
REVSTAT – Statistical Journal

Volume 16, Number 4, October 2018, 405–428

COMPARISON OF THE AVERAGE KAPPA

COEFFICIENTS OF BINARY DIAGNOSTIC TESTS

DONE ON THE SAME SUBJECTS
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Abstract:

• The average kappa coefficient of a binary diagnostic test is a chance corrected index
between the binary diagnostic test and the gold standard, and it depends on the sen-
sitivity and the specificity of the diagnostic test and on the disease prevalence. In this
article, several hypothesis tests are studied to compare the average kappa coefficients
of two (o more) binary diagnostic tests done on the same subjects. Simulation exper-
iments were carried out to study the type I errors and the powers of the hypothesis
tests studied. A program in R was written to solve the problem studied and it can be
freely downloaded from the Internet. The results were applied to a real example on
the diagnosis of coronary disease.
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1. INTRODUCTION

The fundamental parameters to assess and compare the performance of bi-

nary diagnostic tests are sensitivity and specificity. Sensitivity is the probability

of the result of the binary diagnostic test (BDT) being positive when the indi-

vidual has the disease, and specificity is the probability of the result of the BDT

being negative when the individual does not have the disease. Both parameters

depend only on the specific characteristics of the BDT, i.e. the intrinsic prop-

erties (physical, biological, chemical, etc.) of the BDT. When comparing two

BDTs in paired designs, i.e. when the two BDTs and the gold standard (GS) are

applied to all of the individuals in a random sample, the comparison of the two

sensitivities (specificities) is made conditioning in the total of individuals with

the disease (without the disease) and applying the exact test to compare two

binomial proportions or its asymptotic version (McNemar’s test).

When considering the losses associated with an erroneous classification with

the BDT, the parameter that is used to assess the BDT is the weighted kappa co-

efficient [1,2,3]. The weighted kappa coefficient depends on the sensitivity and the

specificity of the BDT, on the disease prevalence in the population studied and on

the relative loss between the false positives and the false negatives (weighting in-

dex). The value of the weighting index is set by the clinical laboratory researcher

based on his or her knowledge about the problem to be solved. Bloch [4] studied

the comparison of the weighted kappa coefficients of two BDTs in relation to the

same GS subject to a paired design.

The problem posed by the weighted kappa coefficient as a measure to as-

sess and compare the performance of BDTs is the allocation of the value to the

weighting index, since the clinical laboratory researcher does not have enough

knowledge about the problem to be able to allocate that value, and two clinicians

might even allocate different values to that index in the same problem. In order

to solve this problem, Roldán-Nofuentes and Olvera-Porcel [5] defined a new pa-

rameter called the average kappa coefficient. The average kappa coefficient of the

BDT depends on the sensitivity and the specificity of the BDT and on the disease

prevalence, and does not depend on the weighting index. This new parameter

has properties that make it valid to assess and compare BDTs. In this study,

several hypothesis tests are studied to compare the average kappa coefficients

of two BDTs in a paired design. In Section 2, the weighted kappa coefficient

and the average kappa coefficient are explained. In Section 3, we present sev-

eral asymptotic hypothesis tests to compare the average kappa coefficients of two

BDTs subject to paired design. In Section 4, simulation experiments are carried

out to study the type I errors and the powers of the hypothesis tests presented

in Section 3. In Section 5, we study the situation in which more than two BDTs

are compared. In Section 6, we present a program written in R which allows us

to solve the problem posed. In Section 7, the results obtained are applied to a

real example, and in Section 8 the results obtained are discussed.
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2. WEIGHTED KAPPA COEFFICIENT AND AVERAGE KAPPA

COEFFICIENT

Let L and L′ be the losses associated with an erroneous classification with

the BDT: L is the loss that occurs when for an individual the BDT is negative

and the GS is positive, and L′ is the loss that occurs when the BDT is positive

and the GS is negative. Losses L and L′ are zero when an individual (with or

without the disease) is classified correctly with the BDT. The weighted kappa

coefficient of a BDT is [1,2,3,4,6]

κ (c) =
pq (Se + Sp − 1)

p (1 − Q) c + qQ (1 − c)
,

where Se is the sensitivity of the BDT, Sp the specificity, p the disease prevalence,

q = 1−p, Q = pSe+ q (1 − Sp) and c = L/(L + L′) is the weighting index. When

loss L is equal to zero then c = 0, and the weighted kappa coefficient is

κ (0) =
Sp − (1 − Q)

Q
,

and when loss L′ is equal to zero then c = 1, and the weighted kappa coefficient

is
κ (1) =

Se − Q

1 − Q
.

The weighted kappa coefficient can also be written as

κ (c) =
p (1 − Q) cκ (1) + qQ (1 − c)κ (0)

p (1 − Q) c + qQ (1 − c)
,

and therefore it is a weighted mean of κ (0) and κ (1). Weighting index c varies

between 0 and 1 and represents the relative loss between the false positives and

the false negatives. In practice the weighting index c is unknown, but its values

can be assumed according to the objective for which the diagnostic test is going

to be used. If the diagnostic test is going to be used as a previous step for a risky

treatment (e.g. surgery), there is more concern about the false positives and the c

index is lower than 0.5; if the diagnostic test is going to be used as a screening test,

there is more concern about the false negatives and the c index is greater than

0.5; and the c index is 0.5 when the diagnostic test is used for a simple diagnosis.

If L = L′, then c = 0.5 and κ (0.5) is called the Cohen kappa coefficient; if L > L′,

then 0.5 < c < 1, and if L′ > L then 0 < c < 0.5. The properties of the weighted

kappa coefficient can be seen in the manuscript of Kraemer et al. [3] and in that of

Roldán-Nofuentes et al. [6]. The problem posed by the weighted kappa coefficient

is the allocation of a value to the weighting index. Allocating values 0 or 1 means

that one of the losses is equal to zero, which is not realistic. In practice, the

allocation is made based on the knowledge that the clinical laboratory researcher

has about the problem that is being analyzed. This procedure can lead to some

disagreement, since two different clinicians may allocate different values and their

conclusions may not be the same.
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In order to solve this problem of the allocation of values to the weighting

index, Roldán-Nofuentes and Olvera-Porcel [5] defined a new parameter: the

average kappa coefficient. The average kappa coefficient is a measure of the

weighted kappa coefficients, and only depends on the sensitivity and the specificity

of the BDT and the disease prevalence, and does not depend on the weighting

index. If the clinical laboratory researcher considers that the loss associated with

a false positive is greater than the loss associated with a false negative, L′ > L

and 0 < c < 0.5, the average kappa coefficient is

(2.1) κ1 =
1

0.5

∫ 0.5

0
κ (c) dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

[
κ(0)+κ(1)

2κ(1)

]
, p 6= Q

Se + Sp − 1, p = Q,

i.e. the average kappa coefficient κ1 is the average value of κ (c) when 0 < c < 0.5.

If the clinical laboratory researcher considers that the loss associated with a false

negative is greater than the loss associated with a false positive, L > L′ and

0.5 < c < 1, the average kappa coefficient is

(2.2) κ2 =
1

0.5

∫ 1

0.5
κ (c) dc =

{
2κ(0)κ(1)
κ(0)−κ(1) ln

[
2κ(0)

κ(0)+κ(1)

]
, p 6= Q

Se + Sp − 1, p = Q.

As the weighted kappa coefficient is a measure of the beyond-chance agree-

ment between the BDT and the GS, then κ1 and κ2 are measures of the average

beyond-chance agreement between the BDT and the GS. The properties of κ1

and κ2 can be seen in the manuscript by Roldán-Nofuentes and Olvera-Porcel

[5], and they are parameters that allow us to assess and compare the perfor-

mance of BDTs. The comparison of the average kappa coefficients of two BDTs

subject to paired design is now studied.

3. COMPARISON OF TWO AVERAGE KAPPA COEFFICIENTS

Let us consider two BDTs that are compared in relation to the same GS.

The frequencies obtained applying the two BDTs and the GS to a sample of n

individuals and theoretical probabilities are shown in Table 1, where the variable

Ti models the result of the i -th BDT (Ti = 1 when the result is positive and Ti = 0

when it is negative) and the variable D models the result of the GS (D = 1 when

the individual has the disease and D = 0 when this is not the case). If the

clinical laboratory researcher assumes a value for the weighting index c, Bloch

[4] has studied the comparison of the weighted kappa coefficients of two BDTs

subject to a paired design. Using the notation in Table 1, the estimators of the

weighted kappa coefficients deduced by Bloch [4] are

κ̂1 (c) =
(s11 + s10) (r01 + r00) − (s01 + s00) (r10 + r11)

sc
1∑

k=0

(s0k + r0k) + r (1 − c)
1∑

k=0

(s1k + r1k)
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and

κ̂2 (c) =
(s11 + s01) (r10 + r00) − (s10 + s00) (r01 + r11)

sc
1∑

h=0

(sh0 + rh0) + r (1 − c)
1∑

h=0

(sh1 + rh1)

,

and the statistic for H0 : κ1 (c) = κ2 (c) vs H1 : κ1 (c) 6= κ2 (c) is

z =
κ̂1 (c) − κ̂2 (c)√

V̂ ar [κ̂1 (c)] + V̂ ar [κ̂2 (c)] − 2Ĉov [κ̂1 (c) , κ̂2 (c)]
−−−→
n→∞

N (0, 1) ,

where the expressions of the variances and the covariance have been obtained by

Bloch [4] applying the delta method.

Table 1: Observed frequencies and probabilities subject to paired design.

Observed frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 s11 s10 s01 s00 s

D = 0 r11 r10 r01 r00 r

Total n11 n10 n01 n00 n

Probabilities

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 p11 p10 p01 p00 p

D = 0 q11 q10 q01 q00 q

Total p11 + q11 p10 + q10 p01 + q01 p00 + q00 1

We then study the comparison of the average kappa coefficients of the two

BDTs. Firstly, we study the comparison of the two average kappa coefficients

when the clinical laboratory researcher considers that L′ > L (0 < c < 0.5) and

after when L > L′ (0.5 < c < 1).

When L′ > L the hypothesis test to compare the two average kappa coef-

ficients is H0 : κ11 = κ21 vs H1 : κ11 6= κ21, where κi1 is the average kappa co-

efficient of the i -th BDT when the clinical laboratory researcher considers that

L′ > L. In terms of the probabilities in Table 1, the sensitivity and the speci-

ficity of each BDT are written as Se1 = (p10 + p11)/p, Sp1 = (q00 + q01)/q, Se2 =

(p01 + p11)/p and Sp2 = (q00 + q10)/q, where p =
∑
ij

pij is the disease prevalence

and q = 1 − p =
∑
ij

qij . Replacing in equation (2.1) each parameter with its ex-
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pression, the average kappa coefficient κ11 is written as

κ11 =
2κ1 (0)κ1 (1)

κ1 (0) − κ1 (1)
ln

{
κ1 (0) + κ1 (1)

2κ1 (1)

}

= 2




1∑
j=0

(p0j + q0j)

1
p

1∑
j=0

p1j −
1∑

j=0
(p1j + q1j)

−

1∑
j=0

(p1j + q1j)

1
q

1∑
j=0

q0j −
1∑

j=0
(p0j + q0j)




−1

× ln




1

2




(
1∑

j=0
(p0j + q0j)

)(
1
q

1∑
j=0

q0j −
1∑

j=0
(p0j + q0j)

)

(
1∑

j=0
(p1j + q1j)

)(
1
p

1∑
j=0

p1j −
1∑

j=0
(p1j + q1j)

) + 1







when p 6= Q1 and κ11 = 1
p

1∑
j=0

p1j + 1
q

1∑
j=0

q0j − 1 when p = Q1. Regarding κ21, its

expression is

κ21 =
2κ2 (0) κ2 (1)

κ2 (0) − κ2 (1)
ln

{
κ2 (0) + κ2 (1)

2κ2 (1)

}

= 2




1∑
i=0

(pi0 + qi0)

1
p

1∑
i=0

pi1 −
1∑

i=0
(pi1 + qi1)

−

1∑
i=0

(pi1 + qi1)

1
q

1∑
i=0

qi0 −
1∑

i=0
(pi0 + qi0)




−1

× ln




1

2




(
1∑

i=0
(pi0 + qi0)

)(
1
q

1∑
i=0

qi0 −
1∑

i=0
(pi0 + qi0)

)

(
1∑

i=0
(pi1 + qi1)

)(
1
p

1∑
i=0

pi1 −
1∑

i=0
(pi1 + qi1)

) + 1







when p 6= Q2 and κ21 = 1
p

1∑
j=0

p1j + 1
q

1∑
j=0

q0j −1 when p = Q2. As the probabilities

pij and qij are probabilities of a multinomial distribution, their estimators are

p̂ij = sij/n and q̂ij = rij/n. Therefore, the estimator of κ11 is

κ̂11 =
2 {(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)}

n

(
1∑

j=0
(s0j − r1j)

)

× ln




1

2




s
1∑

j=0
(s0j + r0j)

r
1∑

j=0
(s1j + r1j)

+ 1







when p̂ 6= Q̂1, i.e. when s01 + s00 6= r10 + r11, and

κ̂11 =
(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)

sr
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when p̂ = Q̂1, i.e. when s01 + s00 = r10 + r11. Regarding the estimator of κ21, its

expression is

κ̂21 =
2 {(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)}

n

(
1∑

i=0
(si0 − ri1)

)

× ln




1

2




s
1∑

i=0
(si0 + ri0)

r
1∑

i=0
(si1 + ri1)

+ 1







when p̂ 6= Q̂2, i.e. s10 + s00 6= r01 + r11, and

κ̂21 =
(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)

sr

when p̂ = Q̂2, i.e. s10 + s00 = r01 + r11. Applying the delta method, the asymp-

totic variance-covariance matrix of κ̂11 and κ̂21 is

∑
κ̂κκ1

=

(
∂κκκ1

∂πππ

)∑
π̂ππ

(
∂κκκ1

∂πππ

)T

,

where κκκ1 = (κ11, κ21)
T , πππ = (p11, p10, p01, p00, q11, q10, q01, q00)

T and

∑
π̂ππ

=
Diag (πππ) − ππππππT

n

is the variance-covariance matrix of the probabilities in Table 1. Replacing in the

expression of
∑

κ̂̂κ̂κ1
each parameter with its estimator, we obtain the expressions of

the estimated asymptotic variances-covariances of κ̂̂κ̂κ1. These expressions are not

presented here as they are very long and complicated (they were calculated using

the R programming approach created to solve this hypothesis test). Finally, the

statistic to contrast the equality of the average kappa coefficients when L′ > L is

z =
κ̂11 − κ̂21√

V̂ ar (κ̂11) + V̂ ar (κ̂21) − 2Ĉov (κ̂11, κ̂21)
−−−→
n→∞

N (0, 1) .

Furthermore, an asymptotic confidence interval for the difference of the average

kappa coefficients is

κ11 − κ21 ∈ κ̂11 − κ̂21 ± z1−α/2

√
V̂ ar (κ̂11) + V̂ ar (κ̂21) − 2Ĉov (κ̂11, κ̂21),

where z1−α/2 is the 100(1−α/2)% percentile of the standard normal distribution.

If the clinical laboratory researcher considers that L > L′, and therefore

that 0.5 < c < 1, the hypothesis test to compare the two average kappa coefficients

is H0 : κ12 = κ22 vs H1 : κ12 6= κ22, where κi2 is the average kappa coefficient of
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the i -th BDT when L > L′. The process to solve this hypothesis test is similar

to the previous case, and the statistic is

z =
κ̂12 − κ̂22√

V̂ ar (κ̂12) + V̂ ar (κ̂22) − 2Ĉov (κ̂12, κ̂22)
−−−→
n→∞

N (0, 1) .

Replacing in equation (2.2) each parameter with its expression, the estimators of

κ12 is

κ̂12 =
2 {(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)}

n

(
1∑

j=0
(s0j − r1j)

)

× ln


2

s
1∑

j=0
(s0j + r0j)

s
1∑

j=0
(s0j + r0j) + r

1∑
j=0

(s1j + r1j)




when p̂ 6= Q̂1, i.e. s01 + s00 6= r10 + r11, and

κ̂12 =
(s10 + s11) (r00 + r01) − (s00 + s01) (r10 + r11)

sr

when p̂ = Q̂1, i.e. s01 + s00 = r10 + r11. Regarding κ22, it holds that

κ̂22 =
2 {(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)}

n

(
1∑

i=0
(si0 − ri1)

)

× ln


2

s
1∑

i=0
(si0 + ri0)

s
1∑

i=0
(si0 + ri0) + r

1∑
i=0

(si1 + ri1)




when p̂ 6= Q̂2, i.e. s10 + s00 6= r01 + r11, and

κ̂22 =
(s01 + s11) (r00 + r10) − (s00 + s10) (r01 + r11)

sr

when p̂ = Q̂2, i.e. s10 + s00 = r01 + r11. The asymptotic variance-covariance ma-

trix is estimated in a similar way to the previous case. Moreover, an asymptotic

confidence interval for the difference of the average kappa coefficients is

κ12 − κ22 ∈ κ̂12 − κ̂22 ± z1−α/2

√
V̂ ar (κ̂12) + V̂ ar (κ̂22) − 2Ĉov (κ̂12, κ̂22).

The comparison of the average kappa coefficients can also be made using

transformations, such as the logarithm and the logit transformations. In this case,

the hypothesis test is H0 : F (κ1k) = F (κ2k) vs H1 : F (κ1k) 6= F (κ2k), where F

is the logarithm or the logit respectively. The problem is solved in a similar way

to in the previous case. These transformations aim to improve the convergence

of the distribution of the estimators to the normal distribution.
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4. SIMULATION EXPERIMENTS

Simulation experiments were carried out to study the type I errors and

the powers of the hypothesis tests H0 : κ1k = κ2k and H0 : F (κ1k) = F (κ2k).

Therefore, 5000 random samples of multinomial distributions were generated with

sizes of 100, 200, 300, 400, 500, 1000 and 2000, which are sizes in a wide range to

show the behaviour of the hypothesis tests. The probabilities of the multinomial

distributions were calculated using the conditional dependence model proposed

by Vacek [7], i.e.

pij = P (T1 = i, T2 = j |D = 1) = P (T1 = i |D = 1) × P (T2 = j |D = 1) + δijε1

and

qij = P (T1 = i, T2 = j |D = 0) = P (T1 = i |D = 0) × P (T2 = j |D = 0) + δijε0,

where δij = 1 if i = j and δij = −1 if i 6= j, and εi is the covariance between the

two BDTs when D = i. Vacek [7] demonstrated that

0 ≤ ε1 ≤ Min {Se1 (1 − Se2) , (1 − Se1)Se2}
and that

0 ≤ ε0 ≤ Min {Sp1 (1 − Sp2) , (1 − Sp1)Sp2} .

If ε1 = ε0 = 0 then the two BDTs are conditionally independent on the disease

status. In practice, the assumption of conditional independence is not very real-

istic and therefore ε1 > 0 and/or ε0 > 0.

The simulation experiments were designed based on the equations of the

average kappa coefficients of the two BDTs, i.e.

(4.1) κi1 =
2κi (0)κi (1)

κi (0) − κi (1)
ln

[
κi (0) + κi (1)

2κi (1)

]

and

(4.2) κi2 =
2κi (0) κi (1)

κi (0) − κi (1)
ln

[
2κi (0)

κi (0) + κi (1)

]
.

As the disease prevalence, we took the values 5%, 10%, 30% and 50%. The first

two values correspond to a scenario with low prevalence and the last two with a

high disease prevalence, and they are a range of values that allow us to study the

effect of the prevalence on the behaviour of each hypothesis test. Regarding the

average kappa coefficients we took the values 0.2, 0.4, 0.6 and 0.8. Therefore, fol-

lowing the idea of Cicchetti [8] we took values of average kappa coefficients with

different levels of significance: poor (< 0.40), fair (0.40 − 0.59), good (0.60 − 0.74)

and excellent (0.75 − 1). Once the values for the prevalence and the average kappa

coefficient were set, using the Newton–Raphson method, the system made up of

equations (4.1) and (4.2) was solved to thus obtain the values of κi (0) and κi (1),
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only considering those values whose solutions are between 0 and 1. Finally, in

order to obtain the values of the sensitivity and the specificity of each BDT (Sei

and Spi) the system made up of the equations κi (0) = {Spi − (1 − Qi)}/Qi and

κi (1) = (Sei − Qi)/(1 − Qi) was solved. Once the values for Sei and Spi were

obtained, the maximum values for the covariances ε1 and ε0 were calculated.

Finally, the probabilities of the multinomial distributions were calculated based

on the model proposed by Vacek [7]. Furthermore, the samples were generated

in such a way that in all cases it was possible to estimate all of the parameters

and their variances-covariances. In all of the study, we took as the nominal error

α = 5%. In the tables with results, Test 1 refers to the hypothesis test without

logarithmic transformation and Test 2 refers to the hypothesis test with logarith-

mic transformation. The results with the logit transformation are not shown as

they are very similar to those obtained with the logarithmic transformation.

4.1. Type I errors

In Table 2, we can see some of the results obtained for the type I errors of

the hypothesis tests H0 : κ11 = κ21 (Test 1) and H0 : ln (κ11) = ln (κ21) (Test 2),

i.e. when comparing the average kappa coefficients considering that L′ > L. In

Table 3, we can see some results for the type I errors of the hypothesis test

H0 : κ12 = κ22 (Test 1) and H0 : ln (κ12) = ln (κ22) (Test 2), i.e. when comparing

the average kappa coefficients considering that L > L′. In these tables we can see

the values of the sensitivities, specificities, prevalence and covariances with which

the multinomial samples were generated.

When L′ > L (Table 2), the disease prevalence and the covariances between

the two BDTs have an important effect upon the type I error of the test H0 :

κ11 = κ21. The increase in the prevalence implies an increase in the type I error,

especially in samples of 100 and 200, although without overwhelming the nominal

error (a situation which has been considered when the type I error is greater than

6.5%). The increase in the values of the covariances implies a decrease in the

type I error, especially for n ≤ 500. In general terms, when the values of the

covariances are high, the hypothesis test H0 : κ11 = κ21 is conservative (its type I

error is lower than the nominal error) for a sample size n ≤ 500 (depending on the

disease prevalence). The prevalence and the covariances have practically no effect

upon the type I error when the samples are very large (n ≥ 1000). Therefore,

in general terms, the type I error of the test H0 : κ11 = κ21 is lower than the

nominal error and starting from a certain sample size it fluctuates around the

nominal error without overwhelming it. Regarding the type I error of the test

H0 : ln (κ11) = ln (κ21), its behavior is, in general terms, very similar to that of

the test H0 : κ11 = κ21, although for sample sizes of 100 and 200 its type I error

is somewhat lower than that of the hypothesis test without transformation.
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Table 2: Type I errors of the hypothesis tests when L′ > L.

κ11 = κ21 = 0.2

Se1 = 0.7773, Sp1 = 0.7308, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1731, ε0 ≤ 0.1967

ε1 = 0, ε0 = 0 ε1 = 0.08, ε0 = 0.09 ε1 = 0.16, ε0 = 0.18
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.022 0.009 0.012 0.008 0 0
200 0.044 0.026 0.031 0.022 0.001 0
300 0.047 0.040 0.035 0.029 0.004 0.004
400 0.045 0.040 0.050 0.042 0.004 0.004
500 0.050 0.048 0.044 0.042 0.010 0.008

1000 0.048 0.046 0.047 0.046 0.020 0.020
2000 0.055 0.056 0.056 0.055 0.044 0.043

κ11 = κ21 = 0.4

Se1 = 0.8864, Sp1 = 0.6746, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.1007, ε0 ≤ 0.2195

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.10 ε1 = 0.08, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.058 0.049 0.045 0.058 0.049 0.045
200 0.050 0.046 0.049 0.050 0.046 0.049
300 0.047 0.046 0.052 0.047 0.046 0.052
400 0.052 0.051 0.048 0.052 0.051 0.048
500 0.048 0.047 0.040 0.048 0.047 0.040

1000 0.049 0.048 0.050 0.049 0.048 0.050
2000 0.046 0.046 0.048 0.046 0.046 0.048

κ11 = κ21 = 0.6

Se1 = 0.43, Sp1 = 0.97, Se2 = 0.43, Sp2 = 0.97
p = 5%, ε1 ≤ 0.2425, ε0 ≤ 0.0291

ε1 = 0, ε0 = 0 ε1 = 0.10, ε0 = 0.01 ε1 = 0.20, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.011 0.002 0.003 0 0 0
200 0.035 0.017 0.019 0.008 0.001 0
300 0.049 0.026 0.024 0.015 0.001 0
400 0.054 0.033 0.040 0.027 0.007 0.006
500 0.054 0.028 0.033 0.023 0.011 0.009

1000 0.047 0.041 0.049 0.044 0.027 0.023
2000 0.055 0.050 0.049 0.046 0.042 0.040

κ11 = κ21 = 0.8

Se1 = 0.8063, Sp1 = 0.9392, Se2 = 0.8063, Sp2 = 0.9392
p = 50%, ε1 ≤ 0.1562, ε0 ≤ 0.0571

ε1 = 0, ε0 = 0 ε1 = 0.07, ε0 = 0.02 ε1 = 0.14, ε0 = 0.04
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.033 0.025 0.023 0.019 0.002 0.001
200 0.048 0.045 0.043 0.039 0.011 0.008
300 0.045 0.044 0.036 0.034 0.027 0.024
400 0.053 0.049 0.049 0.047 0.040 0.037
500 0.056 0.055 0.056 0.055 0.037 0.036

1000 0.048 0.048 0.053 0.052 0.043 0.043
2000 0.045 0.045 0.056 0.055 0.051 0.050
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Table 3: Type I errors of the hypothesis tests when L > L′.

κ11 = κ21 = 0.2

Se1 = 0.4237, Sp1 = 0.8131, Se2 = 0.4237, Sp2 = 0.8131
p = 50%, ε1 ≤ 0.2442, ε0 ≤ 0.1520

ε1 = 0, ε0 = 0 ε1 = 0.02, ε0 = 0.10 ε1 = 0.04, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.047 0.006 0.045 0.013 0.003 0
200 0.048 0.021 0.049 0.027 0.020 0.006
300 0.056 0.037 0.042 0.030 0.030 0.021
400 0.055 0.044 0.052 0.043 0.045 0.034
500 0.058 0.051 0.042 0.037 0.040 0.034

1000 0.046 0.043 0.055 0.052 0.041 0.039
2000 0.046 0.044 0.048 0.048 0.058 0.057

κ11 = κ21 = 0.4

Se1 = 0.7773, Sp1 = 0.7308, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1731, ε0 ≤ 0.1967

ε1 = 0, ε0 = 0 ε1 = 0.08, ε0 = 0.09 ε1 = 0.16, ε0 = 0.18
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.022 0.002 0.006 0 0 0
200 0.043 0.026 0.022 0.008 0 0
300 0.055 0.040 0.030 0.018 0.001 0
400 0.049 0.037 0.047 0.038 0.002 0.001
500 0.039 0.032 0.047 0.042 0.002 0.002

1000 0.049 0.047 0.053 0.050 0.014 0.011
2000 0.056 0.054 0.051 0.050 0.030 0.030

κ11 = κ21 = 0.6

Se1 = 0.8864, Sp1 = 0.6746, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.1007, ε0 ≤ 0.2195

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.10 ε1 = 0.08, ε0 = 0.20
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.050 0.034 0.024 0.014 0.001 0
200 0.053 0.048 0.044 0.036 0.009 0.006
300 0.044 0.040 0.058 0.051 0.017 0.015
400 0.053 0.050 0.052 0.048 0.030 0.028
500 0.052 0.050 0.054 0.050 0.033 0.032

1000 0.054 0.054 0.049 0.047 0.051 0.051
2000 0.055 0.054 0.063 0.062 0.056 0.055

κ11 = κ21 = 0.8

Se1 = 0.81, Sp1 = 0.99, Se2 = 0.81, Sp2 = 0.99
p = 5%, ε1 ≤ 0.1539, ε0 ≤ 0.0099

ε1 = 0, ε0 = 0 ε1 = 0.07, ε0 = 0.004 ε1 = 0.14, ε0 = 0.008
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.001 0 0 0 0 0
200 0.009 0.008 0.002 0.001 0 0
300 0.016 0.014 0.005 0.002 0 0
400 0.025 0.019 0.010 0.006 0 0
500 0.027 0.024 0.011 0.007 0 0

1000 0.044 0.040 0.037 0.033 0.006 0.003
2000 0.055 0.053 0.043 0.042 0.022 0.019
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When L > L′ (Table 3), the prevalence and the covariances also have an

important effect (and a similar one to the previous situation) upon the type I

error of the test H0 : κ12 = κ22. As in the previous situation, the increase in

the prevalence implies an increase in the type I error, especially in samples of

100 and 200, although it does not overwhelm the nominal error. The increase

in the covariances implies a decrease in the type I error, especially for n ≤ 500.

Therefore, in general terms, when the values of the covariances are high, for a

sample size n ≤ 500 (depending on the disease prevalence) the hypothesis test H0 :

κ12 = κ22 is conservative. The prevalence and the covariances have practically no

effect upon the type I error when the sample size is very large (n = 1000 − 2000).

Therefore, in general terms, the type I error of the test H0 : κ12 = κ22 shows

very similar behavior to that of the hypothesis test of the comparison of the two

average kappa coefficients when L′ > L (H0 : κ11 = κ21); i.e. it is a conservative

test and starting from a determined sample size its type I error fluctuates around

the nominal error without overwhelming it. Regarding the type I error of the

test H0 : ln (κ12) = ln (κ22), its behaviour is, in general terms, very similar to

that of the test H0 : κ12 = κ22, although for n = 100 − 200 its type I error is, as

in the case of L′ > L, somewhat lower than that of the hypothesis test without

transformation.

4.2. Powers

In Table 4, we can see some of the results for the power of the hypothesis

tests H0 : κ11 = κ21 and H0 : ln (κ11) = ln (κ21), and in Table 5, we can see some of

the results for the power of the hypothesis tests H0 : κ12 = κ22 and H0 : ln (κ12) =

ln (κ22). In these tables we also indicate the values of the sensitivities, specificities,

prevalence and covariances with which the multinomial samples were generated.

When L′ > L (Table 4), the disease prevalence has an important effect

on the powers of the tests H0 : κ11 = κ21 and H0 : ln (κ11) = ln (κ21). For the

same sample size, the power of each hypothesis test rises with an increase in the

prevalence. Regarding the covariances between the two BDTs, the power also

rises with increase in the covariances, although its effect is, in general terms, less

important than in the case of prevalence. Consequently, based on the prevalence

we can reach the following general conclusions:

1. For a prevalence equal to 5% it is necessary to have very large sample

size (n ≥ 1000) so that the power is high (above 80%). If the prevalence

is equal to 10%, with a sample size n ≥ 200 high power is obtained

(above 80%, depending on the covariances).

2. If the prevalence is high, p equal to 30% or 50%, with a sample size

n ≥ 200 the powers of both hypothesis tests are very high (higher than

80% or 90%, depending on the covariances).
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Table 4: Powers of the hypothesis tests when L′ > L.

κ11 = 0.4, κ21 = 0.2

Se1 = 0.8209, Sp1 = 0.8670, Se2 = 0.7773, Sp2 = 0.7308
p = 10%, ε1 ≤ 0.1392, ε0 ≤ 0.0972

ε1 = 0, ε0 = 0 ε1 = 0.06, ε0 = 0.04 ε1 = 0.12, ε0 = 0.08
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.498 0.452 0.613 0.593 0.767 0.755
200 0.831 0.837 0.927 0.935 0.995 0.996
300 0.937 0.941 0.987 0.988 1 1
400 0.986 0.987 1 1 1 1
500 0.990 0.991 1 1 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.4

Se1 = 0.8495, Sp1 = 0.8375, Se2 = 0.8864, Sp2 = 0.6746
p = 30%, ε1 ≤ 0.0965, ε0 ≤ 0.1096

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.04 ε1 = 0.08, ε0 = 0.08
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.570 0.554 0.692 0.677 0.820 0.812
200 0.845 0.844 0.917 0.916 0.985 0.986
300 0.939 0.939 0.982 0.983 0.998 0.998
400 0.984 0.984 0.997 0.997 1 1
500 0.992 0.992 0.998 0.998 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.2

Se1 = 0.8991, Sp1 = 0.7458, Se2 = 0.8131, Sp2 = 0.4237
p = 50%, ε1 ≤ 0.0820, ε0 ≤ 0.1076

ε1 = 0, ε0 = 0 ε1 = 0.06, ε0 = 0.01 ε1 = 0.12, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.954 0.907 0.973 0.949 0.982 0.961
200 0.998 0.998 0.998 0.998 0.999 0.999
300 1 1 1 1 1 1
400 1 1 1 1 1 1
500 1 1 1 1 1 1

1000 1 1 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.8, κ21 = 0.6

Se1 = 0.81, Sp1 = 0.99, Se2 = 0.62, Sp2 = 0.98
p = 5%, ε1 ≤ 0.1178, ε0 ≤ 0.0098

ε1 = 0, ε0 = 0 ε1 = 0.05, ε0 = 0.004 ε1 = 0.10, ε0 = 0.008
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.010 0.002 0.005 0 0.001 0
200 0.097 0.062 0.100 0.055 0.085 0.049
300 0.252 0.207 0.260 0.208 0.272 0.210
400 0.365 0.323 0.396 0.364 0.466 0.404
500 0.483 0.442 0.520 0.483 0.615 0.586

1000 0.735 0.721 0.801 0.797 0.842 0.842
2000 0.890 0.890 0.890 0.888 0.895 0.895
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Table 5: Powers of the hypothesis tests when L > L′.

κ11 = 0.4, κ21 = 0.2

Se1 = 0.7021, Sp1 = 0.6817, Se2 = 0.3019, Sp2 = 0.9030
p = 30%, ε1 ≤ 0.0900, ε0 ≤ 0.0661

ε1 = 0, ε0 = 0 ε1 = 0.04, ε0 = 0.03 ε1 = 0.08, ε0 = 0.06
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.410 0.238 0.416 0.252 0.433 0.278
200 0.630 0.587 0.733 0.693 0.784 0.749
300 0.790 0.773 0.862 0.851 0.931 0.927
400 0.878 0.876 0.938 0.936 0.978 0.977
500 0.941 0.940 0.970 0.969 0.991 0.991

1000 0.998 0.998 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.4

Se1 = 0.8624, Sp1 = 0.6816, Se2 = 0.8112, Sp2 = 0.5293
p = 50%, ε1 ≤ 0.1116, ε0 ≤ 0.1686

ε1 = 0, ε0 = 0 ε1 = 0.05, ε0 = 0.07 ε1 = 0.10, ε0 = 0.14
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.434 0.347 0.567 0.473 0.731 0.623
200 0.680 0.650 0.840 0.820 0.987 0.984
300 0.825 0.813 0.948 0.945 0.999 0.999
400 0.901 0.899 0.981 0.980 1 1
500 0.956 0.952 0.996 0.995 1 1

1000 1 0.999 1 1 1 1
2000 1 1 1 1 1 1

κ11 = 0.6, κ21 = 0.2

Se1 = 0.8209, Sp1 = 0.8670, Se2 = 0.2091, Sp2 = 0.9715
p = 10%, ε1 ≤ 0.0374, ε0 ≤ 0.0247

ε1 = 0, ε0 = 0 ε1 = 0.015, ε0 = 0.01 ε1 = 0.03, ε0 = 0.02
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.376 0.135 0.359 0.146 0.411 0.164
200 0.805 0.683 0.814 0.693 0.838 0.720
300 0.945 0.914 0.965 0.928 0.874 0.947
400 1 0.978 0.993 0.972 0.996 0.990
500 1 1 1 1 1 1

1000 1 1 1 1 1 1

2000 1 1 1 1 1 1

κ11 = 0.8, κ21 = 0.6

Se1 = 0.9528, Sp1 = 0.9598, Se2 = 0.62, Sp2 = 0.98
p = 5%, ε1 ≤ 0.0292, ε0 ≤ 0.0191

ε1 = 0, ε0 = 0 ε1 = 0.01, ε0 = 0.07 ε1 = 0.02, ε0 = 0.14
n

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

100 0.017 0.005 0.024 0.004 0.019 0.007
200 0.112 0.067 0.109 0.057 0.123 0.067
300 0.233 0.189 0.229 0.164 0.243 0.191
400 0.391 0.331 0.401 0.325 0.368 0.308
500 0.483 0.440 0.480 0.428 0.510 0.468

1000 0.796 0.777 0.835 0.822 0.839 0.826
2000 0.953 0.953 0.944 0.944 0.951 0.951
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Finally, in general terms, the test H0 : κ11 = κ21 is more powerful than

the test H0 : ln (κ11) = ln (κ21), especially when n ≤ 200, since its type I error is

slightly greater (without overwhelming the nominal error).

When L > L′ (Table 5), the powers of the hypothesis tests H0 : κ12 = κ22

and H0 : ln (κ12) = ln (κ22) show very similar behaviour to that of the previ-

ous case (L′ > L). The disease prevalence and the covariances have a very

similar effect, and the conclusions about the powers are also very similar, al-

though when the prevalence is 10% it is necessary to have a slightly larger sam-

ple size (n ≥ 200 − 300) so that the power is high (above 80%). Finally, and

as in the previous case, the test H0 : κ12 = κ22 is more powerful than the test

H0 : ln (κ12) = ln (κ22), especially when n ≤ 200, since its type I error is also

slightly greater (without overwhelming the nominal error).

5. EXTENSION TO MORE THAN TWO BDTS

Let us consider J BDTs (J ≥ 3) and a GS that are applied to all of the n

individuals in a random sample. When L′ > L, the expression of the weighted

kappa coefficient for the j -th BDT is

κj1 =

{
2κj(0)κj(1)
κj(0)−κj(1)

ln
[

κj(0)+κj(1)
2κj(1)

]
, p 6= Qj

Sej + Spj − 1, p = Qj

and when L > L′ its expression is

κj2 =

{
2κj(0)κj(1)
κj(0)−κj(1)

ln
[

2κj(0)
κj(0)+κj(1)

]
, p 6= Qj

Sej + Spj − 1, p = Qj ,

with κj (0) =
Spj−(1−Qj)

Qj
, κj (1) =

Sej−Qj

1−Qj
and Qj = pSej +q (1 − Spj), and where

p =
1∑

i1,...,iJ=0
pi1,...,iJ is the disease prevalence and q = 1−p =

1∑
i1,...,iJ=0

qi1,...,iJ . The

sensitivity and the specificity of the j -th BDT are written as

Sej =

1∑
i1,...,iJ=0

ij=1

pi1,...,iJ

1∑
i1,...,iJ=0

pi1,...,iJ

and

Spj =

1∑
i1,...,iJ=0

ij=0

qi1,...,iJ

1∑
i1,...,iJ=0

qi1,...,iJ

,
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respectively. Replacing these expressions with those of each average kappa coef-

ficient, then

κj1 =

{
2

a1−a2
× ln

[
b1+1

2

]
, p 6= Qj

Sej + Spj − 1, p = Qj

and

κj2 =

{
2

a1−a2
× ln

[
2

b2+1

]
, p 6= Qj

Sej + Spj − 1, p = Qj ,

where

a1 =

p −
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ +
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

1P
i1,...,iJ=0

ij=1

pi1,...,iJ

1P
i1,...,iJ=0

pi1,...,iJ

− q −
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ +
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

,

a2 =

q +
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ −
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

1P
i1,...,iJ=0

ij=0

qi1,...,iJ

1P
i1,...,iJ=0

qi1,...,iJ

− p +
1∑

i1,...,iJ=0
ij=1

pi1,...,iJ −
1∑

i1,...,iJ=0
ij=0

qi1,...,iJ

,

b1 = a1

a2
and b2 = 1

b1
. As the maximum likelihood estimators of the probabil-

ities pi1,...,iJ and qi1,...,iJ are p̂i1,...,iJ = si1,...,iJ /n and q̂i1,...,iJ = ri1,...,iJ /n, with

i1, ..., iJ = 0, 1, the estimator of each average kappa coefficient is obtained re-

placing in the expressions of κj1 and κj2 each parameter pi1,...,iJ and qi1,...,iJ

with its corresponding estimator. Let κκκi = (κ1i, κ2i, ..., κJi)
T be the vector of

average kappa coefficients and κ̂̂κ̂κi = (κ̂1i, κ̂2i, ..., κ̂Ji)
T its estimator, where i = 1

when L′ > L and i = 2 when L > L′. Applying the delta method, the asymptotic

variances-covariances matrix of the vector κ̂̂κ̂κi is
∑

κ̂̂κ̂κi
=
(

∂κκκi

∂πππ

)∑
π̂̂π̂π

(
∂κκκi

∂πππ

)T
, where

πππ is the vector of probabilities. Performing algebraic operations and replacing

in this expression each parameter with its estimator, the estimated asymptotic

variances-covariances matrix
∑̂

κ̂̂κ̂κi
is obtained. The global hypothesis test to con-

trast the equality of the J average kappa coefficients is H0 : κ1i = κ2i = ... = κJi

vs H1 : at least one equality is not true. This hypothesis test is equivalent to

H0 : ϕϕϕκκκi = 000 vs H1 : ϕϕϕκκκi 6= 000, where ϕϕϕ is a complete range matrix whose dimen-

sion is (J − 1) × J . For example, for three BDTs the matrix ϕϕϕ is

ϕϕϕ =

(
1 −1 0
0 1 −1

)
.

Applying the multivariate central limit theorem it is verified that
√

n (κ̂̂κ̂κi − κκκi) −−−→
n→∞

NJ−1 (000,Σκκκi
) ,
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so that the statistic Q2 = κ̂̂κ̂κi
TϕϕϕT

(
ϕϕϕ
∑̂

κ̂̂κ̂κi
ϕϕϕT
)
−1

ϕϕϕκ̂̂κ̂κi is distributed according to a

distribution T 2 of Hotelling sized J − 1 and n degrees of freedom, where J − 1 is

the dimension of vector ϕϕϕκ̂̂κ̂κi. For a large n, the statistic Q2 is distributed according

to a chi-squared central distribution with J − 1 degrees of freedom when the null

hypothesis is true, i.e. Q2 = κ̂̂κ̂κi
TϕϕϕT

(
ϕϕϕ
∑̂

κ̂̂κ̂κi
ϕϕϕT
)
−1

ϕϕϕκ̂̂κ̂κi −−−→
n→∞

χ2
J−1.

The procedure to solve the hypothesis test would be very similar to that

used by Roldán-Nofuentes et al. [9] to simultaneously compare the weighted kappa

coefficients of multiple BDTs: 1) solve the global test to an error of α; 2) if the

global test is not significant at that error rate, then the homogeneity of the J

average kappa coefficients is not rejected, and if the test is significant then the

investigation into the causes of the significance is carried out comparing the pairs

of average kappa coefficients using the results in Section 3 and penalizing the

level of significance through some method of multiple comparisons, for example

Bonferroni [10], Holm [11] or Hochberg [12].

Finally, as in the case of two BDTs, the comparison of multiple average

kappa coefficients can be made using logarithmic transformation, and the proce-

dure is similar to that used in the case without transformation.

6. THE “CAKCTBT” PROGRAM

The “cakctbt” program (Comparison of Average Kappa Coefficients of Two

Binary Tests) is a program written in R that solves the hypothesis tests to contrast

the equality of the average kappa coefficients of two BDTs, i.e. H0 : κ11 = κ21 and

H0 : κ12 = κ22. This program runs with the command

cakctbt (s11, s10, s01, s00, r11, r10, r01, r00)

when α = 5%, and with the command

cakctbt (s11, s10, s01, s00, r11, r10, r01, r00, α)

when α 6= 5%. The program provides the estimation of each average kappa co-

efficient and its respective standard error, the value of the contrast statistic and

the p-value of each hypothesis test. It also provides the confidence intervals for

the difference of the average kappa coefficients in each situation (L′ > L and

L > L′). The results obtained when running the program are kept in a file called

“Results cakctbt.txt” in the same folder from where the program is run. The

program is available for free at URL:

“ http://www.ugr.es/˜bioest/software/cmd.php?seccion=mdb”.
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7. EXAMPLE

The results in Section 3 were applied to the study of Weiner et al. [13] about

the diagnosis of coronary disease, which is a classic example when comparing

the parameters of two BDTs subject to a paired design. In Table 6 (Observed

frequencies), we can see the results when applying two BDTs, a cardiac stress test

and the individual’s clinical history in relation to coronary disease, and the GS

(coronary arteriography) to a sample of 871 individuals, and where the variable

T1 models the result of the stress test, T2 models the result of the individual’s

clinical history and the variable D models the result of the coronary angiography.

Table 6: Data of the study of Weiner et al. and results.

Observed frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0
Total

D = 1 473 29 81 25 608

D = 0 22 46 44 151 263

Total 495 75 125 176 871

Results

L′ > L

κ̂11 = 0.574, κ̂21 = 0.658

V̂ ar (κ̂11) = 0.031820, V̂ ar (κ̂21) = 0.029746

Ĉov (κ̂11, κ̂21) = 0.000112

H0 : κ11 = κ21 vs H1 : κ11 6= κ21

z = 2.06, p-value = 0.039
95% CI for κ21 − κ11 : (0.0041 ; 0.1644)

L > L′

κ̂12 = 0.519, κ̂22 = 0.680

V̂ ar (κ̂12) = 0.031303, V̂ ar (κ̂22) = 0.029260

Ĉov (κ̂11, κ̂21) = 0.000229

H0 : κ12 = κ22 vs H1 : κ12 6= κ22

z = 4.33, p-value = 1.46 × 10−5

95% CI for κ22 − κ12 : (0.0881 ; 0.2336)

In Table 6 (Results), we can see the estimations of the parameters, the results

of the hypothesis tests (α = 5%) and the confidence intervals to 95%. Based on

these results, if the clinical laboratory researcher is more concerned about the

false positives than the false negatives (L′ > L), then the equality of the average

kappa coefficients is rejected, and it holds that the average kappa coefficient of the

clinical history (which has a “good” value in terms of point estimation) is signifi-
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cantly larger than that of the stress test (which has a “moderate” value in terms

of point estimation). Therefore, the average beyond-chance agreement between

the clinical history and the angiography is, with a confidence of 95%, a value

between 0.0041 and 0.1644 greater than the average beyond-chance agreement

between the stress tests and the angiography. Similar conclusions are obtained

if the clinical laboratory researcher is more concerned about the false negatives

than the false positives (L > L′). In this situation, the average beyond-chance

agreement between the clinical history and the angiography, with a confidence of

95%, is a value between 0.0881 and 0.2336 higher than the average beyond-chance

agreement between the stress tests and the angiography.

8. DISCUSSION

The comparison of the performance of two BDTs in relation to a GS can

be made through a paired design or an unpaired one. Paired design consists of

applying the two BDTs to all of the individuals in a simple, whereas in unpaired

design each individual is only tested with one of the two BDTs. Paired design is

used more in practice and has more advantages than unpaired design [14]. Paired

design was chosen to develop the method proposed in this article.

In clinical practice, when we consider the losses in an erroneous classifica-

tion with two BDTs, the appropriate parameters to compare the two BDTs are

weighted kappa coefficients. In this situation, it is necessary to assume a value for

the weighting index c and solve the test H0 : κ1 (c) = κ2 (c) vs H1 : κ1 (c) 6= κ2 (c)

applying the Bloch method [4]. The value of the weighting index c is set by the

clinical laboratory researcher based on his or her knowledge about the problem

in question. If the clinical laboratory researcher does not have enough knowledge

to allow them to allocate a value to the weighting index c, the comparison of the

performance of the two (or more) BDTs can be made through the average kappa

coefficients, which are measures of the beyond-chance agreement between each

BDT and the GS and do not depend on the weighting index c. Therefore, if the

clinical laboratory researcher can assume a value of the weighting index c, then

compare the weighted kappa coefficients of the two BDTs applying the Bloch

method [4]. In the opposite case, compare the weighted kappa coefficients κi1 if

there is a greater concern about the false positives than about the false negatives,

or compare the weighted kappa coefficients κi2 if there is a greater concern about

the false negatives than the false positives.

In this article, we have studied the comparison of the average kappa coeffi-

cients of two (and more) BDTs when the clinical laboratory researcher considers

that loss associated with the false positives is greater than that associated with

the false negatives (L′ > L), and when the clinical laboratory researcher consid-

ers the opposite (L > L′). The hypothesis tests studied are asymptotic and the
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simulation experiments carried out have demonstrated that the type I errors do

not overwhelm the nominal error of 5%. Regarding the power of each hypothesis

test, this increases with the prevalence, and so when the prevalence is small (e.g.

5%) it is necessary to have a very large sample size (n ≥ 1000) so that the power

is high (above 80%); whereas with a large prevalence (e.g. 30% or 50%), with a

sample size n ≥ 200 a high power is obtained.

In the expressions of the statistics deduced to solve the hypothesis tests,

the variances-covariances have been estimated applying the delta method. An

alternative method is to estimate these variances-covariances through bootstrap.

Simulation experiments (similar to those in Section 4) have shown that there is

no important difference in terms of the type I error and the power between both

methods of estimation of the variances-covariances.

The results were extended to the case of more than two BDTs, finding

that the solution to the hypothesis test is also asymptotic and a method based

on multiple comparisons is proposed to solve the problem. This method is very

similar to that used in the analysis of the variance. Firstly, the global test is solved

to an error of α and if the test is significant then the causes of the significance

are investigated making paired comparisons and applying a multiple comparison

method. For our problem, we have chosen the Bonferroni, Holm or Hochberg

methods, which are very easy to apply and have been used in the field of BDTs

[15,16].

The method that we have proposed requires knowledge of the disease sta-

tus of all of the individuals in a sample through the application of the GS. If the

disease status of any individual is unknown, leading to the problem known as

partial disease verification, the method proposed cannot be applied. If the verifi-

cation process with the GS only depends on the results of the BDTs, a solution

to this problem could be obtained following a method similar to that used by

Roldán-Nofuentes and Luna del Castillo [17] and Roldán-Nofuentes et al. [18].

If case-control sampling is being used, the method that we have proposed

cannot be used either as it is necessary to know the disease prevalence. An

extension of the study of Roldán-Nofuentes and Amro [19] to the situation of two

BDTs may be a solution to this problem.
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