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1. INTRODUCTION

Cox (1972) proportional hazard model (PHM) is commonly used to model

survival data as a function of the covariates. Sometimes the observed source

of variation in the explanatory variables fail to account for the true differences

in risk. That is,in addition, there are other important but omitted unobserved

variables present. These unobserved random effects are modeled by introducing a

frailty variable Z. More precisely we assume that (T,Z) is a pair of non-negative

random variables such that for each z in the support of the distribution of Z, the

conditional distribution of T given Z = z is absolutely continuous with hazard

rate λ(t|z) given by

(1.1) λ(t|z) = zλ0(t), t > 0,

where λ0(t) is the base line hazard rate independent of z. It will be helpful to

think of T as the age at death and λ(t|z) as the hazard rate at age t for a person

with frailty Z, see Vaupel et al. (1979).

The model (1.1) states that the hazard rate of an individual is the product

of the specific quantity z and the base line hazard λ0(t) describing the age.

In addition to introducing the unobserved random effects in a multiplicative

manner, various other forms have been studied in the literature in the context

of random effect models. More recently, there has been an interest in studying

additive frailty models. Tomazalla et al. (2006) have analyzed recurrent event

data considering a homogeneous Poisson process with additive frailty intensity.

Silva and Amaral Turkman (2004) have considered Bayesian analysis of an ad-

ditive survival model with frailty. Yin and Ibrahim (2005) presented a class of

Bayesian shared Gamma frailty models with multivariate failure time data.

In this paper, we shall study a very general frailty model where the condi-

tional failure rate λ(t|z) = λ(t, z), is an appropriate general function of t and z.

Obviously, the multiplicative (proportional hazards) as well as the additive model

can be studied under this umbrella.

A basic problem in a frailty model is the modeling of the probability distri-

bution of Z. The choice of the frailty distribution strongly affects the estimate of

the base line hazard as well as that of the conditional probabilities, see Hougaard

(1984, 19991, 1995, 2000), Heckman and Singer (1984) and Agresti et al. (2004).

Agresti et al. (2004) have demonstrated that a considerable loss of efficiency

can result from assuming a parametric distribution for a random effect that is

substantially different from that of the true population.These authors observed

that the misspecification of random effect has the potential for a serious drop

of efficiency in the prediction of random effects and the estimation of other pa-

rameters. In the absence of a theoretical basis for selecting the distribution of
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frailty, the choice of the distribution of Z is often made on the basis of math-

ematical tractability and the nice properties of the resulting distributions. For

this reason, frailty distributions having a tractable Laplace transform are natu-

ral choices. The gamma distribution, the inverse Gaussian distribution and the

family of stable distributions are popular choices for modeling the distribution of

Z. Some researchers propose nonparametric modeling of the frailty distribution,

see Heckman and Singer (1984) and Anderson et al. (1992).

Hougaard (2000) provides some guidelines for choosing an appropriate frailty

distribution.The comparison is made in three directions:

(1) Theoretical comparison describing the nice properties of the frailty

distribution. For example, the gamma distribution and the inverse

Gaussian distribution are easibly tractable.

(2) Comparison of fit: The fit and the flexibility of the models are im-

portant factors in comparison. The stable frailty distribution implies

high early dependence, whereas the gamma frailty model describes

high late dependence.

(3) Various measures of dependence: The measures of dependence depend

on the frailty distribution. The expressions for various dependence

measures depend on the frailty distribution. For some frailty distri-

butions, it is simple to evaluate these measures.

For more discussion, see Hougaard (2000).

Since different level distributions of frailty give rise to different population

level distribution for analyzing survival data, it is appropriate to investigate how

the comparative effect of two frailties translates into the comparative effect on

the survival distribution. The stochastic orderings on various characteristics of

the model can be studied by using the general results contained in Gupta and

Gupta (2009, 2010). Also see Gupta and Kirmani (2006).

The aim of this paper is to study a general bivariate correlated frailty model

and the association measure due to Clayton (1978). The bivariate correlated

model and its derivatives have been studied in the literature in the context of

twin’s survival, see for example Yashin and Iachine (1995a, 1995b) and Yashin et

al. (1995). The idea of using the shared relative risk in bivariate survival models

was first discussed by Clayton (1978) who suggested an approach to the analysis

of association between two survival times based on the limiting properties of

certain contingency tables. Later this approach was followed by Oakes (1989) in

the proportional hazards shared frailty model. He introduced the notion of the

local association measure which characterizes the limiting behaviour of the odds

ratio statistics for the dependent life spans. The properties of this measure were

studied by Anderson et al. (1992).
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We obtain a general expression for the population level survival function.

The proportional hazards as well as the additive hazards case is studied. General

expressions for the Clayton’s(1978) association measure are obtained.The results

are illustrated for the gamma frailty model and the inverse Gaussian frailty model.

The organization of this paper is as follows: Section 2 contains the gen-

eral bivariate correlated frailty model and an expression for the population level

survival function. Explicit expressions are obtained for the bivariate gamma cor-

related model. The Clayton’s association measure is studied in Section 3. Results

are derived for the multiplicative as well as the additive frailty models. Several

examples are provided. It also contains the results for the shared frailty model.

Section 4 contains some practical examples from the literature. Finally, some

conclusions and comments are provided in Section 5.

2. BIVARIATE CORRELATED FRAILTY MODEL

Let Ti and Zi, i = 1, 2 be the life spans and frailty variables for the two

related individuals with dependent individual hazards µi(xi,Zi), i = 1, 2. The

functional form of µi(xi,Zi) is assumed to be the same for both individuals. We

assume that the life spans T1 and T2 are conditionally independent given Z1

and Z2. Also the joint, conditional and marginal distributions are absolutely

continuous.

Then the joint conditional survival function of T1 and T2 is given by

S(x1, x2|z1, z2) = exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

,

where

Hi(xi,zi) =

∫ xi

0
µi(ui, zi)dui, i = 1, 2.

The unconditional survival function is given by

S(x1, x2) =

∫ ∫

exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

g(z1, z2) dz1 dz2,

where g(z1, z2) is the joint probability density function (pdf) of (Z1, Z2).

This gives

Si(x1, x2) =
∂

∂xi
S(x1, x2)

= − EZ1,Z2

[

µi(xi, Zi) exp
{

−
(

H1(x1, Z1) +H2(x2, Z2)
)}]

, i = 1, 2,

and

f(x1, x2) =
∂2

∂x1∂x2
S(x1, x2)

= EZ1,Z2

[

µ1(x1, Z1)µ2(x2, Z2) exp
{

−
(

H1(x1, Z1) +H2(x2, Z2)
)}]

.
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Thus

f(x1, x2)

S(x1, x2)
=

1

S(x1, x2)

∫ ∫

µ1(x1, z1)µ2(x2, z2)

× exp
{

−
(

H1(x1, z1) +H2(x2, z2)
)}

g(z1, z2) dz1 dz2

=

∫ ∫

µ1(x1, z1)µ2(x2, z2) g
(

z1, z2 |T1>x1, T2>x2

)

dz1 dz2(2.1)

= ρµ1,µ2
(x1,x2)σµ1

(x1,x2)σµ2
(x1, x2) + µ1(x1, x2)µ2(x1, x2),

where

µi(x1, x2) = E
[

µi(xi,Zi) |T1>x1, T2>x2

]

, i = 1, 2,

ρ(., .) is the conditional correlation coefficient and σµii
|T1>x1, T2>x2, i = 1, 2

is the conditional standard deviation.

Also

g
(

z1, z2 |T1>x1, T2>x2) =
exp

{

−
(

H1(x1, z1) +H2(x2, z2)
)}

S(x1, x2)
g(z1, z2)

is the conditional pdf of Z1, Z2 given T1 > x1, T2 > x2.

The hazard components are given by

hi(x1, x2) = −
∂

∂xi
lnS(x1,x2)

= −

∫ ∫

µi(xi,zi) g
(

z1, z2 |T1>x1, T2>x2

)

dz1 dz2

= −E
[

µi(xi, Zi) |T1>x1, T2>x2

]

= −µi(x1, x2), i = 1, 2.

Note that the expectations are taken with respect to the conditional distribution

of the joint distribution of the frailty given T1 > x1, T2 > x2.

Define

φ(x1, x2) =
∂2

∂x1∂x2
lnS(x1, x2)

=
f(x1, x2)

S(x1, x2)
− h1(x1, x2)h2(x1, x2)

= E
[

µ1(x1, Z1)µ2(x2, Z2) |T1>x1, T2>x2

]

− E
[

µ1(x1, Z1) |T1>x1, T2>x2)
][

E
[

µ2(x2, Z2) |T1>x1, T2>x2

]]

= Cov
[

µ1(x1, Z1), µ2(x2, Z2) |T1>x1, T2>x2

]

= ρ
[

µ1(x1, Z1), µ(x2, Z2) |T1>x1, T2>x2

]

×
[

σµ1(x1,Z1) |T1>x1, T2>x2

][

σµ2(x2,Z2) |T1>x1, T2>x2

]

.

Let

A(x1, x2) =

∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2.
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Thus

lnS(x1, x2) =

∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2 −

∫ x1

0
ψ1(u) du −

∫ x2

0
ψ2(u) du,

for some appropriate functions ψ1(.) and ψ2(.).

Finally,

S(x1, x2) = exp

{
∫ x2

0

∫ x1

0
φ(u1, u2) du1 du2 −

∫ x1

0
ψ1(u) du −

∫ x2

0
ψ2(u) du

}

= S1(x1)S2(x2) exp{A(x1, x2)},

where

Si(xi) = exp

{

−

∫ xi

0
ψi(u) du

}

, i = 1, 2.

We now present a bivariate gamma correlated frailty model.

2.1. Bivariate Gamma Correlated Frailty Model

Suppose Y0, Y1 and Y2 are independent random variables and Z1 =Y0+Y1,

Z2 = Y0 + Y2. Then Z1 and Z2 are correlated since they contain the common

part Y0. This constitutes one of the ways of constructing bivariate distributions,

see Marshall and Olkin (1988). Let

(2.2) S(x1, x2|z1, z2) = exp
{

−
(

H1(x1)z1 +H2(x2)z2
)}

,

i.e., given Z1 and Z2, the life spans T1 and T2 are independent. This is the

proportional hazards bivariate correlated model. The unconditional distribution

is given by

(2.3)
S(x1, x2) =

∫∫∫

exp
{

−
(

(y0 + y1)H1(x1) + (y0 + y2)H2(x2)
)}

× g0(y0) g1(y1) g2(y2) dy0 dy1dy2,

where g0(.), g1(.) and g2(.) are the pdf ′s of Y0, Y1 and Y2. Denoting by LY0
(.),

LY1
(.) and LY2

(.) the Laplace transform of Y0, Y1 and Y2, it can be seen that

(2.4) S(x1, x2) = LY0

[

H1(x1) +H2(x2)
]

LY1
[H1(x1)]LY2

[H2(x2)].

We shall now derive the correlated frailty model of Yashin et al. (1995); see

also Korsgaard and Anderson (1998).

Let Y0, Y1, Y2 have independent gamma distribution with parameters (α0, β0),

(α1, β1) and (α2, β2) having pdf ′s

(2.5) gi(yi) =
1

βαi

i Γ(αi)
e−yi/βi yαi−1

i , yi > 0, i = 0, 1, 2.
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To ensure that Z1 and Z2 are gamma distributed, we make the assumption

(on the scale parameters) that β0 = β1 = β2 = β (say). Note that this assump-

tion is not a restriction for population of unrelated individuals since gamma

distributed variables Zi, i = 1, 2 can be decomposed this way. Thus

E(Z1) = (α0 + α1)β, E(Z2) = (α0 + α2)β,

V ar(Z1) = (α0 + α1)β
2, V ar(Z2) = (α0 + α2)β

2.

We now assume that Z1 and Z2 have the same gamma distribution. To do

this, we assume that α1 = α2 = α (say). This condition is relevant in twin studies

when there is no reason to assume different distributions of frailty for the twins.

The correlation coefficient between Z1 and Z2 is

ρZ =
V ar(Y0)

√

V ar(Z1)V ar(Z2)
=

α0

α0 + α
.

This implies that α0 = αρZ/(1 − ρZ).

We now use the standard assumption that the mean frailty of the individ-

uals is 1. This condition is typical for proportional hazards models which do not

contain a frailty term, but covariates. This will imply that V ar(Z1) = V ar(Z2) =

β = σ2
Z (say) and hence α0 = ρZ/σ

2
Z . Note that the formulated assumptions sig-

nificantly restrict the class of frailty models which we propose here. However, this

class is still wide enough to include individual frailty models and shared frailty

models with gamma distributed random effects as particular cases.

Noting that LY0
(t) = (1 + βt)−α0 , LY1

(t) = LY2
(t) = (1 + βt)−α, it can be

verified that

(2.6)
S(x1, x2) =

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

−ρZ/σ2

Z

×
[(

1 + σ2
Z(H1(x1))

) (

1 + σ2
z(H2(x2))

)]

−(1−ρZ)/σ2

Z .

Shared Frailty Model

In the shared frailty model, the two shared components are identical and,

therefore, ρZ = 1. The survival function is given by

(2.7) S(x1, x2) =
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

−(1/σ2

Z
)
.

Remark 2.1. Recently Hanagal and Dabade (2015) have considered four

shared frailty models. These models have been illustrated with real life bivariate

survival data related to kidney infection.
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3. CLAYTON’S ASSOCIATION MEASURE

In the context of bivariate survival models induced by frailties, Oakes (1989)

studied the following association measure

θ(x1, x2) =
SS12

S1S2
,

where S = S(x1, x2) is the survival function, S12 = ∂2S(x1, x2)/∂x1∂x2, S1 =
∂

∂x1
S(x1, x2) and S2 = ∂

∂x2
S(x1, x2); see also Clayton (1978).

Clayton (1978) presented the above association measure, deriving from the

Cox model, in a study of the association between the life spans of fathers and

their sons.

It can be easily seen that

θ(x1, x2) =
r(x1|T2 = x2)

h1(x1, x2)
.

The numerator is the hazard rate for sons at time x1 given that their fathers died

at x2. The denominator is the hazard rate for sons at time x1 given that their

fathers live past x2. Also

r(x1|T2 = x2) = −S12/S2 and h1(x1, x2) = −S1/S.

For the bivariate frailty model considered before, we have from (2.1)

f(x1, x2)

S(x1, x2)
= ρµ1,µ2

(x1,x2)σµ1
(x1,x2)σµ2

(x1, x2) + µ1(x1, x2)µ2(x1, x2),

and
S1(x1, x2)

S(x1, x2)

S2(x1, x2)

S(x1, x2)
= µ1(x1, x2)µ2(x1, x2).

Thus

θ(x1, x2) = 1 +
σµ1

(x1,x2)σµ2
(x1, x2)

µ1(x1, x2)µ2(x1, x2)
ρµ1,µ2

(x1,x2)(3.1)

= 1 + [CVµ1
(x1, x2)] [CVµ2

(x1, x2)] ρµ1,µ2
(x1,x2),

where CVµi
(x1, x2) is the coefficient of variation, i = 1, 2.

Note that all expectations are taken with respect to the conditional distri-

bution of (Z1, Z2) given T1 > x1, T2 > x2.
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It is, therefore, clear that

θ(x1, x2) > 1, if ρµ1,µ2
(x1,x2) > 0

< 1, if ρµ1,µ2
(x1,x2) < 0

= 1, if ρµ1,µ2
(x1,x2) = 0.

It is also clear that

θ(x1, x2) > 1, if φ(x1,x2) > 0

< 1, if φ(x1, x2) < 0

= 1, if φ(x1,x2) = 0.

3.1. Proportional Hazards Bivariate Correlated Frailty Model

In this case

µ1(x1, Z1) = Z1µ1(x1),

µ2(x2, Z2) = Z2µ2(x2).

It can be verified that

ρµ1,µ2
(x1,x2) =

Cov
(

µ1(x1, Z1), µ2(x2, Z2)
)

√

V ar(µ1(x1, Z1))V ar(µ2(x2, Z2))

=
µ1(x1)µ2(x2) ρZ1,Z2

(x1, x2)σZ1
(x1, x2)σZ2

(x1, x2)

µ1(x1)µ2(x2)σZ1
(x1, x2)σZ2

(x1, x2)

= ρZ1,Z2
(x1, x2).

Also

CVµi
(x1, x2) = CVZi

(x1, x2), i = 1, 2.

Hence

(3.2) θ(x1, x2) = 1 + ρZ1,Z2
(x1, x2)CVZ1

(x1, x2)CVZ2
(x1, x2).

Shared Bivariate Frailty Model

In this case Z1 = Z2 = Z (say) and ρZ1,Z2
(x1, x2) = 1, giving

θ(x1, x2) = 1 + CV 2
Z (x1, x2).
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We now try to give an explicit expression for θ(x1, x2).

The conditional survival function of T1 and T2 given Z = z is

S
(

x1, x2|Z= z) = exp
{

−z
(

H1(x1) +H2(x2)
)}

.

The unconditional survival function is given by

S(x1, x2) =

∫

∞

0
exp

{

−z
(

H1(x1) +H2(x2)
)}

g(z) dz

= LZ

(

H1(x1) +H2(x2)
)

,

where LZ(.) is the Laplace transform of Z.

Thus, the conditional density of Z given T1 > x1, T2 > x2 is given by

g
(

z|T1>x1, T2>x2

)

=
exp

{

−z
(

H1(x1) +H2(x2)
)}

LZ

(

H1(x1) +H2(x2)
) g(z).

It can be verified that

E
[

Z |T1>x1, T2>x2

]

=
−L

′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

and

E
[

Z2 |T1>x1, T2>x2

]

=
L

′′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
) .

Hence

V ar
[

Z |T1>x1, T2>x2

]

=

[

L
′′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

]

−

[

L
′

Z

(

H1(x1) +H2(x2)
)

LZ

(

H1(x1) +H2(x2)
)

]2

.

Using the above expressions, one can obtain θ(x1, x2).

We now consider some examples

Example 3.1. Z has a gamma distribution with probability density func-

tion ( pdf)

(3.3) g(z) =
1

βαΓ(α)
e−z/β zα−1, z > 0, α > 0, β > 0.

The Laplace transform of Z is given by

LZ(t) =
1

(1 + βt)α
.
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This gives

L
′

Z(t)

LZ(t)
=

−αβ

1 + βt

and
L

′′

Z(t)

LZ(t)
=
αβ2 (α+ 1)

(1 + βt)2
.

It can be easily verified that in this case

(3.4) θ(x1, x2) = 1 +
1

α
.

Note that, in this case, θ(x1, x2) is independent of (x1, x2); see Hanagal

(2011, page 83) Wienke (2010) and Duchateau and Janssen (2008).

Example 3.2. Z has an inverse Gaussian distribution with pdf

(3.5) g(z) =

(

1

2πaz3

)1/2

exp
[

−(bz − 1)2/(2az)
]

, z, a, b > 0.

The Laplace transform of Z is given by

LZ(t) = exp

[

b

a

(

1 −

(

1 +
2a

b2
t

)1/2)]

.

This gives

−L
′

Z(t)

LZ(t)
=

1

(b2 + 2at)1/2

and
L

′′

Z(t)

LZ(t)
=

1 + a(b2 + 2at)−1/2

b2 + 2at
.

It can be verified that, in this case

(3.6) θ(x1, x2) = 1 +
a2

[

b2 + 2a
(

H1(x1) +H2(x2)
)]1/2

.

Remark 3.1. Recently Hanagal and Bhanbure (2016) considered inverse

Gaussian distribution as frailty distribution and three baseline distributions.

They applied these three models to the analysis of kidney infection data.
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Example 3.3. Z has a positive stable distribution with pdf

(3.7) fZ(z) = −
1

πz

∞
∑

k=1

Γ(kα+ 1)

k!
(−z−α)k sin(αkπ), z > 0, 0 < α < 1,

see Duchateau and Janssen (2008) for more explanation and justification of this

distribution as frailty distribution. Note that this density has infinite mean.

Therefore, the variance is undetermined.

The Laplace transform of Z is given by

LZ(t) = e−tα , 0 < α < 1,

whose derivatives are given by

L
′

Z(t) = −αtα−1LZ(t)

and

L
′′

Z(t) = LZ(t)
[

α2t2α−2 − α(α− 1)tα−2
]

.

It can be verified that

(3.8) θ(x1,x2) = 1 +
(1 − α)

α
[

H1(x1 +H2(x2)
]α .

Bivariate Gamma Correlated Proportional Hazards Model

We follow the notations and assumptions given in section 2.1. The condi-

tional survival function is given by

S
(

x1, x2|Z1 = z1, Z2 = z2
)

= S
(

x1, x2 |z1, z2
)

= exp
{

−
(

H1(x1)z1 +H2(x2)z2
)}

.

Here Z1 and Z2 have been taken with the same marginal distribution, but cor-

related. This means that V ar(Z1) = V ar(Z2) = σ2
Z (say). Also the correlation

coefficient between Z1 and Z2 will be denoted by ρZ .

We have

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
.

Under our assumptions

α0 = ρZ/σ
2
Z , α = (1 − ρZ)/σ2

Z , β = σ2
Z ,

V arY0
(x1, x2) =

α0σ
4
Z

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]2 =

ρZ σ
2
Z

[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]2 ,
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V arYi
(x1, x2) =

ασ4
Z

[

1 + σ2
ZHi(xi)

]2 =
(1 − ρZ)σ2

Z
[

1 + σ2
ZHi(xi)

]2 , i = 1, 2.

These give

V arZi
(x1, x2) = V arYo

(x1, x2) + V arYi
(x1, x2)

=
ρZσ

2
Z

[

1+σ2
ZHi(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z

(

H1(x1)+H2(x2)
)]2

[

1 + σ2
ZHi(xi)

]2[
1 + σ2

Z

(

H1(x1) +H2(x2)
)]2 ,

i = 1, 2.

Thus

ρZ1,Z2
(x1, x2) =

=
V arY0

(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)

=
ρZ

[

1 + σ2
ZH1(x1)

(

1 + σ2
ZH2(x2)

)]

[

∏i=2
i=1

{

ρZ

[

1+σ2
ZHi(xi)

]2
+(1−ρZ)

[

1+σ2
Z

(

H1(x1)+H2(x2)
)]2

}]1/2
,

(3.9)

Now

E
(

Zi|T1>x1, T2>x2

)

=

= E
(

Y0|T1>x1, T2>x2

)

+ E
(

Yi|T1>x1, T2>x2

)

(3.10)

=
ρZ

[

1 + σ2
ZHi(xi)

]

+ (1 − ρZ)
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]

[

1 + σ2
ZHi(xi)

][

1 + σ2
Z

(

H1(x1) +H2(x2)
)] , i = 1, 2.

Using the above expressions, the CVZi
(x1, x2) is given by

(3.11)

[

CVZi
(x1, x2)

]2
=

=
ρZσ

2
Z

[

1+σ2
ZHi(xi)

]2
+ (1−ρZ)σ2

Z

[

1+σ2
Z

(

H1(x1) +H2(x2)
)]2

{

ρZ

[

1 + σ2
ZHi(xi)

]

+ (1 − ρZ)
[

1 + σ2
Z

(

H1(x1) +H2(x2)
)]}2 ,

i = 1, 2.

Using the expressions of ρZ1,Z2
(x1, x2), CVZ1

(x1, x2) and CVZ2
(x1, x2),

θ(x1, x2) can be obtained.

Remark 3.2. Eriksson and Scheike (2015) have mentioned a similar for-

mula, in the competing risk set up, in a more complex form. See also Gorfine and

Hsu (2011) where they provide a new class of frailty based competing risk model

for clustered failure time data.

Shared Frailty Model

In this case ρZ = 1 and hence ρZ1,Z2
(x1, x2) = 1 and the expression for

θ(x1, x2) simplifies to

θ(x1, x2) = 1 + σ2
Z .
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3.2. Additive Bivariate Correlated Frailty Model

In this case

µ1(x1, Z1) = Z1 + µ1(x1),

µ2(x2, Z2) = Z2 + µ2(x2).

It can be verified that

ρµ1,µ2
(x1,x2) =

Cov
(

µ1(x1, Z1), µ2(x2, Z2)
)

√

V ar(µ1(x1, Z1))V ar(µ2(x2, Z2))

= ρZ1,Z2
(x1, x2).

Also

CVµi
(x1, x2) =

√

V arZi
(x1, x2)

µi(xi) + E
(

Zi|T1>x1, T2>x2

) , i = 1, 2.

Hence

θ(x1, x2) = 1 + ρZ1,Z2
(x1, x2)

√

V ar(Z1|T1>x1, T2>x2)
(

µ1(x1) + E(Z1|T1>x1, T2>x2)
)

×

√

V ar(Z2|T1>x1, T2>x2)
(

µ2(x2) + E(Z2|T1>x1, T2>x2)
) .(3.12)

Shared Additive Bivariate Frailty Model

In this case Z1 = Z2 = Z (say) and ρZ1,Z2
(x1, x2) = 1, giving

(3.13)
θ(x1, x2) =

= 1 +
V ar

(

Z |T1>x1, T2>x2)
[

µ1(x1)+E
(

Z|T1>x1, T2>x2

)][

µ2(x2)+E
(

Z|T1>x1, T2>x2

)] .

We now try to give an explicit expression for θ(x1, x2).

The conditional survival function of T1 and T2 given Z = z is

S(x1, x2|Z= z) = exp
{

−
(

Λ1(x1) + Λ2(x2) + z(x1 + x2)
)}

where Λ1(x1) and Λ2(x2) are the integrated hazards.
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The unconditional survival function is given by

S(x1, x2) =

∫

∞

0
exp

{

−
(

Λ1(x1) + Λ2(x2) + z(x1 + x2)
)}

g(z) dz

= H1(x1)H2(x2)LZ(x1 + x2),

where H1(x1) = e−Λ1(x1), H2(x2) = e−Λ2(x2) and LZ(.) is the Laplace transform

of Z.

Thus, the conditional density of Z given T1 > x1, T2 > x2 is given by

g
(

z|T1>x1, T2>x2

)

=
exp

{

−z(x1 + x2)
}

LZ(x1 + x2)
g(z).

It can be verified that

E
[

Z |T1>x1, T2>x2

]

=
−L

′

Z(x1 + x2)

LZ(x1 + x2)

and

E
[

Z2|T1>x1, T2>x2

]

=
L

′′

Z(x1 + x2)

LZ(x1 + x2)
.

Hence

V ar
[

Z |T1>x1, T2>x2

]

=
L

′′

Z(x1 + x2)

LZ(x1 + x2)
−

(

L
′

Z(x1 + x2)

LZ(x1 + x2)

)2

.

The above expressions yield

(3.14) θ(x1, x2) = 1 +

L
′′

Z
(x1+x2)

LZ(x1+x2)
−

(

L
′

Z
(x1+x2)

LZ(x1+x2)

)2

[

µ1(x1) −
L
′

Z
(x1+x2)

LZ(x1+x2)

][

µ2(x2) −
L
′

Z
(x1+x2)

LZ(x1+x2)

]
.

We now present some examples

Example 3.4. Suppose Z has a gamma distribution with pdf given by

(3.3). Also its Laplace transform and its derivatives are given in Example 3.1.

It can be verified that

(3.15) θ(x1, x2) = 1 +
αβ2

[

1+β(x1+x2)
]2

[

A(x1, x2) +

{

αβ
[

1+β(x1+x2)
]

}2 ]

−1

,

where

A(x1, x2) = µ1(x1)µ2(x2) +
αβ

[

1+β(x1+x2)
]

(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, x2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.
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Remark 3.3. Note that, in the multiplicative case, the value of θ(x1, x2)

is independent of x1 and x2; see Hanagal (2011, page 83).

Example 3.5. Suppose Z has inverse Gaussian distribution with pdf given

by (3.5). Also its Laplace transform and its derivatives are given in Example 3.2

It can be verified that

(3.16) θ(x1, x2) = 1 +
a
[

b2 + 2a(x1 + x2)
]

−3/2

A(x1, x2) +
[

b2 + 2a(x1 + x2)
]

−1/2
,

where

A(x1, x2) = µ1(x1)µ2(x2) +
[

b2 + 2a(x1 + x2)
]

−1/2(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, x2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.

Example 3.6. Suppose Z has positive stable distribution with pdf given

by (3.7). Also its Laplace transform and its derivatives are given in Example 3.3

It can be verified that

(3.17) θ(x1, x2) = 1 +
α(1 − α) (x1 + x2)

α−2

A(x1 + x2) + α2(x1 + x2)2α−2
,

where

A(x1, x2) = µ1(x1)µ2(x2) + α(x1 + x2)
α−1

(

µ1(x1) + µ2(x2)
)

.

Thus θ(x1, t2) > 1. Also as x1 → ∞ or x2 → ∞, θ(x1, x2) → 1. It is sym-

metric in x1 and x2 and is a decreasing function of x1 or x2.

Bivariate Gamma Correlated Additive Hazards Rate Model

Suppose Y0, Y1 and Y2 are independent random variables and Z1 = Y0 +Y1,

Z2 = Y0 + Y2. Then Z1 and Z2 are correlated.

The conditional survival function is given by

S
(

x1, x2|Z1 = z1, Z2 = z2
)

= H1(x1)H2(x2) e
−(z1x1+z2x2).

We follow the notations and assumptions given in section 2.1. Here Z1

and Z2 have been taken with the same marginal distribution, but correlated.
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This means that V ar(Z1) = V ar(Z2) = σ2
Z (say). Also the correlation coefficient

between Z1 and Z2 will be denoted by ρZ .

We have

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
.

Under our assumptions

α0 = ρZ/σ
2
Z , α = (1 − ρZ))/σ2

Z , β = 1/σ2
Z ,

V arY0
(x1, x2) =

α0σ
2
Z

[

1 + σ2
Z(x1 + x2)

]2 =
ρZ σ

2
Z

[

1 + σ2
Z(x1 + x2)

]2 ,

V arYi
(x1, x2) =

ασ2
Z

[

1 + σ2
Z xi)

]2 , i = 1, 2.

These give

V arZi
(x1, x2) = V arYo

(x1, x2) + V arYi
(x1, x2)

=
ρZσ

2
Z

[

1+σ2
Z(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z(x1+x2)

]2

[

1 + σ2
Z(xi)

]2[
1 + σ2

Z(x1 + x2)
]2 , i = 1, 2.

Thus

ρZ1,Z2
(x1, x2) =

V arY0
(x1, x2)

σZ1
(x1, x2)σZ2

(x1, x2)
(3.18)

=
ρZ

[(

1 + σ2
Z(x1)

)(

1 + σ2
Z(x2)

)]

[

∏i=2
i=1

{

ρZ [1+σ2
Z(xi)]2+(1−ρZ)[1+σ2

Z(x1+x2)]2
}

]1/2
.

Now

E
(

Zi|T1>x1, T2>x2) =

= E
(

Y0|T1>x1, T2>x2) + E
(

Yi|T1>x1, T2>x2

)

(3.19)

=
ρZ

[

1+σ2
Z(xi)

]

+ (1−ρZ)
[

1+σ2
Z(x1+x2)

]

[

1 + σ2
Z(xi)

][

1 + σ2
Z(x1 + x2)

] , i = 1, 2.

Using the above expressions, the CVZi
(x1, x2) is given by

(3.20)

[

CVZi
(x1, x2)

]2
=
ρZσ

2
Z

[

1+σ2
Z(xi)

]2
+(1−ρZ)σ2

Z

[

1+σ2
Z(x1+x2)

]2

{

ρZ

[

1+σ2
Z(xi)

]

+ (1−ρZ)
[

1+σ2
Z(x1+x2)

]

}2 , i = 1, 2.

Using the expressions of ρZ1,Z2
(x1, x2), CVZ1

(x1, x2) and CVZ2
(x1, x2),

θ(x1, x2) can be obtained.



Association Measures in the Bivariate Correlated Frailty Model 275

Shared Frailty Model

In this case ρZ = 1 and hence ρZ1,Z2
(x1, x2) = 1 and the expression for

θ(x1, x2) simplifies to

θ(x1, x2) = 1 + σ2
Z .

4. SOME APPLICATIONS

In medical and epidemiological studies, the primary object is to study the

effect of concomitant information on the time to event such as death or recurrence

of a disease. Cox proportional hazard model is commonly used in the analysis of

survival time data.

As has been indicated earlier, there is some amount of unobserved hetero-

geneity among individuals that is not accounted for by the Cox model. Failing

to account this form of heterogeneity between individuals may lead to distorted

results. Models, which account for this form of unobserved heterogeneity, are

known as frailty models. The models are formulated based on the idea that

individuals who are most frail will experience the event of interest earlier than

others.

Price and Manatunga (2000) analyzed the leukemia patients data. In this

data, leukemia patients receive either an allogenic transplant or an autologous

transplant. Patients are followed and time to recurrence is recorded. They ap-

plied, cure models, frailty models and frailty mixture models to analyze this data.

Specifically, the cure models, gamma frailty, gamma frailty mixture, inverse Gaus-

sian frailty, inverse Gaussian mixture and compound Poisson models are utilized

to model the data.

Xue and Ding (1999) applied the bivariate frailty model to inpatients mental

health data. One frailty is used to represent heterogeneity across all hospital stays

and another to represent heterogeneity across all community stays. These two

frailties are jointly distributed. They show that this model offers much more

flexibility than the univariate frailty model in modelling heterogeneity for the

analysis of bivariate survival times.

Hens et al. (2009) considered multisera data on hepatitis A and B. They

applied the bivariate correlated gamma frailty model for type I interval censored

data. They showed that applying a shared rather than a correlated frailty model

to this cross-sectionally collected serological data on hepatitis A and B leads to

biased estimate for the baseline hazards and variance parameters. Weinke et

al. (2003) point out that the shared frailty explains correlation within clusters.

However, it does have some limitations.
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Wienke et al. (2003) applied the correlated gamma frailty model to fit

bivariate time to event (occurrence of breast cancer) data. They fitted the model

for left truncated and right truncated censored data and the analysis accounts

for heterogeneity as well as insusceptible (cure fraction) in the study population.

This approach includes the shared gamma frailty model as a special case. The

correlated gamma model provides a specific parameter for correlation between

the two frailties. They also observed that individual frailties in twin pairs could

not be observed, but their correlation could be estimated by application of the

gamma frailty model.

Weinke et al. (2006) used three correlated frailty models to analyze survival

data by assuming gamma, log-normal and compound Poisson distributed frailty.

All approaches allow to deal with right censored data and account for hetero-

geneity as well as non susceptible (cure fraction) in the study population. Breast

cancer incidence data of Swedish twin pairs illustrate the practical relevance of the

models, which are used to estimate the cure fraction and the correlation between

the frailties of the twin partners.

We have described some applications of frailty models and correlated frailty

models. For more applications, the reader is referred to the bibliography in these

papers and the books on frailty models.

5. SOME CONCLUSION AND COMMENTS

Multivariate survival distributions are used in the analysis of life spans of

related individuals. An important class of such distributions can be derived by

using the concept of random hazards. The randomness is modeled as a frailty

random variable having an appropriate distribution. This paper presents a gen-

eral bivariate correlated frailty model and unifies various results available in the

literature. A bivariate gamma correlated frailty model is studied. Clayton’s as-

sociation measure is derived for the general model under study. Proportional

hazards as well as additive hazards bivariate frailty model is investigated along

with several examples. We hope that the results presented here will be found

useful for researchers dealing with various problems involving frailty.
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