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1. INTRODUCTION

The probability density function (pdf) of the log-logistic distribution with

unit scale parameter is given by

(1.1) f(x) =
α xα−1

(1 + xα)2
, x ≥ 0,

where α is a positive real number. A random variable X that follows the density

function in (1.1) is denoted as X ∼ log-logistic(α). The cumulative distribution

(cdf) and quantile functions of the log-logistic distribution, respectively, are

(1.2) F (x) =
xα

1 + xα
, x ≥ 0.

and

(1.3) F−1(x) =

(
x

1 − x

)1/α

, 0 < x < 1.

The k-th moments of the log-logistic distribution in (1.1) can be easily computed

as

(1.4) µ′

k = B

(

1 −
k

α
, 1 +

k

α

)

,

where B(., .) is the beta function.

Note that the k-th moment exists iff α > k. A more compact form of (1.4) can be

derived using the fact that Γ(z) Γ(1 − z) = π csc (π z) (Abramowitz and Stegun,

1964) as follows

(1.5) µ′

k = Γ(1 − k/α) Γ(1 + k/α) =
kπ

α
csc

kπ

α
, α > k.

Therefore,

E(X) = (π/α) csc (π/α) and V ar(X) = (π/α){2 csc (2π/α)− (π/α) csc2 (π/α)}.

The log-logistic distribution is a well-known distribution and it is used in

different fields of study such as survival analysis, hydrology and economy. For

some applications of the log-logistic distribution we refer the reader to Shoukri

et al. [23], Bennett [10], Collett [11] and Ashkar and Mahdi [7]. It is also known

that the log-logistic distribution provides good approximation to the normal and

the log-normal distributions. The log-logistic distribution has been studied by

many researchers such as Shah and Dave [22], Tadikamalla and Johnson [24],

Ragab and Green [21], Voorn [25] and Ali and Khan [4]. Ragab and Green [21]

studied some properties of the order statistics from the log-logistic distribution.

Ali and Khan [4] obtained several recurrence relations for the moments of order
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statistics. Voorn [25] characterized the log-logistic distribution based on extreme

related stability with random sample size. In this paper, we discuss the moments

of order statistics for the log-logistic distribution. We review some known results

and provide a more compact expression for calculating the covariance between

two order statistics. Also, we discuss the parameter estimation of the log-logistic

distribution based on order statistics.

2. SOME RESULTS FOR THE MOMENTS OF

ORDER STATISTICS

Let X1, X2, ..., Xn be n independent copies of a random variable X that

follows log-logistic(α). Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order

statistics. Then from (1.1) and (1.2), the pdf of the rth order statistics is given

by

(2.1) fr:n(x) = Cr:n
α xαr−1

(1 + xα)n+1
, x ≥ 0,

where Cr:n = n!
(r−1)!(n−r)! .

The kth moments of Xr:n can be easily derived from (2.1) as

(2.2) α(k)
r:n = Cr:n B

(

n − r + 1 −
k

α
, r +

k

α

)

, α > k,

Similarly as in (1.5), one can show that

(2.3) α(k)
r:n =

(−1)rπ csc kπ
α

(r − 1)!(n − r)!

n∏

i=1

(

i − r −
k

α

)

, α > k.

Note that when r = n = 1, α
(k)
1:1 = B

(
1 − k

α , 1 + k
α

)
which agrees with (1.4). From

(2.2), the first and second moments of Xr:n are, respectively, given by

(2.4) α(1)
r:n =

(−1)rπ csc π
α

(r − 1)!(n − r)!

n∏

i=1

(

i − r −
1

α

)

, α > 1,

and

(2.5) α(2)
r:n =

(−1)rπ csc 2π
α

(r − 1)!(n − r)!

n∏

i=1

(

i − r −
2

α

)

, α > 2.

It is interesting to note that (2.3) can be used easily to derive several re-

currence relations for the moments of order statistics. Some of these recurrence

relations already exist in the literature. Below, we provide some of these recur-

rence relations.
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I. From (2.3), we can write

α(k)
r:n =

−1

r − 1

(−1)r−1π csc kπ
α

(r − 2)!(n − r)!

n−1∏

i=0

(

i − (r − 1) −
k

α

)

=
r − 1 + k/α

r − 1

(−1)r−1π csc kπ
α

(r − 2)!(n − r)!

n−1∏

i=1

(

i − (r − 1) −
k

α

)

(2.6)

=

[

1 +
k

α(r − 1)

]

α
(k)
r−1:n−1, 2 ≤ r ≤ n.

Note that the recurrence relation in (2.6) was first appeared in Ragab

and Green (1984).

II. If r = 1 in (2.3), then

α
(k)
1:n =

−π csc kπ
α

(n − 1)(n − 2)!

(

n − 1 −
k

α

) n−1∏

i=1

(

i − 1 −
k

α

)

(2.7)

=

[

1 −
k

α(n − 1)

]

α
(k)
1:n−1, n ≥ 2.

The recurrence relation in (2.7) first appeared in Ali and Khan (1987).

III. For m ∈ N, (2.3) implies

α(k−mα)
r:n =

(−1)rπ csc
(

k
α − m

)
π

(r − 1)!(n − r)!

n∏

i=1

(

i − r −
k

α
+ m

)

=
(r − m − 1)!(n − r + m)!

(r − 1)!(n − r)!

(−1)r−mπ csc kπ
α

(r − m − 1)!(n − r + m)!
(2.8)

×
n∏

i=1

(

i − (r − m) −
k

α

)

=
(r − m − 1)!(n − r + m)!

(r − 1)!(n − r)!
α

(k)
r−m:n, m + 1 ≤ r ≤ n.

When m = 1, (2.8) reduces to the recurrence relation given by Ali

and Khan (1987) as α
(k−α)
r:n = n−r+1

r−1 α
(k)
r−1:n, 2 ≤ r ≤ n.

IV. Another form of (2.8) can be derived as follows

α(k−mα)
r:n =

(−1)r+mπ csc kπ
α

(r − 1)!(n − r)!

n∏

i=1

(

i + m − r −
k

α

)

=
(−1)r+mπ csc kπ

α

(r − 1)!(n − r)!

n+m∏

i=m+1

(

i − r −
k

α

)

(2.9)

=
(−1)m

∏n+m
i=n+1

(
i − r − k

α

)

∏m
i=1

(
i − r − k

α

) α(k)
r:n, m + 1 ≤ r ≤ n.
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V. From (2.8) and (2.9), we get

α(k)
r:n =

(−1)m (r − m − 1)!(n − r + m)!
∏m

i=1

(
i − r − k

α

)

(r − 1)!(n − r)!
∏n+m

i=n+1

(
i − r − k

α

) α
(k)
r−m:n,(2.10)

+1 ≤ r ≤ n.

3. COVARIANCE BETWEEN ORDER STATISTICS

To calculate the covariance between Xr:n and Xs:n, consider the joint pdf

of Xr:n and Xs:n, 1 ≤ r < s ≤ n as follows

(3.1) fr,s:n(x, y) = α2 Cr,s:n
xαr−1yα−1(yα − xα)s−r−1

(1 + xα)s(1 + yα)n−r+1
, 0 ≤ x ≤ y < ∞,

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)! .

Therefore the product moments, αr,s:n = E(Xr:nYs:n), can be written as

(3.2) αr,s:n = α2 Cr,s:n

∫
∞

0

∫ y

0

xαryα(yα − xα)s−r−1

(1 + xα)s(1 + yα)n−r+1
dxdy.

On using the substitution u = xα and v = yα, (3.2) reduces to

(3.3) αr,s:n = Cr,s:n

∫
∞

0

v
1

α

(1 + v)n−r+1

(
∫ v

0

ur+ 1

α
−1(v − u)s−r−1

(1 + u)s
du

)

︸ ︷︷ ︸

I

dv.

By using the substitution t = u
v , it is not difficult to show that I can be simplified

to

(3.4) I = vs+ 1

α
−1B

(

r +
1

α
, s − r

)

2F1

(

s, r +
1

α
, s +

1

α
;−v

)

,

where pFq is the generalized hypergeometric function defined as

pFq(a1, ..., ap; b1, ..., bq; x) =
∞∑

k=0

(a1)k···(ap)k

(b1)k···(bq)k

xk

n!
.

Using the Pfaff transformation, 2F1(a, b; c; x) = (1− x)−a
2F1(a, c− b; c; x

x−1), we

have

(3.5) 2F1

(

s, r +
1

α
, s +

1

α
;−v

)

= (1 + v)−r− 1

α 2F1

(
1

α
, r +

1

α
, s +

1

α
;

v

1 + v

)

.

Now, using (3.4), (3.5) and the substitution w = v
1+v , (3.3) reduces to

(3.6)

αr,s:n = Cr,s:n B

(

r+
1

α
, s−r

)∫ 1

0
ws+ 2

α
−1(1 − w)n−s− 1

α 2F1

(
1

α
, r+

1

α
, s+

1

α
; w

)

.
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On using the identity [Gradshteyn and Ryzhik, [14], p. 813]

∫ 1

0
xρ−1(1 − x)σ−1

2F1(α, β, γ; x)dx = B(ρ, σ)3F2(α, β, ρ; γ, ρ + σ; 1),

the product moments of the log-logistic distribution can be written as

αr,s:n = Cr,s:n B

(

r +
1

α
, s − r

)

B

(

s +
2

α
, n − s −

1

α
+ 1

)

(3.7)

× 3F2

(
1

α
, r +

1

α
, s +

2

α
; s +

1

α
, n +

1

α
+ 1; 1

)

.

It is clear from (3.7) that αr,s:n exists for all α > 1.

It is noteworthy to mention that one can use some existing recurrence

relations in the literature to compute αr,s:n in a more efficient way. For example,

Joshi and Balakrishnan (1982) show that for any continuous distribution, the

following recurrence relation holds

αr,n:n =
n−r∑

i=1

(−1)n−r−i

(
n

n − i

)(
n − i − 1

r − 1

)

αn−i:n−iαi:i

(3.8)

−
r−1∑

ℓ=0

(−1)n−ℓ

(
n

ℓ

)

α1,n−r+1:n−ℓ, 1 ≤ r ≤ n − 1.

Also, Ali and Khan (1987) show the following recurrence relation for the log-

logistic distribution,

αr,s:n = αr,s−1:n +

(
n

n − s + 1

)(

1 −
1

α(n − s)

)

αr,s:n−1

(3.9)
−

n

n − s + 1
αr,s−1:n−1, 1 ≤ r < s ≤ n − 1.

The covariance βr,s:n = αr,s:n − αr:n αs:n, can be obtained from equations (2.4),

(2.5) and (3.7). Note that when r = s, the variances βr,r:n = α2
r:n − (αr:n)2. The

recurrence relations in (23) and (24) can be also used in these calculations.

4. PARAMETER ESTIMATION FOR THE

LOG-LOGISTIC DISTRIBUTION

In this section, we discuss the parameter estimation for the log-logistic

distribution based on order statistics.
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4.1. Estimation of location and scale parameters

Let Y1, Y2, ..., Yn be a random sample of size n from the log-logistic(α, θ1, θ2),

where θ1 is the location parameter and θ2 > 0 is the scale parameter. I.e. f(y) =

α θ−1
2

(
y−θ1

θ2

)α−1 (

1 +
(

y−θ1

θ2

)α)−2
, y ≥ θ1. In this section, we compute the best

linear unbiased estimators (BLUEs) for θ1 and θ2 when the shape parameter α

is known. Let X = (Y − θ1)/θ2. When α is known, the mean, αr:n, and the

covariance, βr,s:n, of order statistics are completely known and free of parame-

ters. The estimators for θ1 and θ2 are derived based on weighted regression on

the quantile-quantile plot of order statistics against their expected value. The

weights depend on the covariance matrix of the order statistics. The estima-

tions of location and scale parameters based on order statistics were originally

introduced by Lloyd [20]. Several authors including Arnold et al. ([6], p. 17) and

Ahsanullah et al. ([3], p. 154) used Lloyd’s method to obtain best linear unbiased

estimator (BLUE) of the location and scale parameters for probability distribu-

tions. The BLUEs of θ1 and θ2 can be computed as follows [see Arnold et al. ([6],

pp. 171–173) and Ahsanullah et al. ([3], p. 154)]

θ̂ = (A′ Σ−1 A)−1 A′ Σ−1 Y ,

where A′ denotes to the transpose of A, A = (1, µ), 1 = (1, 1, ..., 1)′1×n, µ =

(α1:n, α2:n, ..., αn:n)′, θ̂ = (θ̂1, θ̂2)
′, Σ = ((βr,s:n))n×n and Y = (Y1:n, Y2:n, ..., Yn:n)′.

Alternatively,

θ̂1 = −µ′ ΓY and θ̂2 = 1′ ΓY ,

where Γ = Σ−1(1µ′
−µ1′)Σ−1/∆ and ∆ = (1′Σ−11)(µ′Σ−1µ)−(1′Σ−1µ)2.

The coefficient matrix C = (A′ Σ−1 A)−1 A′ Σ−1 can be obtained using αr:n,

α
(2)
r:n, αr,s:n and βr,s:n from previous section. The covariance matrix of the esti-

mators can be computed in terms of θ2 as follows

(4.1) Cov(θ̂) = (A′ Σ−1 A)−1θ2
2.

In particular,

var(θ̂1) = θ2
2µ

′Σ−1 µ/∆,

var(θ̂2) = θ2
21

′Σ−1 1/∆,

Cov(θ̂1, θ̂2) = −θ2
2µ

′Σ−11/∆.

Equation (4.1) is used to compute the variance and covariance of θ̂1 and θ̂2 in

terms of θ2. The coefficients and covariances for computing the BLUE of θ̂ for

various values of the shape parameter α and sample sizes up to 10 are available on

https://sites.google.com/site/statisticsmanagementservices/.
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4.2. Estimation of the shape parameter

In real life situations, we encounter unknown value for the shape parameter

α. In order to use the The BLUEs for θ1 and θ2, we first estimate the shape

parameter α.

Lemma 4.1. The log-logistic distribution is a member of the Pareto-type

distributions with tail index α.

Proof: Note that 1 − F (x) = 1
1+xα

= x−αℓ(x), where ℓ(x) = 1 − x−α +

x−2α + ··· is slowly varying function at infinity. To see this, for any λ > 0,
ℓ(λ x)
ℓ(x) −→ 1 as x −→ ∞. Hence F (x) constitutes a Pareto-type distribution with

tail index α.

Several estimators for the heavy tail index α exist in the literature. For

example, a family of kernel estimators for α was proposed by Csorgo, Deheuvels

and Mason [12]. Bacro and Brito [8] and De Hann [13] proposed estimators for

α which are members of the family of kernel estimators. For more information,

we refer the reader to the paper by Beirlant et al. [9] and Gomes and Henriques-

Rodrigues [17]. The most popular estimator for α is the Hill estimator proposed

by Hill [18] as follows:

Let X1, X2, ..., Xn be n independent random sample from log-logistic(α, θ1, θ2).

Let X1,n ≤ X2,n ≤ ... ≤ Xn,n be the corresponding order statistics. The Hill esti-

mator for α based on upper k order statistics is given by

(4.2) α̂ =
1

Hk,n
, Hk,n =

1

k

k∑

j=1

log
Xn−j+1,n

Xn−k,n
.

Although the Hill estimator is scale invariant, it is not shift invariant. Aban and

Meerschaert [1] proposed a modification of Hill estimator in order to make it both

shift and scale invariant as follows:

α̂−1 =
1

k

k∑

j=1

log
Xn−j+1,n − ŝ

Xn−k,n − ŝ
,

where the sift ŝ satisfies the equation

α̂(Xn−k,n − ŝ)−1 =
α̂ + 1

k

k∑

j=1

(Xn−j+1,n − ŝ)−1, ŝ < Xn−k,n.

In general, the modified Hill estimator results in large variation of the

sampling distribution in compared with the Hill estimator. In our case, based



438 Mohammad Ahsanullah and Ayman Alzaatreh

on various simulated random samples with different sample sizes from X ∼ log-

logistic(α, θ1, θ2), the modified Hill estimator produces poor estimate for the pa-

rameter α. Therefore, we decided to shift the random sample by the sample

minimum, X1,n, and then use the Hill estimator to estimate α. This is justified

since the lower end of the distribution is finite. For an interesting discussion of

this topic see Araújo-Santos et al. [5] and Gomes et al. [15]. The results showed

good estimate to the shape parameter α (see Table 1).

4.3. Monte Carlo simulation study

In this subsection, we generate different random samples with various sizes,

n = 100, 500, 1, 000 and 10, 000. The simulation study is repeated 1,000 times

for four groups of parameters:

I : α = 0.5, θ1 = 1, θ2 = 1,

II : α = 1.5, θ1 = 0, θ2 = 1,

III : α = 2.5, θ1 = 2, θ2 = 3,

IV : α = 4, θ1 = 2, θ2 = 0.5.

For each parameter combination, we generate random samples, Yi, i = 1, ..., n

from log-logistic(α, θ1, θ2). We assume the random sample Xi = Yi − Y1,n follows

log-logistic(α, 0, θ2). Then we estimate α using the Hill estimator in equation

(4.2). Gomes and Guillou [16] have given an interesting discussion about the

choice of k. It is known that the bias of the estimator of the index parameter

increases as k increases and the variance of the index estimator increases if k

is small. The choice of k is a question between the choice of bias and variance.

Table 1: Mean, median and standard deviation for α̂ using the Hill estimate.

Group I Group II Group III Group IV
Sample Size Summary Statistics

α̂ α̂ α̂ α̂

Median 0.4881 1.4539 2.3275 3.3510
100 Mean 0.5158 1.5371 2.4615 3.5460

Standard Deviation 0.1716 0.5094 0.8067 1.1494

Median 0.4771 1.4287 2.3320 3.4810
500 Mean 0.4827 1.4450 2.3600 3.5150

Standard Deviation 0.0690 0.2063 0.3350 0.4995

Median 0.4758 1.4256 2.3390 3.5260
1000 Mean 0.4786 1.4342 2.3540 3.5460

Standard Deviation 0.0473 0.1418 0.2330 0.3584

Median 0.4750 1.4246 2.3580 3.6438
10000 Mean 0.4754 1.4258 2.3616 3.6460

Standard Deviation 0.0147 0.0441 0.0733 0.1211
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We have taken k = 10% of the sample size with n > 100. The simulation results in

Table 1 show that as the parameter α increases, the absolute bias and standard

deviation increase. Overall, the Hill estimator performs well in estimating the

shape parameter α. Figures 1–4 represent the Boxplots for the observed sampling

distributions of the Hill estimate for different sample sizes. These Figures indicate

that the observed distributions are approximately normal and centered roughly

at α−1.
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Figure 1: Boxplots for the observed sampling distributions of α̂−1.
Dashed line represents the true parameter α−1.

4.4. Numerical Example

In this subsection, we illustrate the use of Hill estimator and the BLUE’s for

estimating the three-parameter log-logistic distribution. We simulate a random

sample with n = 30 observations from log-logistic distribution with parameters

α = 4, θ1 = 2 and θ2 = 3. The simulated data is given below:
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5.80310, 6.88820, 6.00730, 7.01140, 4.87250, 4.00560, 4.49970, 5.02880, 5.83690,

11.40110, 3.30511, 3.95312, 5.87513, 2.55114, 4.68615, 4.88916, 4.67717, 4.71818,

4.05190, 8.31920, 4.86421, 4.50422, 8.89623, 5.74124, 5.48125, 4.68226, 5.70127,

5.13528, 4.20729, 4.95430.

Using similar approach as in subsection 4.3, the estimated value of α based on

the Hill estimator is α̂ = 3.350. Based on this value and the sample size of

n = 30, the coefficient matrix, C = (A′ Σ−1 A)−1 A′ Σ−1, and the covariance,

Cov(θ̂) = (A′ Σ−1 A)−1θ2
2, can be calculated using αr:n, α

(2)
r:n, αr,s:n in equations

(9), (10) and (22) respectively. These coefficients for computing the BLUE’s for

θ1 and θ2 and the covariance matrix are provided below:

Cθ1
=
































































0.6077

0.25102

−0.08301

0.66281

−0.17817

−0.09813

0.27104

−0.02089

0.0082

0.07347

−0.18869

0.48597

−0.09435

−0.48662

−0.0126

0.51641

−0.302

0.43571

−0.66808

0.0207

0.11805

−0.16527

0.00062

−0.01915

−0.07406

0.00442

−0.00919

−0.04542

−0.00744

−0.00303
































































, Cθ2
=
































































−0.63961

−0.23399

0.09682

−0.64294

0.15847

−0.01285

0.12400

0.00067

−0.00583

−0.01679

0.15861

−0.09637

0.00875

0.44036

0.02531

−0.46079

0.23208

−0.21193

0.70721

−0.02347

−0.04269

0.18111

−0.01123

0.07461

0.08937

−0.00810

0.05792

0.03363

0.01434

0.00333
































































,

Cov(θ̂) =

(
0.01636 −0.01755

−0.01755 0.02777

)

.
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Therefore, the BLUE’s for θ1 and θ2 and the estimated covariances are evaluated

to be

θ̂1 = 1.98287, θ̂2 = 3.09528,

V ar(θ̂1) = 0.15676, V ar(θ̂2) = 0.26606

and

Cov(θ̂1, θ̂2) = −0.16812.

5. CONCLUDING REMARKS

In this paper, the moments and product moments of the order statistics in

a sample of size n drawn from the log-logistic distribution are discussed. We also

provided in the same section more compact formulas for the means, variances and

covariances of order statistics. Best linear unbiased estimators (BLUEs) for the

location and scale parameters for the log-logistic distribution with known shape

parameter based on order statistics are studied. The Hill estimator is proposed

for estimating the shape parameter.
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