^3+8}{(n-3)p^2}\right)\left(1 + \frac{(p+2)(p^2-3p+8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2\right).$$

The equality in (2.27) holds if and only if t = u = w = 0.5(p+2) and m = q = h = 0.25(p+2). So, the following theorem is obtained.

Theorem 2.4. For any $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0, 1\}$ given by (2.19)

(2.28)
$$\det\left(\mathbf{X}'\mathbf{X}\right) \leq \begin{cases} W(n,p)S(n,p) & \text{if } p = 0 \mod 4\\ W(n,p)Q(n,p) & \text{if } p+2 = 0 \mod 4, \end{cases}$$

where

$$\begin{aligned} &(2.29)\\ &W(n,p) = (p-1)\left(\frac{(n-3)p}{4(p-1)}\right)^p,\\ &S(n,p) = \left(1 + \frac{p-1}{n-3}\right)\left[\left(1 + \frac{p^3+8}{(n-3)p^2}\right)\left(1 + \frac{p^3+p^2+16}{(n-3)p^2}\right) - 2\left(\frac{p^2+8}{(n-3)p^2}\right)^2\right],\\ &Q(n,p) = \left(1 + \frac{(p-1)(p+2)}{(n-3)p}\right)\left[\left(1 + \frac{p^3+8}{(n-3)p^2}\right)\left(1 + \frac{(p+2)(p^2-3p+8)}{(n-3)p^2}\right) - 2\left(\frac{(p+2)(p-4)}{(n-3)p^2}\right)^2\right]\end{aligned}$$

Corollary 2.3. Let W(n,p), S(n,p), Q(n,p) be of the form (2.29) and $\mathbf{X} \in \mathbf{\Phi}_{n \times p}\{0,1\}$ by (2.19). Then

$$\det\left(\mathbf{X}'\mathbf{X}\right) = \begin{cases} W(n,p)S(n,p) & \text{if } p = 0 \mod 4\\ W(n,p)Q(n,p) & \text{if } p+2 = 0 \mod 4 \end{cases}$$

provided that (2.22) holds and

$$\begin{cases} \mathbf{x}' \mathbf{1}_p = \mathbf{y}' \mathbf{1}_p = \mathbf{z}' \mathbf{1}_p = 0.25(p+2) \\ \text{and} \\ \mathbf{x}' \mathbf{y} = \mathbf{x}' \mathbf{z} = \mathbf{y}' \mathbf{z} = 0.25(p+4) & \text{if } p = 0 \mod 4 \\ \mathbf{x}' \mathbf{y} = \mathbf{x}' \mathbf{z} = \mathbf{y}' \mathbf{z} = 0.25(p+2) & \text{if } p+2 = 0 \mod 4. \end{cases}$$

Some construction methods of \mathbf{X}_1 satisfying 2.2 are based on the incidence matrix of a balanced incomplete block design, see [1], Theorem 4. Such a matrix \mathbf{X}_1 exists only for certain values of p and n. Hence, if \mathbf{X}_1 does not exist in $\mathbf{\Phi}_{n \times p} \{0, 1\}$ but exists among $\mathbf{\Phi}_{n-1 \times p} \{0, 1\}$, $\mathbf{\Phi}_{n-2 \times p} \{0, 1\}$ or $\mathbf{\Phi}_{n-3 \times p} \{0, 1\}$, then we can construct a highly D-efficient spring balance weighing design $\mathbf{X} \in$ $\mathbf{\Phi}_{n \times p} \{0, 1\}$. This construction is based on corollaries 2.2, 2.3 and 2.4.

3. EXAMPLES

Example 3.1. Consider the problem of weighing p = 4 objects in n = 7 measurements. Since $\frac{np}{4(p-1)} = \frac{7}{3}$ and $\frac{n(p-2)}{4(p-1)} = \frac{7}{6}$ are not integers, the matrix $\mathbf{X} \in \mathbf{\Phi}_{7\times4}\{0,1\}$ for which (2.2) is satisfied does not exist. Now, let \mathbf{X}_1 be a matrix for p = 4 objects and n - 1 = 6 measurements. Then $\frac{(n-1)p}{4(p-1)} = 2$, $\frac{(n-1)(p-2)}{4(p-1)} = 1$ and for

(3.1)
$$\mathbf{X}_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

the condition (2.2) is fulfilled. By Corollary 2.1, the design $\mathbf{X} \in \mathbf{\Phi}_{7 \times 4}\{0, 1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ 1 \ 1 \ 1 \ 0 \end{bmatrix}$ is highly D-efficient.

Example 3.2. By Corollary 2.2, $\mathbf{X} \in \Phi_{8\times 4}\{0,1\}$ such that $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$, where \mathbf{X}_1 is given in (3.1), is highly D-efficient for weighing 4 objects in 8 mea-

where \mathbf{X}_1 is given in (3.1), is highly D-efficient for weighing 4 objects in 8 measurements.

Example 3.3. In order to weigh 4 objects in n = 9 measurements, let $\mathbf{X} \in \mathbf{\Phi}_{9 \times 4}\{0,1\}$ be of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$, where \mathbf{X}_1 is of the form (3.1).

Hence ${\bf X}$ is highly D-efficient.

Example 3.4. Consider the problem of measuring 6 objects in n = 11 measurements. Since $\frac{np}{4(p-1)} = \frac{33}{10}$ is not an integer, the matrix $\mathbf{X} \in \Phi_{11\times 6}\{0,1\}$ for which (2.2) is satisfied does not exist. Now, let \mathbf{X}_2 be a matrix for p = 6 objects and n-1 = 10 measurements. In this case $\frac{(n-1)p}{4(p-1)} = 3$ and $\frac{(n-1)(p-2)}{4(p-1)} = 2$ and for the matrix

$$(3.2) \mathbf{X}_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

the condition (2.2) is fulfilled. By Corollary 2.1, the design $\mathbf{X} \in \mathbf{\Phi}_{11 \times 6}\{0, 1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_2 \\ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \end{bmatrix}$ is highly D-efficient.

Example 3.5. For weighing p = 6 objects using n = 12 measurements the design $\mathbf{X} \in \Phi_{12 \times 6}\{0, 1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_2 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$ is highly D-efficient, by Corollary 2.2.

Example 3.6. For weighing p = 6 objects in n = 13 measurements $\mathbf{X} \in \mathbf{X}_2$ $\Phi_{13\times4}\{0,1\}$ of the form $\mathbf{X} = \begin{bmatrix} \mathbf{X}_2 \\ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \end{bmatrix}$, where \mathbf{X}_1 is given in (3.2), is highly D-efficient, by Corollary 2.3.

4. DISCUSSION

For each p and n, the resulting D_{eff} based on the provided designs in Theorem 2.2, 2.3 and 2.4 are summarized in Table 1.

p = 4						
n	6	7	8	9	10	
$\mathrm{D}_{\mathrm{eff}}(\mathbf{X})$	0.9779	0.9641	0.9652	0.9779	1	
0						
p = 0						
n	10	11	12	13	14	
$\mathrm{D}_{\mathrm{eff}}(\mathbf{X})$	0.9927	0.9783	0.9719	0.9723	1	
p = 8						
n	14	15	16	17	18	
$\mathrm{D}_{\mathrm{eff}}(\mathbf{X})$	0.9968	0.9849	0.9776	0.9701	1	

Table 1: $D_{\text{eff}}(\mathbf{X})$ of the design \mathbf{X} for each p and n.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to an anonymous Reviewer for many helpful suggestions and comments that improved the readability of the manuscript.

REFERENCES

- [1] CERANKA, B. and GRACZYK, M. (2016). Recent developments in D-optimal spring balance weighing designs, *Brazilian Journal of Probability and Statistics*, to appear.
- [2] HARVILLE, D.A. (1997). Matrix Algebra from Statistician's Perspective, Springer-Verlag, New York, Inc.
- [3] HUDELSON, M.; KLEE, V. and LARMAN, D. (1996). Largest j-simplices in dcubes: Some relatives to the Hadamard determinant problem, *Linear Algebra and its Applications*, 24, 519–598.
- [4] JACROUX, M. and NOTZ, W. (1983). On the optimality of spring balance weighing designs, *The Annals of Statistics*, **11**, 970–978.
- [5] NEUBAUER, M.G.; WATKINS, W. and ZEITLIN, J. (1997). Maximal j-simplices in the real d-dimensional unit cube, *Journal of Combinatorial Theory, Ser. A*, **80**, 1–12.
- [6] NEUBAUER, M.G.; WATKINS, W. and ZEITLIN, J. (1998). Notes on D-optimal designs, *Linear Algebra and its Applications*, 280, 109–127.