
REVSTAT – Statistical Journal

Volume 16, Number 2, April 2018, 231–255

SEMI-PARAMETRIC LIKELIHOOD INFERENCE

FOR BIRNBAUM–SAUNDERS FRAILTY MODEL

Authors: N. Balakrishnan

– Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario, Canada
bala@mcmaster.ca

Kai Liu

– Department of Mathematics and Statistics, McMaster University,
Hamilton, Ontario, Canada
liuk25@math.mcmaster.ca

Received: April 2017 Revised: August 2017 Accepted: August 2017

Abstract:

• Cluster failure time data are commonly encountered in survival analysis due to dif-
ferent factors such as shared environmental conditions and genetic similarity. In such
cases, careful attention needs to be paid to the correlation among subjects within same
clusters. In this paper, we study a frailty model based on Birnbaum–Saunders frailty
distribution. We approximate the intractable integrals in the likelihood function by
the use of Monte Carlo simulations and then use the piecewise constant baseline haz-
ard function within the proportional hazards model in frailty framework. Thereafter,
the maximum likelihood estimates are numerically determined. A simulation study is
conducted to evaluate the performance of the proposed model and the method of infer-
ence. Finally, we apply this model to a real data set to analyze the effect of sublingual
nitroglycerin and oral isosorbide dinitrate on angina pectoris of coronary heart disease
patients and compare our results with those based on other frailty models considered
earlier in the literature.
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1. INTRODUCTION

It is of natural interest in medical or epidemiological studies to examine

the effects of treatments. Proportional hazards model, proposed by Cox [5], is

the most popular model for the analysis of such survival data which models the

hazard function as

h(t) = h0(t) exp(β′x),

where t, x and h0 are the time to certain event, set of covariates and baseline

hazard function, respectively. This model makes a critical assumption of inde-

pendent observations from the subjects. However, correlation commonly exists

in survival data due to shared environmental factors or genetic similarity. There-

fore, neglecting this correlation may lead to biased results. A convenient choice

for modeling these kinds of correlation in survival data is the frailty model. The

terminology frailty was first introduced by Vaupel et al. [20], while accounting

for the heterogeneity of individuals in distinct clusters. Generally speaking, the

more frail an individual is, the earlier the event of interest will be. A shared

frailty model introduces multiplicative random effects, which is referred to as the

frailty term, in the proportional hazards model, and is defined as follows. Let

(tij , δij , xij), i = 1, ..., n, j = 1, ..., mi, be the failure time, censoring indicator, and

the covariate vector of the jth individual in the ith cluster, where δij is 1 if tij is

not censored and 0 otherwise. Let yi be the frailty shared commonly by all the

subjects in the ith cluster. Then, given yi, tij are assumed to be independent

with hazard function

(1.1) h(tij |yi) = yih0(tij) exp(β′xij).

The frailties yi are assumed to be independent and identically distributed with

a distribution, called the frailty distribution. The baseline hazard h0(tij) is arbi-

trary. A common parametric choice of the baseline hazard is Weibull. Klein [13]

proposed a non-parametric estimate of the cumulative hazard function of baseline

distribution and then used a profile likelihood function.

The most prevailing choice of the frailty distribution is gamma distribution

due to its mathematical simplicity and the mathematical tractability of ensuing

inference [13]. It has a closed-form for the conditional likelihood function, given

the observed data, so that EM algorithm can be applied effectively to obtain

the maximum likelihood estimates. Another possibility is the positive stable

distribution proposed by Hougaard [10]. Furthermore, Hougaard [11] derived

power variance function from the positive stable distribution, which contains the

preceding frailty distributions as special cases. All these distributions have simple

Laplace transforms and therefore facilitates convenient computation of maximum

likelihood estimates. However, there is no real biological reason for their use.

Nevertheless, when the Laplace transform of the frailty distribution is unknown,
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the likelihood function becomes intractable. Lognormal distribution is one such

example. McGilchrist and Aisbett [16] developed a best linear unbiased prediction

(BLUP) estimation method in this case of lognormal frailty model. Balakrishnan

and Peng [2] proposed the generalized gamma frailty model since the generalized

gamma distribution contains the gamma, Weibull, lognormal and exponential

distributions all as special cases. Consequently, the generalized gamma frailty

model becomes more flexible and tend to provide good fit to data as displayed

by Balakrishnan and Peng [2].

The two-parameter Birnbaum–Saunders (BS) family of distributions was

originally derived as a fatigue model by Birnbaum and Saunders [3] for which

a more general derivation from a biological viewpoint was later provided by

Desmond [7]. This distribution possesses many interesting distributional prop-

erties and shape characteristics. In the present work, we use this BS model as

the frailty distribution along with a piecewise constant baseline hazard function

within the proportional hazards model to come up with a flexible frailty model.

The precise specification of this model is detailed in Section 2. An estimation

method to obtain the maximum likelihood estimates of model parameters is pre-

sented in Section 3. A simulation study is conducted in Section 4 to assess the

performance of the proposed method and then the usefulness of the proposed

model and the method of inference is illustrated with a real data in Section 5.

Discussions and some concluding remarks are finally made in Section 6.

2. MODEL SPECIFICATION

2.1. BS distribution as frailty distribution

The BS distribution was originally derived to model fatigue failure caused

under cyclic loading [3]. The fatigue failure is due to the initiation, growth

and ultimate extension of a dominant crack. It is assumed that the total crack

extension Yj due to the jth cycle, for j = 1, ..., are independent and identically

distributed random variables with mean µ and variance σ2. Then, the distribution

of the failure time (i.e., time for the crack to exceed a certain threshold level) is

given by

(2.1) F (t; α, β) = Φ

[

1

α

{

( t

β

)1/2
−

(β

t

)1/2
}

]

, 0 < t < ∞, α, β > 0,

where Φ is the standard normal cumulative distribution function (CDF), and α

and β are the shape and scale parameters, respectively. We now assume that the

frailty random variable Yi in (1.1) follows the BS distribution defined in (2.1).
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Since 1
α

{

(

T
β

)1/2
−

(

β
T

)1/2
}

is a standard normal random variable, the random

variable T is simply given by

(2.2) T = β

{

αZ

2
+

[

(αZ

2

)2
+ 1

]1/2
}2

,

where Z ∼ N(0, 1). The probability density function (PDF) of T , derived from

(2.1), is given by

(2.3) f(t; α, β) =
1

2
√

2παβ

[

(β

t

)1/2
+

(β

t

)3/2
]

exp

[

− 1

2α2

( t

β
+

β

t
− 2

)

]

, t > 0.

The relation between T and Z in (2.2) enables us to obtain the mean and

variance of T easily as

E(T ) = β
(

1 +
1

2
α2

)

,(2.4)

V (T ) = (αβ)2
(

1 +
5

4
α2

)

.(2.5)

In the frailty model in (1.1), if the frailty term yi is assumed to follow the

BS distribution, for ensuring identifiability of model parameters, the mean of the

frailty distribution needs to be set as 1. More specifically, let Y1 be a BS random

variable with shape parameter α and scale parameter β with its mean as 1. Let

Y2 = cY1. Then, E(Y2) = cE(Y1) = c. Besides, we know that if Y1 ∼ BS(α, β),

then cY1 ∼ BS(α, cβ). Therefore, Y2 ∼ BS(α, cβ) with mean c. Then, given the

frailty term y2, the lifetime of the patients are modeled by the hazard function

h(t|y2) = y2h0(t) exp(β′x) = c y1h0(t) exp(β′x).

Let us define ch0(t) to be a new baseline hazard function h1(t), which is nothing

but rescaling the original baseline hazard function. Then, the model can be

rewritten as

h(t|y2) = y1h1(t) exp(β′x),

which is identical to a frailty model with frailty variable Y1 and baseline hazard

function h1(t) = ch0(t).

Thus, the scale parameter β can be written in terms of the shape parameter

α as

(2.6) β =
2

2 + α2
,

so that the variance of the frailty variable Yi becomes

(2.7) V (Yi) =
4α2 + 5α4

α4 + 4α2 + 4
,

which is constrained to be in the interval (0, 5).

Some important discussions on inferential issues for BS distribution can be

found in [1, 4, 8, 9, 15, 17, 18, 19].
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2.2. Piecewise constant hazard as baseline hazard function

The baseline hazard h0(t) in (1.1) is normally assumed in the parametric

setting to be that of exponential or Weibull distribution [11]. However, such a

strong parametric assumption is not always desirable as the resulting inference

may become non-robust. For this reason, we use a piecewise constant hazard func-

tion to approximate the baseline hazard so that it could capture inherent shape

and features of the hazard function better. Let J be the number of partitions

of the time interval, i.e., 0 = t(0) < t(1) < ··· < t(J), where t(J) > max(tij). The

points t(1), ..., t(J) are called cut-points. The piecewise constant hazard function

is then given by

h0(t) = γk for t(k−1) ≤ t < t(k) for k = 1, ..., J.

The corresponding cumulative hazard function is

(2.8) H0(t) =

k−1
∑

q=1

γq

(

t(q) − t(q−1)
)

+ γk

(

t − t(k−1)
)

for t(k−1) ≤ t < t(k),

where γk is a constant hazard for interval
[

t(k−1), t(k)
)

, k = 1, ..., J .

3. ESTIMATION METHOD

Let (tij , δij , xij), i = 1, ..., n, j = 1, ..., mi, be the failure time, censoring in-

dicator, and the covariate vector for the jth individual in the ith cluster and yi

be the frailty term. Then, the full likelihood function of the BS frailty model is

obtained from (1.1) as

L =
n

∏

i=1

∫ ∞

0

( mi
∏

j=1

h(tij |yi)
δij S(tij |yi)

)

f(yi) dyi

=
n

∏

i=1

∫ ∞

0

[ mi
∏

j=1

(

yih0(tij) exp(β′xij)
)δij

× exp
(

− yiH0(tij) exp(β′xij)
)

]

f(yi) dyi

=
n

∏

i=1

[ mi
∏

j=1

(

h0(tij) exp(β′xij)
)δij

(3.1)

×
∫ ∞

0
yδi·

i exp
(

− yi

mi
∑

j=1

H0(tij) exp(β′xij)
)

f(yi) dyi

]

=
n

∏

i=1

[ mi
∏

j=1

(

h0(tij) exp(β′xij)
)δij

Ii

]

,
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where δi· =
∑mi

j=1 δij , H0 is the cumulative baseline hazard function with parame-

ter γ as given in (2.8), f is the PDF of the BS distribution with shape parameter

α and scale parameter β = 2
2+α2 as given in (2.3), and

Ii =

∫ ∞

0
yδi·

i exp
(

− yi

mi
∑

j=1

H0(tij) exp(β′xij)
)

f(yi) dyi.

The above expression of Ii can be rewritten as

(3.2) Ii =

∫ ∞

−∞
g(zi)

δi· exp
(

− g(zi)

mi
∑

j=1

H0(tij) exp(β′xij)
)

fZ(zi) dzi,

where fZ is the PDF of the standard normal distribution and

g(zi) =
2

2 + α2

{

1 +
α2z2

i

2
+ α zi

(

1 +
α2z2

i

4

)1/2
}

.

The maximum likelihood estimates are hard to determine due to the in-

tractable integral in (3.2) present in the likelihood function in (3.1). A direct and

convenient way is to use Monte Carlo simulation to approximate the integral in

(3.2) as follows:

Ii = EZ

[

g(Z)δi· exp
(

− g(Z)

mi
∑

j=1

H0(tij) exp(β′xij)
)

]

=
1

N

N
∑

k=1

g(z(k))
δi· exp

(

− g(z(k))

mi
∑

j=1

H0(tij) exp(β′xij)
)

,

where z(k), k = 1, ..., N , are the realizations of standard normal random variable.

The log-likelihood function can then be approximated from (3.1) as

(3.3)

l =
n

∑

i=1

[

mi
∑

j=1

δij

(

log h0(tij) + β′xij

)

+ log
1

N

N
∑

k=1

g(z(k))
δi· exp

(

− g(z(k))

mi
∑

j=1

H0(tij) exp(β′xij)
)

]

.

Once the approximate log-likelihood function is obtained as in (3.3), Fisher’s

score function and the Hessian matrix with respect to the parameters α,β, γ can

be obtained readily upon taking partial derivatives of first- and second-order, and

pertinent details are presented in Appendix A. The MLEs of model parameters

can then be obtained by Newton–Raphson algorithm iteratively as






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The iterations need to be continued until the desired tolerance level is achieved,

say, |θ̂i+1 − θ̂i| < 10−6. Finally, the standard errors of the estimates of α,β, γ can

be obtained from the inverse of the Hessian matrix evaluated at the determined

MLEs.

4. SIMULATION STUDY

An extensive simulation study is carried out here to assess the performance

of the proposed model and the method of estimation. We consider 4 scenarios:

(1) n = 100, m = 2, (2) n = 100, m = 4, (3) n = 100, m = 8 and (4) n = 400,

m = 2. Here, the clusters can be considered as hospitals and each subject as a

patient in these hospitals. The patients are randomly assigned to either a treat-

ment group or a control group with equal probability. The frailty term follows (1)

the BS distribution with shape parameter (2
√

10−2)1/2

3 and scale parameter 9
8+

√
10

,

(2) gamma distribution (GA) with shape parameter 2 and scale parameter 0.5,

(3) lognormal (LN) distribution with µ = − log(1.5)
2 and σ2 = log(1.5). With these

choices of parameters, the mean and variance of the frailty distribution become 1

and 0.5, respectively, for all these frailty distributions. The standard exponential

distribution and the standard lognormal distribution are considered for baseline

distributions. We then set β = − log(2) = −0.6931 so that the hazard rate of

patients in the treatment group is half of those in the control group. Finally, the

censoring times are generated from the uniform distribution in [0, 4.5].

The simulation procedure is as follows:

(1) Generate n frailty values from frailty distributions, i.e., yi, i = 1, ..., n,

and assign each subject in the same cluster with same frailty value.

(2) Assign each patient to treatment group or control group with proba-

bility 0.5.

(3) Given the frailty term, the survival function is

S(tij |yi) = exp
(

−yiH0(tij) exp(βxij)
)

and the cumulative distribution function is

F (tij |yi) = 1 − exp
(

−yiH0(tij) exp(βxij)
)

,

which follows a uniform distribution (0,1). Therefore we generate uij

from Uniform(0,1) and set F (tij |yi) = uij .

(4) Calculate the baseline cumulative hazard function, which is

H0(tij) = − log(1 − uij)

yi exp(βxij)
.

(5) Solve for the lifetime according to the true baseline distribution, i.e.:

for standard exponential, tij = H0(tij); for standard lognormal, tij =

exp
(

Φ−1(1 − exp(−H0(tij)))
)

since 1 − exp(−H0(tij)) = Φ(log(tij)).
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(6) Now, we generate censoring time cij from Uniform[0,4.5].

(7) Compare tij and cij . If tij <= cij , then set tij to be the observed time

and the censoring indicator δij = 1. If tij > cij , we set cij to be our

observed time and δij = 0.

We generated 1000 data sets under each setting and applied the proposed

semi-parametric BS frailty model to these data sets. For comparative purposes,

we fitted the simulated data sets with the parametric BS frailty model along with

gamma and lognormal frailty models. Thus, we fitted 6 models for each simu-

lated data with frailty distribution to be one of BS, gamma or lognormal, and

the baseline hazard function to be either piecewise constant hazard function or

Weibull hazard function. The primary parameters of interest are the treatment

effect and the frailty variance, and so our attention will focus on these parame-

ters. The estimates of the treatment effect are summarized in Figures 1 and 2,

while Figures 3 and 4 demonstrate how the estimates of the frailty variance dif-

fer under different models. The horizontal black lines are the true values of the

parameters of interest, while the vertical bars give 95% confidence intervals. The

three numbers on the top of each plot are the rejection rate and coverage proba-

bilities at confidence levels of 95% and 90%. The two numbers at the bottom of

each plot provide bias and mean square error for the different models considered.

Figures 1 and 2 clearly show that the choice of frailty distribution has little

impact on the estimate of treatment effect. When the true baseline distribution is

exponential, either Weibull baseline hazard or piecewise constant hazard function

will result in accurate estimation of the treatment effect. However, when the

true baseline distribution is lognormal, use of piecewise constant hazard baseline

distribution results in smaller bias and mean square error than when using the

Weibull distribution as baseline. This reveals that misspecification of the baseline

hazard function impacts the estimate of treatment effect and the semi-parametric

frailty models are therefore better than the parametric frailty models based on

robustness consideration.

The heterogeneity among clusters is explained by the frailty variance and

so it is important to investigate the frailty variance. The estimates of frailty

variance are shown in Figures 3 and 4. BS frailty model always has less mean

square error than the lognormal frailty model no matter what the true frailty

model is. Even though the gamma frailty model generally has smallest bias and

mean square error, its coverage probabilities are quite small and considerably

below the nominal level. Both parametric and semi-parametric BS frailty models

have coverage probabilities close to the nominal level, and so does the lognormal

frailty model. Furthermore, as the sample size gets larger, the estimates become

more precise. When the sample size is small, the rejection rate is small for BS and

lognormal frailty models, but they become larger when the sample size increases.
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Figure 1: Estimate of treatment effect when the true baseline distribution
is exponential.
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Figure 2: Estimate of treatment effect when the true baseline distribution
is lognormal.
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Figure 3: Estimate of frailty variance when the true baseline distribution
is exponential.
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Figure 4: Estimate of frailty variance when the true baseline distribution
is lognormal.
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Table 1 summarizes the selection rate of the models based on the log-

likelihood value. When the true baseline distribution is exponential, the models

with correct frailty distributions generally have the largest selection rate except

when the true frailty distribution is lognormal and the number of clusters is 100.

Table 1: Observed selection rates based on log-likelihood value.

Fitted models True models

baseline frailty
BS GA LN

Exp LN Exp LN Exp LN

n = 100, m = 2

BS 0.385 0.587 0.285 0.296 0.399 0.580
Weibull GA 0.262 0.283 0.418 0.633 0.232 0.280

LN 0.353 0.130 0.297 0.071 0.369 0.140

BS 0.378 0.500 0.282 0.385 0.394 0.532
Piecewise GA 0.242 0.325 0.400 0.489 0.224 0.294

LN 0.380 0.175 0.318 0.126 0.382 0.174

n = 100, m = 4

BS 0.386 0.512 0.227 0.435 0.392 0.506
Weibull GA 0.287 0.322 0.563 0.463 0.249 0.305

LN 0.327 0.166 0.210 0.102 0.359 0.189

BS 0.385 0.449 0.224 0.289 0.381 0.455
Piecewise GA 0.282 0.338 0.571 0.590 0.244 0.286

LN 0.333 0.213 0.205 0.121 0.375 0.259

n = 100, m = 8

BS 0.518 0.594 0.189 0.318 0.467 0.539
Weibull GA 0.203 0.190 0.676 0.579 0.162 0.194

LN 0.279 0.216 0.135 0.103 0.371 0.267

BS 0.510 0.576 0.204 0.209 0.439 0.497
Piecewise GA 0.203 0.225 0.666 0.690 0.186 0.202

LN 0.287 0.199 0.130 0.101 0.375 0.301

n = 200, m = 2

BS 0.362 0.668 0.251 0.673 0.337 0.642
Weibull GA 0.254 0.275 0.508 0.293 0.251 0.290

LN 0.284 0.057 0.241 0.034 0.412 0.068

BS 0.339 0.518 0.268 0.356 0.354 0.548
Piecewise GA 0.284 0.376 0.501 0.597 0.250 0.334

LN 0.377 0.106 0.231 0.047 0.396 0.118

n = 400, m = 2

BS 0.365 0.755 0.221 0.774 0.345 0.714
Weibull GA 0.237 0.237 0.561 0.217 0.214 0.272

LN 0.398 0.008 0.218 0.009 0.441 0.014

BS 0.340 0.545 0.221 0.285 0.339 0.594
Piecewise GA 0.239 0.413 0.546 0.697 0.228 0.352

LN 0.421 0.042 0.233 0.018 0.433 0.054
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Under this situation, the BS frailty models have slightly greater selection rates

than the lognormal frailty model. In fact, the log-likelihood values are quite close

for BS and lognormal frailty models. When the number of clusters increases,

the selection rate of the lognormal frailty model increases and indeed becomes

the largest in the case when the true frailty distribution is lognormal. On the

other hand, when the true baseline distribution is lognormal, the parametric BS

frailty model becomes more likely to be selected, especially when the number of

clusters increases. Use of the piecewise constant hazard baseline function results

in increasing selection probability of the true frailty distribution when the frailty

distribution is gamma. However, the semi-parametric BS frailty model often has

the highest selection rate when the true frailty distribution is lognormal. This

suggests that the semi-parametric BS frailty model often results in MLEs with

larger likelihood values than the semi-parametric lognormal frailty model and

thus provide a better fit to observed data.

In summary, the choice of frailty distribution and the baseline distribution

is a critical issue in frailty modeling. An inappropriate baseline distribution

seems lead to larger errors in the estimation of both treatment effect and the

frailty variance. However, the choice of the frailty distribution has less influence

on estimating the treatment effect, but it highly impacts the estimation of frailty

variance. Finally, the proposed BS frailty model provides a robust estimate of

treatment effect and the frailty variance overall, and generally results in larger

likelihood values among all fitted models. The R codes are available upon request

from the authors.

5. ILLUSTRATIONWITHACORONARYHEARTDISEASESTUDY

In this section, we fit the proposed semi-parametric BS frailty model to a

real data set from Danahy et al. [6] concerning a study of oral administration of

isosorbide dinitrate on 21 coronary heart disease patients, presented in Table 2.

In the study, the patients were treated initially with sublingual nitroglycerin

(SLN) and sublingual placebo (SLP) and then two tests of bike pedalling were

conducted on the patients. Then, they took oral isosorbide dinitrate (OI) and

oral placebo (OP) after which eight bike pedalling tests were given right after

(OI0, OP0) and 1h (OI1, OP1), 3h (OI3, OP3), 5h (OI5, OP5). The times to

angina pectoris were then recorded. Some of the times were censored because the

patients were too exhausted (times with ∗ are the censoring times).

Hougaard [12] studied the effects of the treatments with the proportional

hazards model. In addition, several frailty models with gamma, stable and

power variance function as the frailty distribution, along with non-parametric

and Weibull hazard functions, were fitted to these data. The analyses carried
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out demonstrated that a frailty model fitted the data better than the classical

proportional hazards model, and the power variance function frailty distribution

was more suitable than the gamma frailty distribution. Balakrishnan and Peng

[2] analyzed the same data with a generalized gamma frailty model (GG) with

both parametric and semi-parametric baseline hazard functions. These authors

showed that the generalized gamma frailty model provided a better fit than the

gamma, Weibull and lognormal frailty models, which are all special cases of the

generalized gamma frailty model.

Table 2: Exercise times to Angina Pectoris (in seconds).

ID SLP SLN OP0 OP1 OP3 OP5 OI0 OI1 OI3 OI5

1 155 431 150 172 118 143 136 445∗ 393∗ 226
2 269 259 205 287 211 207 250 306 206 224
3 408 446 221 244 147 250 215 232 258 268
4 308 349 150 290 205 210 235 248 298 207
5 135 175 87 157 135 105 129 121 110 102
6 409 523 301 357 388 388 425 580 613 514
7 455 488 342 390 441 468 441 504∗ 519∗ 484∗

8 182 227 215 210 188 189 208 264 210 172
9 141 102 131 125 99 115 154 110 123 105
10 104 231 108 114 136 111 89 145 172 123
11 207 249 228 224 251 206 250 230 264 216
12 198 247 190 199 243 222 147 403 290 208
13 274 397 234 249 267 241 231 540∗ 370 316
14 191 251 218 194 197 223 224 432 291 212
15 156 401 199 329 197 176 152 733∗ 492 303
16 458 766 406 431 448 328 417 743∗ 566 391
17 188 199 194 168 168 159 213 250 150 180
18 258 566∗ 277 264 276 251 490 559∗ 557∗ 439
19 437 552 424 512 560 478 406 651 624 554
20 115 237 234 232 281 237 229 327 280 321
21 200 387 227 199 223 227 265 565∗ 504∗ 517∗

We first investigate the feature of the data through the cumulative haz-

ard plot, presented in Figure 5. The cumulative hazard after taking placebo is

seen to be higher than that after taking sublingual nitroglycerin or isosorbide

dinitrate. The hazard rate is increasing after taking placebo while it looks to

be increasing and then decreasing after taking isosorbide dinitrate. We then

fitted these data with the parametric and semi-parametric BS frailty models.

The obtained results are presented in Tables 3 and 4. In addition, we fit-

ted the parametric and semi-parametric gamma (GA), lognormal (LN) and in-

verse Gaussian (IG) frailty models to these data. Furthermore, for compara-

tive purpose, we also include estimates of the generalized gamma frailty model

(GG) from [2]. The minimum and maximum time to angina pectoris were

87s and 766s, respectively. Figure 6 is a histogram of observed times and it
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shows that the data is sparse at the tail. So, we chose the cutpoints to be

t(0) = 87, t(1) = 150, t(2) = 200, t(3) = 250, t(4) = 300, t(5) = 400, t(6) = 766 to cap-

ture changes in the piecewise constant hazard baseline function.
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Figure 5: Cumulative hazard plot of the treatments.

Table 3: Fitted frailty models with Weibull baseline hazard function.

BS GA LN IG GG

SLN −1.54(0.34) −1.51(0.34) −1.55(0.34) −1.43(0.34) −1.51(0.34)
OP0 0.69(0.33) 0.69(0.33) 0.69(0.33) 0.7(0.33) 0.67(0.33)
OP1 0.12(0.32) 0.13(0.32) 0.12(0.32) 0.17(0.32) 0.11(0.33)
OP3 0.26(0.33) 0.28(0.33) 0.26(0.33) 0.24(0.33) 0.27(0.32)
OP5 0.63(0.33) 0.64(0.33) 0.63(0.33) 0.57(0.33) 0.66(0.32)
OI0 0.13(0.33) 0.15(0.33) 0.13(0.33) 0.15(0.33) 0.19(0.32)
OI1 −2.67(0.41) −2.64(0.41) −2.68(0.41) −2.55(0.4) −2.54(0.39)
OI3 −1.38(0.36) −1.37(0.36) −1.40(0.36) −1.36(0.36) −1.31(0.35)
OI5 −0.35(0.35) −0.35(0.35) −0.37(0.35) −0.41(0.35) −0.38(0.33)

log(p) 1.59(0.06) 1.58(0.05) 1.59(0.06) 1.56(0.05) 1.59(0.06)
log(λ) −25.66(1.53) −25.44(1.44) −25.49(1.66) −25.34(1.58) −25.40(8.14)

Frailty variance 3.35(0.45) 2.51(0.07) 49.33(54.78) 10.87(1.19) 232.27(617.98)

Log−likelihood −1121.86 −1124.86 −1122.12 −1123.00 1120.92
AIC 2267.71 2273.72 2268.23 2270.00 2267.82



248 N. Balakrishnan and Kai Liu

Table 4: Fitted frailty models with piecewise constant baseline
hazard function.

BS GA LN IG GG

SLN −1.38(0.34) −1.38(0.33) −1.38(0.34) −1.43(0.33) −1.37(0.34)
OP0 0.57(0.33) 0.59(0.33) 0.58(0.33) 0.50(0.32) 0.56(0.33)
OP1 −0.004(0.32) 0.01(0.32) −0.01(0.32) −0.07(0.31) −0.06(0.31)
OP3 0.20(0.33) 0.22(0.32) 0.20(0.33) 0.12(0.32) 0.17(0.33)
OP5 0.50(0.32) 0.52(0.32) 0.50(0.32) 0.42(0.32) 0.48(0.32)
OI0 0.05(0.32) 0.06( 0.32) 0.05(0.32) −0.02(0.32) 0.09(0.32)
OI1 −2.18(0.38) −2.24(0.38) −2.17(0.39) −2.21(0.38) −2.16(0.38)
OI3 −1.29(0.35) −1.32(0.35) −1.29(0.35) −1.34(0.35) −1.28(0.35)
OI5 −0.39(0.34) −0.41(0.34) −0.40(0.34) −0.46(0.33) −0.41(0.41)

log(γ1) −5.42(0.42) −5.37(0.43) −5.64(0.77) −5.48(0.48) −4.76(0.49)
log(γ2) −3.96(0.48) −3.95(0.46) −4.15(0.76) −3.98(0.44) −3.24(0.48)
log(γ3) −2.49(0.49) −2.48(0.46) −2.70(0.78) −2.52(0.42) −1.79(0.51)
log(γ4) −1.83(0.52) −1.79(0.49) −2.05(0.80) −1.91(0.42) −1.14(0.57)
log(γ5) −2.08(0.55) −1.98(0.50) −2.30(0.83) −2.19(0.43) −1.38(0.61)
log(γ6) −0.57(0.56) −0.43(0.50) −0.79(0.84) −0.71(0.41) 0.08(0.62)

Frailty variance 3.02(0.47) 2.34(0.07) 16.67(17.45) 10.52(1.17) 56.18(105.16)

Log−likelihood −1111.88 −1116.58 −1112.16 −1111.562 −1111.39
AIC 2255.75 2265.16 2256.31 2255.12 2256.78

Figure 6: Histogram of observed times.

All the models result in similar estimates of the treatment effects, which

are consistent with the results of Hougaard [12] and Balakrishnan and Peng [2].

Among all the frailty models fitted, the parametric BS frailty models provided the

best fit since they had the smallest AIC values compared to other parametric mod-

els, even compared to the parametric generalized gamma frailty model possessing

one extra shape parameter. Among the semi-parametric models, even though

the inverse Gaussian model has the smallest AIC, the AIC of semi-parametric BS

frailty model is quite close. Upon comparing the parametric and semi-parametric

frailty models, we note that the semi-parametric frailty model has smaller AIC

than its parametric counterparts. It is of interest to notice that estimates of
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frailty variance are quite large for parametric lognormal and generalized gamma,

and so are their standard errors. It is because we estimate the parameter of

the frailty distribution (i.e., shape parameter for BS, gamma and inverse Gaus-

sian and standard deviation of logarithm for lognormal), the estimates of frailty

variance and its standard error are obtained by delta method. Small changes of

estimate of parameter for lognormal distribution results in large change in esti-

mate of its variance. The estimated CDF is presented in Figure 7. The black

step curve is the non-parametric CDF obtained from the Kaplan–Meier estimates.
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Figure 7: Fitted cumulative distribution functions.

We can see all the eight models fit the data well. To quantify the goodness-of-

fit, we calculate the Kolmogorov–Smirnov distance (KSD) between the CDF of

fitted models and the non-parametric CDF, presented in Table 5. It is defined

as D = sup|F̂ (t) − F̂km(t)|. It is seen clearly that piecewise linear baseline is

better than Weibull baseline for all the models considered. This is also seen in

the maximized log-likelihood and AIC values in Tables 3 and 4. Overall, the fits

as measured by KSD are all quite similar with those by AIC indicating BS and

IG models to be better. We also should examine the residuals to check the error.

Figure 8 presents the deviance residuals, which is defined as

Drij = sign(rij)
√

−2
[

rij + δij log(δij − rij)
]

,

where rij = δij + log(Ŝ(tij)). It can be seen that the deviance residuals are ran-

domly distributed along 0. The deviance residuals should follow a standard nor-

mal distribution. For checking this, the QQ plot and envelopes of the deviance

residuals are presented in Figure 9. It seems that all the models satisfy the nor-

mality assumption and the semi-parametric models are slightly better than the
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parametric ones. The right tail of semi-parametric gamma frailty model deviates

from the straight line more than the others. Semi-parametric BS, lognormal and

inverse Gaussian frailty models are quite similar. Overall, semi-parametric BS is

seen to be quite a robust model for modeling these clustered failure time data.

Table 5: KSD between estimated CDF and non-parametric CDF.

Frailty Baseline OI0 OI1 OI3 OI5 OP0 OP1 OP3 OP5 SLN SLP Overall

BS piecewise 0.15 0.22 0.22 0.12 0.19 0.11 0.07 0.17 0.16 0.12 0.22
GA piecewise 0.19 0.21 0.18 0.15 0.23 0.14 0.11 0.20 0.19 0.12 0.23
IG piecewise 0.13 0.18 0.21 0.12 0.13 0.07 0.10 0.13 0.11 0.20 0.21
LN piecewise 0.12 0.19 0.20 0.10 0.12 0.06 0.09 0.11 0.09 0.19 0.20
BS Weibull 0.13 0.25 0.23 0.12 0.18 0.11 0.12 0.15 0.11 0.14 0.25
GA Weibull 0.16 0.19 0.19 0.12 0.23 0.15 0.10 0.18 0.12 0.12 0.23
IG Weibull 0.24 0.25 0.22 0.23 0.24 0.14 0.21 0.25 0.23 0.28 0.28
LN Weibull 0.17 0.22 0.21 0.15 0.18 0.10 0.15 0.18 0.18 0.20 0.22
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Figure 8: Deviance residuals.
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Figure 9: QQ plots for deviance residuals.

6. DISCUSSION AND CONCLUDING REMARKS

In this work, we have proposed a semi-parametric frailty model with BS frailty

distribution. The non-parametric choice of baseline hazard function provides a ro-

bust and flexible way to model the data. The determination of MLEs becomes

very difficult due to the intractable integrals present in the likelihood function.

For this reason, Monte Carlo simulations are used to approximate the likelihood

function upon exploiting the relationship between BS and standard normal distri-

butions and then expressing those integrals as expectations of some functions of

standard normal variables. From the simulation study carried out and the illus-

trative example analyzed, the semi-parametric BS frailty model is seen to be quite

robust in estimating the covariate effects as well as the frailty variance. Interest-

ingly, it is seen to be even better than the three-parameter generalized gamma

frailty model though the latter has an extra shape parameter. It is of interest to

mention that the work carried out here can be generalized in two different direc-

tions. The BS distribution can be generalized by assuming that the variable Z in

(2.2) follows a standard elliptically symmetric distribution, including power expo-

nential, Laplace, Student t and logistic distributions. SuchageneralizedBirnbaum–

Saunders (GBS) distribution (see [14]) could be assumed for the frailty term yi

in (1.1) and then the resulting GBS frailty model could be studied in detail.

Next, we could allow for the possibility of a cure of patients within the context of

BS frailty model and develop the corresponding analysis. Work is currently under

progress on these problems and we hope to report these findings in a future paper.
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APPENDIX A — FIRST- AND SECOND-ORDER DERIVATIVES

OF THE LOG-LIKELIHOOD FUNCTION

The first- and second-order derivatives of the log-likelihood function with

respect to α,β and γ are as follows:

∂l

∂α
=

n
∑

i=1

1

Ii

∂Ii

∂α
,

∂l

∂β
=

n
∑

i=1

[

mi
∑

j=1

δij xij +
1

Ii

∂Ii

∂β

]

,

∂l

∂γ
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n
∑

i=1

[ mi
∑

j=1

δij

h0(tij)
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dγ
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1
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∂Ii
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]

;
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[

− 1

I2
i

(

∂Ii
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)2

+
1
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∂2Ii

∂α2

]
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i
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,

where
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∑
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in the above expressions, the quantities El,i (l = 1, ..., 10) are given by
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