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Abstract:

• It is a well-known theorem in linear models that the idempotency of a matrix is a
sufficient and necessary condition for a quadratic form in normal variates to have a chi-
square distribution, but its proofs in the early literature were incorrect or incomplete.
Driscoll (1999) provided an improved proof, and this article presents a simple proof.
More importantly, we establish and prove a generalized theorem.
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1. INTRODUCTION

There is a rich literature on the distribution and independence of quadratic

forms in normal random vectors (e.g, Rao, 1973; Graybill, 1976; Driscoll and

Gundberg, 1986; Mathai and Provost, 1992; Jorgensen, 1993; Driscoll, 1999;

Christensen, 2002; Ravishanker and Dey, 2002; Ogawa and Olkin, 2008), which

play an important role in linear models and multivariate statistical analysis.

Let Nk(µ,Σ) denote the k-dimensional normal distribution with mean µ

and variance-covariance matrix Σ, and let χ2
m(λ) be the noncentral chi-square

distribution with m degrees of freedom and noncentrality parameter λ. The two

well-known theorems below establish sufficient and necessary conditions for the

independence and distributions of quadratic forms in normal variates.

Theorem 1. Let x ∼ Nk(µ,Σ), Σ > 0, and A and B be k × k real sym-

metric matrices. Then x′Ax and x′Bx are independently distributed if and only

if AΣB = 0.

Theorem 2. Let x ∼ Nk(µ,Σ), Σ > 0, and A be a k × k real symmetric

matrix. Then x′Ax ∼ χ2
m(λ) with λ = 1

2µ′Aµ if and only if AΣ is idempotent

of rank m.

Unfortunately, the proofs of the two theorems in the early literature are

incorrect, incomplete or misleading, especially for Theorem 1 (Driscoll and Gund-

berg, 1986; Driscoll, 1999; Ogawa and Olkin, 2008). Thus, many improved proofs

for Theorem 1 have been obtained by Reid and Driscoll (1988), Driscoll and Kras-

nicka (1995), Letac and Massam (1995), Provost (1996), Olkin (1997), Marcus

(1998), Li (2000), Matsuura (2003), Ogawa and Olkin (2008), Carrieu and Lassère

(2009), Carrieu (2010), Bonnefond (2012), Zhang and Yi (2012), and many oth-

ers. However, there is only one improved proof of Theorem 2 given by Driscoll

(1999). In addition, Liu et al. (2009) and Duchesne and Lafaye De Micheaux

(2010) discussed the computational issues in Theorem 2.

A simple proof of Theorem 2 is presented in Section 2, using elementary cal-

culus and matrix algebra. We give a counter example of Theorem 2 in Section 3,

where Σ is singular. Then we establish and prove its extension in Theorem 3 for

the general case, where Σ can be singular or nonsingular.
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2. A SIMPLE PROOF OF THEOREM 2

The proof of sufficiency for Theorem 2 is quite easy, but showing necessity

is difficult. In fact, its proofs in the early literature were incorrect or incomplete,

according to Driscoll (1999), who provided an improved proof of Theorem 2,

based on the moment-generating function and cumulants. We now present a

simple proof of Theorem 2, using the moment-generating function of χ2
m(λ):

Mχ2
m(λ)(t) = (1 − 2t)−

m

2 e
2tλ

1−2t , t < 1/2.

Proof of Theorem 2:

Sufficiency. Suppose (AΣ)2 = AΣ and r(AΣ) = m, where Σ = BB′

and Ã = B′AB. Then Ã2 = Ã and r(Ã) = m. Thus, there exists an orthogonal

matrix P such that

Ã = P

(

Im 0

0 0

)

P ′ = P1P
′

1,

where P = (P1, P2), P ′

1P1 = Im and z = P ′

1B
−1x ∼ Nm(P ′

1B
−1µ, I). It follows

that

x′Ax = z′z ∼ χ2
m(λ),

where λ = 1
2(P ′

1B
−1µ)′(P ′

1B
−1µ) = 1

2µ′Aµ.

Necessity. Suppose x′Ax ∼ χ2
m(λ). Let P = (p1, ···, pk) be an orthogonal

matrix such that P ′ÃP = Λ = diag(λ1, ..., λk), where λ1 ≥ ··· ≥ λk are eigenval-

ues of Ã. Then

x′Ax = z′Λz =
k

∑

i=1

λiz
2
i , Mx′Ax(t) =

k
∏

i=1

Mz2

i

(tλi),

where z = P ′B−1x ∼ Nk(P
′B−1µ, I) and z1, ..., zk are independent. Hence,

(1 − 2t)−
m

2 e
2tλ

1−2t =
k

∏

i=1

(1 − 2tλi)
−

1

2 e
tλi

1−2tλi
(p′

i
B−1µ)2

for t < 1/2 and tλi < 1/2 (i = 1, ..., k). Comparing the discontinuous points of

the two functions on both sides results in

(1 − 2t)−
m

2 =
k

∏

i=1

(1 − 2tλi)
−

1

2 = |Ik − 2tÃ|−
1

2 ,

which implies that λ1 = ··· = λm = 1 and λm+1 = ··· = λk = 0.

Thus, Ã or AΣ is idempotent of rank m. The proof is completed.
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3. DISTRIBUTIONS OF QUADRATIC FORMS IN THE GEN-

ERAL CASE

We now discuss the distribution of quadratic form x′Ax in the general case,

where x ∼ Nk(µ,Σ) but Σ can be singular or not. First, it should be pointed

out that Theorem 2 is not true when Σ is singular. Below is a counter example.

Let A = I2 and x = (z, 1)′, where z ∼ N(0, 1). Then x ∼ N2(µ,Σ), where

µ =

(

0
1

)

, Σ =

(

1 0
0 0

)

.

It is clear that (AΣ)2 = AΣ and its rank r(AΣ) = 1, but

x′Ax = z2 + 1,

the distribution of which is not χ2
1(λ) with λ = 1

2µ′Aµ = 1
2 .

To generalize Theorem 2, we have the following Theorem 3, which reduces

to Theorem 2 if Σ is nonsingular. The proof for Theorem 3 is based on the

moment-generating function of quadratic function Q = z′Az + b′z + c:

MQ(t) = |I − 2tA|−
1

2 ect+ t
2

2
b′(I−2tA)−1b

for small |t| such that I − 2tA > 0, where z ∼ Nk(0, I), A is a real symmetric

matrix, b is a k-dimensional real vector, and c is a real number. In fact,

MQ(t) =

∫

(2π)−
k

2 et(z′Az+b′z+c)− 1

2
z′zdz

= ect+ t
2

2
b′Atb

∫

(2π)−
k

2 e−
1

2
(z−tAtb)′A−1

t
(z−tAtb)dz,

where At = (I − 2tA)−1.

Theorem 3. Let x ∼ Nk(µ,Σ), and A be a k × k real symmetric matrix.

Then x′Ax ∼ χ2
m(λ) with λ = 1

2µ′Aµ if and only if

ΣAΣAΣ = ΣAΣ, r(ΣAΣ) = m, µ′Aµ = µ′AΣAµ = µ′AΣAΣAµ.

Proof: Let x = Bz + µ, where Σ = BB′, z ∼ Nk(0, I) and Ã = B′AB.

Sufficiency. Note that Ã2 = Ã and r(Ã) = m due to B = BB′(BB′)−B

and

r(Ã) ≥ r(ΣAΣ) = r((ΣAB)(ΣAB)′) = r(ΣAB) ≥ r(Ã′Ã) = r(Ã).
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Then ||(I − Ã)B′Aµ)||2 = µ′A(Σ − ΣAΣ)Aµ = 0, so that µ′AB = µ′ABÃ

and

x′Ax = z′Ãz + µ′Aµ + 2µ′ABz = (z + c)′Ã(z + c) ∼ χ2
m(λ),

where c′ = µ′AB and λ = 1
2c′Ãc = µ′AΣAΣAµ = 1

2µ′Aµ.

Necessity. Suppose x′Ax = z′Ãz + µ′Aµ + 2µ′ABz ∼ χ2
m(λ). Then

(1 − 2t)−
m

2 e
2tλ

1−2t = |Ik − 2tÃ|−
1

2 etµ′Aµ+2t2µ′AB(I−2tÃ)−1B′Aµ

for small |t|. Comparing the discontinuous points of the two functions on both

sides gives

(1 − 2t)−
m

2 = |Ik − 2tÃ|−
1

2 ,

which implies that Ã2 = Ã and r(Ã) = m (see Section 2), or equivalently

ΣAΣAΣ = ΣAΣ and r(ΣAΣ) = m.

It follows from above two equations that 2tλ
1−2t

= tµ′Aµ+2t2µ′AB(I−2tÃ)−1B′Aµ,

so

µ′Aµ = 2λ = (1 − 2t)[µ′Aµ + 2tµ′AB(I − 2tÃ)−1B′Aµ],

which and (I − 2tÃ)−1 =
∑

∞

n=0(2tÃ)n imply that for small |t|,

µ′Aµ = µ′Aµ + 2tµ′(ABB′A − A)µ + 4t2µ′AB(Ã − I)B′Aµ + ···

By the theory of power series, µ′(ABB′A − A)µ = 0 = µ′AB(Ã − I)B′Aµ.

That is,

µ′Aµ = µ′AΣAµ = µ′AΣAΣAµ.

The proof is completed.
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