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Abstract:

• Systematic sampling has been facing two problems since its beginning; situational
complications, e.g., population size N not being a multiple of the sample size n, and
unavailability of unbiased estimators of population variance for all possible combi-
nations of N and n. These problems demand a sampling design that may solve the
said problems in a practicable way. In this paper, therefore, a new sampling design
is introduced and named as, “Modified Systematic Sampling with Multiple Random
Starts”. Linear systematic sampling and simple random sampling are the two extreme
cases of the proposed design. The proposed design is analyzed in detail and various
expressions have been derived. It is found that the expressions for linear system-
atic sampling and simple random sampling may be extracted from these expressions.
Finally, a detailed efficiency comparison is also carried out in this paper.
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1. INTRODUCTION

Systematic sampling is generally more efficient than Simple Random Sam-

pling (SRS) because SRS may include bulk of units from high density or low

density parts of the region, whereas the systematic sampling ensures even cover-

age of the entire region for all units. In many situations, systematic sampling is

also more precise than stratified random sampling. Due to this, researchers and

field workers are often inclined towards systematic sampling.

On the other hand, in Linear Systematic Sampling (LSS), we may obtain

sample sizes that vary when the population size N is not a multiple of the sample

size n, i.e., N 6= nk, where k is the sampling interval. However, this problem can

be dealt by Circular Systematic Sampling (CSS), Modified Systematic Sampling

(MSS) proposed by Khan et al. (2013), Remainder Linear Systematic Sampling

(RLSS) proposed by Chang and Huang (2000) and Generalized Modified Lin-

ear Systematic Sampling Scheme (GMLSS) proposed by Subramani and Gupta

(2014). Another well-known and long-standing problem in systematic sampling

design is an absence of a design based variance estimator that is theoretically

justified and generally applicable. The main reason behind this problem lies

in the second-order inclusion probabilities which are not positive for all pairs

of units under systematic sampling scheme. It is also obvious that population

variance can be unbiasedly estimated if and only if the second-order inclusion

probabilities are positive for all pairs of units. To overcome this problem, several

alternatives have been proposed by different researchers. However, the simplest

one is the use of multiple random starts in systematic sampling. This procedure

was adopted by Gautschi (1957) in case of LSS. Later on, Sampath (2009) has

considered LSS with two random starts and developed an unbiased estimator

for finite-population variance. Sampath and Ammani (2012) further studied the

other versions (balanced and centered systematic sampling schemes) of LSS for

estimating the finite-population variance. They also discussed the question of

determination of the number of random starts. Besides these attempts, the other

approaches proposed by different researchers in the past are not much beneficial

due to the considerable loss of simplicity.

From the attempts of Gautschi (1957), Sampath (2009), Sampath and Am-

mani (2012) and Naidoo et al. (2016), unbiased estimation of population variance

becomes possible just for the case in which N = nk. Therefore, to avoid the diffi-

culty in estimation of population variance for the case N 6= nk, practitioners are

unwillingly inclined towards SRS instead of systematic sampling. Such limita-

tions demand a more generalized sampling design which can play wide-ranging

role in the theory of systematic sampling. Thus, in this paper we propose Modi-

fied Systematic Sampling with Multiple Random Starts (MSSM). The MSSM en-

sures unbiased estimation of population variance for the situation where N 6= nk.
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As one can see, MSS proposed by Khan et al. (2013) nicely arranges the popula-

tion units into k1 systematic groups each containing s number of units. In MSS,

initially a group is selected at random and other (m − 1) groups are systemat-

ically selected. In this way, a sample of size n consisting of m groups of size s

is achieved. Whereas in MSSM, we propose to select all m systematic groups at

random to get a sample of size n. Such selection enables us to derive the unbiased

variance estimator in systematic sampling. It is interesting to note that LSS and

SRS become the extreme cases of MSSM. The MSSM becomes LSS in a situation

when N itself is the least common multiple (lcm) of N and n or equivalently

N = nk, and becomes SRS if lcm is the product of N and n. Because in the

case when N = nk we are selecting m = 1 group at random which resembles LSS.

Whereas, if lcm is the product of N and n we have N groups each containing

only one unit from which we are selecting n groups at random in MSSM, which

is similar to SRS. In case of LSS, variance estimation can be easily dealt with

by Gautschi (1957), Sampath (2009), Sampath and Ammani (2012) and Naidoo

et al. (2016); whereas the worst case of MSSM is SRS, where unbiased variance

estimation can be done using SRS approach.

2. MODIFIED SYSTEMATIC SAMPLING WITH MULTIPLE

RANDOM STARTS

Suppose, we have a population of size N , the units of which are denoted

by {U1, U2, U3, ..., UN}. To select a sample of size n from this population, we will

arrange N units into k1 = L/n (where L is the least common multiple of N and n)

groups, each containing s = N/k1 elements. The partitioning of groups is shown

in Table 1. A set of m = L/N groups from these k1 groups are selected using

simple random sampling without replacement to get a sample of size ms = n.

Table 1: Labels of population units arranged in MSSM.

Labels of Sample units

G1 U1 Uk1+1 . . U(s−1)k1+1

G2 U2 Uk1+2 . . U(s−1)k1+2

Groups G3 U3 Uk1+3 . . U(s−1)k1+3

Gi Ui Uk1+i . . U(s−1)k1+i

Gk1
Uk1

U2k1
. . Usk1=N

Thus sample units with random starts ri(i = 1, 2, ..., m) selected from 1 to

k1 correspond to the following labels:

(2.1) ri + (j − 1)k1, i = 1, 2, ..., m and j = 1, 2, ..., s.
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2.1. Estimation of Population Mean and its Variance in MSSM

Consider the mean estimator

ȳMSSM =
1

ms

m
∑

i=1

s
∑

j=1

yrij =
1

m

m
∑

i=1

(1

s

s
∑

j=1

yrij

)

.

where yrij is the value of the jth unit of the ith random group.

Taking expectation on both sides, we get:

E (ȳMSSM ) =
1

m

m
∑

i=1

E
(1

s

s
∑

j=1

yrij

)

=
1

m

m
∑

i=1

1

k1

k1
∑

i=1

(1

s

s
∑

j=1

yij

)

=
1

sk1

k1
∑

i=1

s
∑

j=1

yij = µ,

where yij is the value of the jth unit of the ith group and µ is the population

mean.

The variance of ȳMSSM is given by

V (ȳMSSM ) = E (ȳMSSM − µ)2 =
1

m2
E

[ m
∑

i=1

(ȳri. − µ)

]2

,

where ȳri. is the mean of ith random group.

After simplification, we have:

(2.2) V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi. − µ)2 ,

where ȳi. is the mean of ith group.

Further, it can be observed that in a situation when MSSM becomes LSS,

the variance expression given in Equation (2.2) reduces to variance of LSS, i.e.,

V (ȳMSSM ) =
1

k

k
∑

i=1

(

ȳi. − µ
)2

= V (ȳLSS).

Similarly, in the case when MSSM becomes SRS, V (ȳMSSM ) reduces to

variance of SRS without replacement, i.e.,

V (ȳMSSM ) =
(N − n)

nN

1

(N − 1)

N
∑

i=1

(

yi − µ
)2

= V (ȳSRSWOR) .

The alternative expressions for V (ȳMSSM ) have been presented in Theo-

rems 2.1, 2.2 and 2.3:
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Theorem 2.1. The variance of sample mean under MSSM is:

V (ȳMSSM ) =
1

mN

(k1 − m)

(k1 − 1)

[

(N − 1)S2 − k1(s − 1)S2
wg

]

,

where S2 =
1

N − 1

k1
∑

i=1

s
∑

j=1

(yij − µ)2, and S2
wg =

1

k1(s − 1)

k1
∑

i=1

s
∑

j=1

(yij − ȳi)
2

is

the variance among the units that lie within the same group.

Proof: From analysis of variance, we have:

N
∑

i=1

(yi − µ)2 = s

k1
∑

i=1

(ȳi − µ)2 +

k1
∑

i=1

s
∑

j=1

(yij − ȳi)
2 , or

(N − 1)S2 = s

k1
∑

i=1

(ȳi − µ)2 + k1(s − 1)S2
wg.

Thus

(2.3) V (ȳMSSM ) =
1

mN

(k1 − m)

(k1 − 1)

[

(N − 1)S2 − k1(s − 1)S2
wg

]

.

Theorem 2.2. The variance of sample mean under MSSM is:

V (ȳMSSM ) =
1

n

(

k1 − m

k1 − 1

) (

N − 1

N

)

S2
[

1 + (s − 1)ρw

]

,

where

ρw =

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij − µ)(yij′ − µ)/s(s − 1)k1

k1
∑

i=1

s
∑

j=1
(yij − µ)2/sk1

.

Proof: Note that

V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi − µ)2

=
1

s2mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[

s
∑

j=1

(yij − µ)
]2

=
1

s2mk1

(k1 − m)

(k1 − 1)

[

k1
∑

i=1

s
∑

j=1

(yij − µ)2 +

k1
∑

i=1

s
∑

j 6=1

(yij − µ)(yiu − µ)
]

=
1

s2mk1

(k1 − m)

(k1 − 1)

[

(sk1 − 1)S2 + (sk1 − 1)(s − 1)S2ρw

]

.
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Hence

(2.4) V (ȳMSSM ) =
1

n

(k1 − m)

(k1 − 1)

(N − 1)

N
S2

[

1 + (s − 1)ρw

]

,

where ρw is the intraclass correlation between the pairs of units that are in the

same group.

Theorem 2.3. The variance of ȳMSSM is:

V (ȳMSSM ) =
(k1 − m)

mN
S2

wst

[

1 + (s − 1)ρwst

]

,

where

S2
wst =

1

s(k1 − 1)

s
∑

j=1

k1
∑

i=1

(yij − ȳ.j)
2

and

ρwst =

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij − ȳj) (yij′ − ȳj′)

s(s − 1) (k1 − 1)S2
wst

.

Proof: Note that

V (ȳMSSM ) =
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

(ȳi − µ)2

=
1

mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[1

s

s
∑

j=1

yij −
1

s

s
∑

j=1

ȳj

]2

=
1

s2mk1

(k1 − m)

(k1 − 1)

k1
∑

i=1

[

s
∑

j=1

(yij − ȳj)
]2

=
1

smN

(k1−m)

(k1−1)

[

s
∑

j=1

k1
∑

i=1

(yij− ȳj)
2 +

k1
∑

i=1

s
∑

j=1

s
∑

j′=1
j′ 6=j

(yij− ȳj)(yij′− ȳj′)

]

=
1

smN

(k1 − m)

(k1 − 1)
s(k1 − 1)S2

wst

[

1 + (s − 1)ρwst

]

.

Hence

(2.5) V (ȳMSSM ) =

(

k1 − m

mN

)

S2
wst

[

1 + (s − 1)ρwst

]

.
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3. MEAN, VARIANCE AND EFFICIENCY COMPARISON OF

MSSM FOR POPULATIONS EXHIBITING LINEAR TREND

Generally the efficiency of every new systematic sampling design is evalu-

ated for populations having linear trend. Therefore, consider the following linear

model for the hypothetical population

(3.1) Yt = α + βt, t = 1, 2, 3, ..., N,

where α and β respectively are the intercept and slope terms in the model.

3.1. Sample Mean under MSSM

ȳMSSM = α +
β

ms

m
∑

i=1

s
∑

j=1

{

ri + (j − 1)k1

}

, or

(3.2) ȳMSSM = α +
β

m

{

m
∑

i=1

ri +
m

2
(s − 1)k1

}

.

(3.3) E (ȳMSSM ) = α + β
(N + 1)

2
= µ.

V (ȳMSSM ) = E {ȳMSSM − E(ȳMSSM )}2 = β2E
[ 1

m

m
∑

i=1

ri −
(k1 + 1)

2

]2
.

Hence

(3.4) V (ȳMSSM ) = β2 (k1 + 1)(k1 − m)

12m
.

Note that m = 1 and k1 = k in situations when MSSM is LSS; therefore

(3.5) V (ȳMSSM ) = β2 (k2 − 1)

12
= V (ȳLSS) .

Similarly, m = n and k1 = N in situations when MSSM is SRS, so

(3.6) V (ȳMSSM ) = β2 (N + 1)(N − n)

12n
= V (ȳSRS) .

The efficiency of MSSM with respect to SRS can be calculated as below:

(3.7) Efficiency =
V (ȳSRS)

V (ȳMSSM )
=

m(N + 1)(N − n)

(k1 + 1)(k1 − m)n
=

(sk1 + 1)

(k1 + 1)
≥ 1,

as s ≥ 1. One can see that MSSM is always more efficient than SRS if s > 1 and

is equally efficient if s = 1.
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4. ESTIMATION OF VARIANCE

Sampath and Ammani (2012) have considered LSS, Balanced Systematic

Sampling (BSS) proposed by Sethi (1965), and Modified Systematic Sampling

(MS) proposed by Singh et al. (1968) using multiple random starts. They have

derived excellent expressions of unbiased variance estimators and their variances

for these schemes. However, these schemes are not applicable if N 6= nk. Fortu-

nately, MSSM nicely handles this by producing unbiased variance estimator and

its variance for the case, where N 6= nk. Adopting the procedure mentioned in

Sampath and Ammani (2012), we can get an unbiased variance estimator and its

variance in MSSM for the case where N 6= nk.

In MSSM, the probability that the ith unit will be included in the sam-

ple is just the probability of including the group containing the specific unit in

the sample. Hence, the first-order inclusion probability that corresponds to the

population unit with label i, is given by

πi =
m

k1
=

ms

sk1
=

n

N
, i = 1, 2, 3, ..., N.

In the second-order inclusion probabilities, the pairs of units may belong to

the same or the different groups. The pairs of units belong to the same group only

if the respective group is included in the sample. Thus, the second-order inclusion

probabilities for pairs of units belonging to the same group are equivalent to the

first-order inclusion probabilities, i.e.,

πij =
m

k1
=

ms

sk1
=

n

N
, i, j ∈ sru

for some ru (ru = 1, 2, ..., k1).

On the other hand, pairs of units belonging to two different groups occurs

only when the corresponding pair of groups is included in the sample. Hence, the

second-order inclusion probability is given by

πij =
m(m − 1)

k1(k1 − 1)
, if i ∈ sru

and j ∈ srv
for some u 6= v.

Thus

πij =
m(m − 1)

k1(k1 − 1)
=

ms(ms − s)

sk1(sk1 − s)
=

n(n − s)

N(N − s)
.

Since the second-order inclusion probabilities are positive for all pairs of

units in the population, an unbiased estimator of population variance can be

established. To accomplish this, the population variance

S2 =
1

N − 1

N
∑

i=1

(Yi − µ)2
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can be written as

S2 =
1

2N(N − 1)

N
∑

i=1

N
∑

j=1
j 6=i

(Yi − Yj)
2.

By using second-order inclusion probabilities, an unbiased estimator of the pop-

ulation variance can be obtained as

Ŝ2
MSSM =

1

2N(N − 1)

n
∑

i=1

n
∑

j=1
j 6=i

(yi − yj)
2

πij
.

As n = ms, it means that there are m random sets each containing s units. There-

fore, taking ru (u = 1, 2, ...m) as the random start for the uth set, the expression

for Ŝ2
MSSM can be rewritten as:

Ŝ2
MSSM =

1

2N(N − 1)

[ m
∑

u=1

{ s
∑

i=1

s
∑

j=1
j 6=i

(yrui − yruj)
2

πij

}

+
m

∑

u=1
v=1
u 6=v

{ s
∑

i=1

s
∑

j=1

(yrui − yrvj)
2

πij

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{ s
∑

i=1

s
∑

j=1
j 6=i

(yrui − yruj)
2

}

+
N(N − s)

n(n − s)

m
∑

u=1
v=1
u 6=v

{ s
∑

i=1

s
∑

j=1

(yrui − yrvj)
2

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{

2s
s

∑

i=1

(yrui − ȳru
)2

}

+
N(N−s)

n(n−s)

m
∑

u=1
v=1
u 6=v

{ s
∑

i=1

s
∑

j=1

(

(yrui− ȳu)2 +(yrvj − ȳrv
)2 +(ȳru

− ȳrv
)2

)

}]

=
1

2N(N − 1)

[

N

n

m
∑

u=1

{

2s2σ̂2
ru

}

+
N(N − s)

n(n − s)

m
∑

u=1
v=1
u 6=v

{(

s2σ̂2
ru

+ s2σ̂2
rv

+ s2(ȳru
− ȳrv

)2
)}

]

,

where ȳru
and σ̂2

ru
=

1

s

s
∑

i=1

(yrui − ȳru
)2 are the mean and variance of the uth group
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(u = 1, 2, ..., m). Further,

Ŝ2
MSSM =

1

2N(N − 1)

[

N

n

{

2s2
m

∑

u=1

σ̂2
ru

}

+
N(N − s)

n(n − s)

{(

2(m − 1)s2
m

∑

u=1

σ̂2
ru

+ s2
m

∑

u=1

m
∑

v=1
u 6=v

(ȳru
− ȳrv

)2
)}

]

=
1

2N(N − 1)

[

N

n

{

2s2
m

∑

u=1

σ̂2
ru

}

+
N(N − s)

n(n − s)

{(

2(m − 1)s2
m

∑

u=1

σ̂2
ru

+ s22
m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
)}

]

=
s2

ms(N − 1)

[ m
∑

u=1

σ̂2
ru

{

1 +
(N − s)

(ms − s)
(m − 1)

}

+
(N − s)

(ms − s)

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
]

.

Hence

(4.1) Ŝ2
MSSM =

1

(N − 1)

[ m
∑

u=1

σ̂2
ru

N

m
+

(N − s)

m(m − 1)

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv

)2
]

.

For simplicity, Equation (4.1) can be written as

Ŝ2
MSSM =

1

(N − 1)

[

N

m

m
∑

u=1

σ̂2
ru

+
(N − s)

(m − 1)

m
∑

u=1

(ȳru
− ȳMSSM )2

]

.

The resulting estimator obtained in Equation (4.1) is an unbiased estimator of

population variance S2. It is mentioned in Section 2, if lcm of N and n is the

product of N and n, i.e., L = N × n, then MSSM becomes SRS.

Consequently, σ̂2
ru

= 0(u = 1, 2, ..., m) and

Ŝ2
MSSM = Ŝ2

SRS =
1

(n − 1)

n
∑

i=1

(yi − ȳ)2,

which is a well-known unbiased estimator of S2 in SRS without replacement.
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4.1. Variance of Ŝ2
MSSM

The variance of Ŝ2
MSSM is given by

(4.2)

V
(

Ŝ2
MSSM

)

=
1

m (N − 1)2

[

N2 (k1 − m)

(k1 − 1)
σ2

0

+
(N − s)2 k1

(m − 1)

[

{

(m − 1)

(k1 − 1)
−

(m − 2) (m − 3)

(k1 − 2) (k1 − 3)

}

µ4

+

{

(k1−3) − (m−2) (k1 +3)

(k1−1)2
+

(m−2) (m−3)
(

k2
1 −3

)

(k1−1)2 (k1−2) (k1−3)

}

µ2
2

]

+ 2
N (N − s) (k1 − m)

(k1 − 1) (k1 − 2)

{ k1
∑

r=1

σ̂2
r

(

ȳr − Ȳ
)2

− k1σ̄
2µ2

}

]

(see details in Appendix A).

Note that, if L = N , then MSSM becomes LSS and the above formula is not

valid in this case. Fortunately, in LSS, due to Gautschi (1957), the population is

divided into m′k groups of n/m′ elements, and m′ of these groups will randomly

be selected to get a sample of size n. Thus, one can easily modify the above

formula by just putting m = m′, k1 = m′k and s = n/m′ in Equation (A.9) and

get V
(

Ŝ2
LSS

)

as below:

(4.3)

V
(

Ŝ2
LSS

)

=
1

m′ (N − 1)2

[

N2m′ (k − 1)

(m′k − 1)
σ2

0

+
(m′N − n)2 k

m′ (m′ − 1)

[

{

(m′ − 1)

(m′k − 1)
−

(m′ − 2) (m′ − 3)

(m′k − 2) (m′k − 3)

}

µ4

+

{

(m′k − 3) − (m′ − 2) (m′k + 3)

(m′k − 1)2

+
(m′ − 2) (m′ − 3)

(

m′2k2 − 3
)

(m′k − 1)2 (m′k − 2) (m′k − 3)

}

µ2
2

]

+ 2
N (m′N − n) (k − 1)

(m′k − 1) (m′k − 2)

{ m′k
∑

r=1

σ̂2
r (ȳr − µ)2 − m′kσ̄2µ2

}

]

.

This is the general formula for the variance of unbiased variance estimator

with m′ random starts for LSS. Further, one can also easily deduce the following
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formula of V
(

Ŝ2
SRS

)

by putting k1 = N , m = n and s = 1 in Equation (A.9):

(4.4)

V
(

Ŝ2
SRS

)

=
N

n (n − 1)

[

{

(n − 1)

(N − 1)
−

(n − 2) (n − 3)

(N − 2) (N − 3)

}

µ4

+

{

(N − 3) − (n − 2) (N + 3)

(N − 1)2

+

(

N2 − 3
)

(n − 2) (n − 3)

(N − 1)2 (N − 2) (N − 3)

}

µ2
2

]

.

5. EFFICIENCY COMPARISON OF VARIANCE ESTIMATORS

In this section, we compare Ŝ2
MSSM with Ŝ2

SRS by using natural and sim-

ulated populations. Furthermore, this study is carried out for those choices of

sample sizes in which the condition “N < L < (N × n)” is satisfied. It has al-

ready been mentioned that MSSM becomes LSS when L = N . On the other

hand, MSSM becomes SRS when L = (N × n).

5.1. Natural Populations

In Population 1 (see Murthy, 1967, p. 131–132), the data on volume of tim-

ber of 176 forest strips have been considered. In this data, the volume of timber

has been arranged with respect to its length. In Population 2 (see Murthy, 1967,

p. 228), the data of output along with the fixed capital of 80 factories have been

considered. Here, output is arranged with respect to fixed capital. It is observed

that the data considered in Population 1 and Population 2 approximately follow

a linear trend. In this empirical study, the variances of Ŝ2
MSSM and Ŝ2

SRS are

computed for various sample sizes and efficiency is computed using the expression:

Efficiency =
V

(

Ŝ2
SRS

)

V
(

Ŝ2
MSSM

) .

The population size N, sample size n, number of random starts m, number of

elements in each group s, the number of groups k1 containing the N units of

the population and efficiency of MSSM over SRS are respectively presented in

Columns 1 to 6 for Population 1 and Columns 7 to 12 for Population 2 in Table

2. From the efficiency comparison presented in Table 2, it has been observed

that MSSM is more efficient than SRS. Moreover, one can also see that as the

number of elements s in each group are increased, the efficiency of MSSM also

increases. Such increase in efficiency is due to the fact that in MSSM, the units
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within the groups are arranged in a systematic pattern. So, more number of units

with systematic pattern will cause increase in efficiency.

Table 2: Efficiency comparison of Ŝ2

MSSM
and Ŝ2

SRS
in both natural populations.

Population 1 Population 2

N n m s k1 Efficiency N n m s k1 Efficiency

176

10 5 2 88 1.41

80

6 3 2 40 2.31

12 3 4 44 3.69 12 3 4 20 3.56

14 7 2 88 2.04 14 7 2 40 2.29

18 9 2 88 2.03 15 3 5 16 5.91

20 5 4 44 3.64 18 9 2 40 2.28

24 3 8 22 5.79 22 11 2 40 2.27

26 13 2 88 2.01 24 3 8 10 14.11

28 7 4 44 3.61 25 5 5 16 5.91

30 15 2 88 2.00 26 13 2 40 2.27

32 2 16 11 6.22 28 7 4 20 3.50

34 17 2 88 2.00 30 3 10 8 10.85

36 9 4 44 3.59 32 2 16 5 15.14

38 19 2 88 2.00 34 17 2 40 2.26

40 5 8 22 5.70 35 7 5 16 5.89

42 21 2 88 1.99 36 9 4 20 3.49

46 23 2 88 1.99 38 19 2 40 2.26

50 25 2 88 1.99

5.2. Simulated Populations

The simulation study, two populations of sizes 160 and 280 are generated

for the following distribution with variety of parameters by using R-packages:

(i) Uniform distribution: Here only three sets of the parametric values

are considered, i.e., (10, 20), (10, 30) and (10, 50).

(ii) Normal distribution: In this case, six sets of parametric values are

considered with means 20, 40 and 60 and standard deviations 5 and 8.

(iii) Gamma distribution: Eight sets of parametric values are considered

in this case. Here, 1, 3, 5 and 10 are considered as the values of scale

parameter with 2 and 4 as the values of shape parameter.

In each distribution, using each combination of the parametric values for each

choice of the sample size, each population with and without order is replicated

1000 times. V
(

Ŝ2
MSSM

)

and V
(

Ŝ2
SRS

)

are computed for each population (with

and without order) for the various choices of sample sizes. The average of 1000

values of the variances of Ŝ2
MSSM and Ŝ2

SRS is then computed for each population.
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The efficiencies, Eff 1 and Eff 2 of MSSM compared to SRS are computed using

the following expressions:

Eff 1 =
Average

{

V
(

Ŝ2
SRSWOR

)}

Average
{

V
(

Ŝ2
MSSM

)} without ordered population

and

Eff 2 =
Average

{

V
(

Ŝ2
SRSWOR

)}

Average
{

V
(

Ŝ2
MSSM

)} with ordered population.

The efficiencies, Eff 1 and Eff 2 for Uniform distribution, Normal distribu-

tion and Gamma distribution are presented in Tables 3, 4 and 5 respectively.

It is observed that Eff 1 is approximately equal to 1 for almost all choices of

parametric values and sample sizes. This mean that MSSM and SRS are equally

efficient in case of random populations. Thus, for such populations, MSSM can be

preferred over SRS due to the qualities that there are no more issues of unbiased

estimation of population variance.

Furthermore, it is also observed from Tables 3, 4 and 5 that Eff 2 is greater

than 1 in all cases. It indicates that MSSM is more efficient than SRS in ordered

populations. The discussion of Eff 2 in Tables 3, 4 and 5 is as follows:

In Table 3, the efficiency (Eff 2) is not effected much by the different combi-

nations of parametric values of the uniform distribution and changes are caused

by the number of groups k1. It is also observed that MSSM is much more efficient

for the ordered populations of uniform distribution as compared to the normal

and gamma distributions.

In Table 4, the efficiency Eff 2 is also not much changed like uniform distri-

bution for different combinations of parametric values of the normal distribution.

However, Eff 2 is mainly changed due to the formation of number of groups k1

of the population units in MSSM. Efficiency will increase with the decrease in

the number of groups k1, and it will decrease with the increase in the number of

groups k1.

In Table 5, the efficiency Eff 2 is effected by the number of groups k1 along

with the shape parameter of the Gamma distribution. However, change in scale

parameter has no significant effect on efficiency of MSSM. Here also the efficiency

increases with decrease in the number of groups k1.

From the above discussion, it is obvious that MSSM performs better than

SRS for the populations that follow uniform and parabolic trends. However,

such populations must be ordered with certain characteristics. To know further

about the performance of MSSM, it would be interesting to study the variances

of Ŝ2
MSSM and Ŝ2

SRS in the presence of linear trend. This study has been carried

out in the following section.
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Table 3: Efficiency of MSSM over SRS using uniform distribution.

Uniform Distribution

N n m s k1
a = 10, b = 20 a = 10, b = 30 a = 10, b = 50

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 0.94 24.17 0.94 24.67 0.94 24.33

14 7 2 80 1.00 5.99 0.99 6.04 0.98 6.05

15 3 5 32 0.95 39.72 0.96 38.39 0.95 39.85

18 9 2 80 0.99 6.19 0.99 6.16 1.00 6.15

22 11 2 80 1.00 6.17 1.00 6.26 1.00 6.25

24 3 8 20 0.94 91.20 0.95 90.56 0.98 89.22

25 5 5 32 0.99 44.66 0.99 44.24 0.98 45.01

26 13 2 80 1.00 6.30 1.00 6.37 1.00 6.26

28 7 4 40 0.99 29.47 1.00 30.36 0.99 28.90

30 3 10 16 0.98 125.89 0.98 125.98 0.96 120.79

34 17 2 80 1.00 6.33 1.00 6.50 1.00 6.44

35 7 5 32 1.00 43.94 0.99 46.98 0.99 45.59

36 9 4 40 0.99 30.19 1.00 30.60 0.99 30.23

38 19 2 80 1.00 6.44 1.00 6.45 0.99 6.37

280

12 3 4 70 0.94 28.07 0.94 28.44 0.93 28.48

15 3 5 56 0.94 47.65 0.94 47.37 0.94 47.68

16 2 8 35 0.89 102.47 0.89 104.25 0.90 103.83

18 9 2 140 0.99 6.41 0.99 6.50 0.99 6.51

22 11 2 140 0.99 6.61 0.99 6.48 1.00 6.60

24 3 8 35 0.96 123.18 0.96 121.88 0.96 124.69

25 5 5 56 0.98 55.48 0.98 56.05 0.99 54.97

26 13 2 140 0.99 6.74 0.99 6.77 1.00 6.62

30 3 10 28 0.96 189.18 0.97 182.58 0.97 184.39

32 4 8 35 0.97 135.94 0.98 131.74 0.99 134.95

34 17 2 140 1.00 6.75 1.00 6.88 1.00 6.84

36 9 4 70 0.99 38.04 1.00 36.47 0.99 36.59

38 19 2 140 1.00 6.82 1.00 6.85 1.00 6.83

42 3 14 20 0.99 292.91 0.98 320.06 0.96 310.45

44 11 4 70 1.00 38.00 0.99 37.56 1.00 37.28

45 9 5 56 1.00 61.45 1.00 60.35 1.00 59.46

46 23 2 140 1.00 7.02 1.00 6.86 1.00 6.95

48 6 8 35 0.99 144.63 0.99 148.64 1.01 141.89

49 7 7 40 1.00 111.72 1.00 118.32 1.00 114.09

50 5 10 28 0.99 195.80 0.99 199.00 0.99 207.92
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Table 4: Efficiency of MSSM over SRS using normal distribution.

Normal distribution

σ = 5 σ = 10

N n m s k1 µ = 20 µ = 40 µ = 60 µ = 20 µ = 40 µ = 60

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 0.97 3.33 0.97 3.34 0.98 3.35 0.96 3.34 0.97 3.31 0.97 3.28
14 7 2 80 0.99 1.79 1.00 1.80 1.00 1.79 1.01 1.79 0.99 1.80 1.00 1.80
15 3 5 32 0.98 4.01 0.97 4.11 0.98 4.11 0.97 4.00 0.97 4.02 0.99 4.06
18 9 2 80 1.00 1.78 0.99 1.78 0.99 1.80 0.99 1.79 1.00 1.78 1.00 1.79
22 11 2 80 1.00 1.79 0.99 1.80 0.99 1.78 1.00 1.79 1.00 1.78 0.99 1.77
24 3 8 20 0.98 6.04 0.98 6.33 0.98 6.19 0.98 6.23 1.00 6.19 0.97 6.16
25 5 5 32 0.99 3.98 0.99 4.04 0.99 4.05 0.98 4.06 0.99 4.07 1.00 4.03
26 13 2 80 1.00 1.79 1.00 1.79 1.00 1.77 1.00 1.78 1.00 1.79 0.99 1.79
28 7 4 40 0.99 3.30 0.99 3.28 1.00 3.27 1.00 3.32 0.99 3.30 0.99 3.32
30 3 10 16 0.98 7.49 0.98 7.67 0.99 7.72 0.99 7.54 1.00 7.41 0.99 7.77
34 17 2 80 1.00 1.78 1.00 1.78 1.00 1.79 0.99 1.79 1.00 1.79 1.00 1.78
35 7 5 32 1.00 4.00 1.00 4.03 0.99 4.03 0.99 4.04 0.99 3.99 1.01 4.01
36 9 4 40 1.00 3.34 1.00 3.25 1.00 3.28 1.01 3.32 0.99 3.30 1.00 3.29
38 19 2 80 0.99 1.81 1.00 1.79 1.00 1.77 1.00 1.78 1.00 1.78 1.00 1.79

280

12 3 4 70 0.96 3.34 0.97 3.31 0.96 3.33 0.97 3.33 0.97 3.35 0.97 3.33
15 3 5 56 0.96 4.12 0.98 4.03 0.97 4.05 0.97 4.14 0.99 4.09 0.97 4.01
16 2 8 35 0.95 6.30 0.95 6.16 0.94 6.26 0.95 6.31 0.95 6.29 0.94 6.35
18 9 2 140 1.00 1.79 0.99 1.79 1.00 1.80 0.99 1.79 1.00 1.79 1.00 1.79
22 11 2 140 1.00 1.79 1.00 1.78 1.00 1.80 0.99 1.79 1.00 1.80 1.00 1.80
24 3 8 35 0.98 6.17 0.99 6.35 0.99 6.06 0.98 6.25 0.98 6.14 0.98 6.26
25 5 5 56 0.99 4.01 1.00 4.11 1.00 4.05 1.00 4.07 0.99 4.04 0.99 4.02
26 13 2 140 1.00 1.80 0.99 1.79 1.00 1.80 1.00 1.78 1.00 1.81 1.00 1.79
30 3 10 28 0.98 7.53 0.98 7.73 0.99 7.72 0.99 7.98 1.00 7.78 0.99 7.71
32 4 8 35 0.99 6.17 1.00 6.38 1.00 6.16 1.00 6.35 0.99 6.16 0.99 6.37
34 17 2 140 1.00 1.78 1.00 1.79 0.99 1.78 1.00 1.78 1.00 1.79 1.00 1.79
36 9 4 70 1.00 3.33 0.99 3.33 1.00 3.33 0.99 3.28 1.00 3.34 0.99 3.38
38 19 2 140 1.00 1.78 1.00 1.78 1.00 1.79 1.00 1.79 1.00 1.79 1.00 1.80
42 3 14 20 0.98 10.32 0.98 10.12 0.99 10.35 1.00 10.55 1.00 10.36 0.99 10.53
44 11 4 70 1.00 3.30 1.00 3.31 1.00 3.36 1.00 3.28 0.99 3.30 1.00 3.30
45 9 5 56 0.99 4.07 0.99 4.08 1.01 4.01 1.00 4.07 0.99 4.03 1.00 4.10
46 23 2 140 1.00 1.78 1.00 1.79 0.99 1.79 1.00 1.79 1.00 1.79 0.99 1.78
48 6 8 35 0.99 6.22 0.98 6.24 1.00 6.16 0.99 6.19 1.01 6.39 1.00 6.21
49 7 7 40 1.00 5.66 1.00 5.52 1.00 5.49 0.99 5.49 0.99 5.48 1.00 5.50
50 5 10 28 1.00 7.89 0.99 7.54 1.00 7.82 0.99 7.59 0.99 7.54 1.01 7.72
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Table 5: Efficiency of MSSM over SRS using gamma distribution.

Gamma distribution

shape = 2 shape = 4

N n m s k1 scale=1 scale=3 scale=5 scale=10 scale=1 scale=3 scale=5 scale=10

Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2 Eff 1 Eff 2

160

12 3 4 40 1.00 1.50 0.98 1.48 0.99 1.45 0.98 1.42 0.98 1.77 0.99 1.75 0.97 1.77 0.99 1.74
14 7 2 80 0.99 1.21 0.99 1.20 1.00 1.21 1.00 1.21 1.00 1.34 0.99 1.34 1.00 1.33 1.00 1.34
15 3 5 32 1.01 1.54 0.98 1.57 0.99 1.54 1.00 1.59 0.99 1.89 1.00 1.89 0.97 1.90 0.98 1.89
18 9 2 80 0.99 1.21 0.99 1.20 1.00 1.21 1.00 1.20 1.00 1.33 1.00 1.34 1.00 1.33 1.00 1.34
22 11 2 80 1.01 1.20 1.01 1.21 1.00 1.21 1.00 1.20 0.99 1.32 0.99 1.33 1.00 1.32 1.00 1.33
24 3 8 20 0.99 1.81 1.00 1.79 1.00 1.77 1.00 1.86 0.99 2.32 1.00 2.27 1.00 2.25 1.00 2.26
25 5 5 32 1.01 1.55 0.99 1.57 1.00 1.53 0.99 1.56 0.99 1.92 1.00 1.87 0.99 1.89 1.00 1.87
26 13 2 80 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.20 0.99 1.33 1.00 1.32 1.00 1.33 1.00 1.32
28 7 4 40 1.00 1.45 1.00 1.44 1.00 1.46 0.99 1.44 0.99 1.76 1.00 1.72 1.00 1.73 0.99 1.72
30 3 10 16 0.99 1.91 1.00 1.98 1.00 1.90 0.98 1.98 0.98 2.53 0.98 2.44 0.99 2.51 1.01 2.44
34 17 2 80 1.00 1.20 1.00 1.21 1.00 1.20 1.00 1.19 1.00 1.33 1.00 1.33 1.00 1.33 1.00 1.31
35 7 5 32 0.99 1.55 0.99 1.56 1.00 1.53 1.01 1.56 1.00 1.86 1.00 1.89 0.98 1.89 1.00 1.89
36 9 4 40 0.99 1.43 1.00 1.45 1.00 1.47 1.01 1.45 1.00 1.75 0.99 1.76 1.00 1.76 0.99 1.76
38 19 2 80 0.99 1.20 1.00 1.21 0.99 1.20 1.00 1.20 1.01 1.32 1.00 1.32 1.00 1.32 1.00 1.33

280

12 3 4 70 0.98 1.48 0.99 1.46 0.99 1.46 0.99 1.46 0.98 1.76 0.98 1.78 0.99 1.76 0.99 1.76
15 3 5 56 0.99 1.57 0.98 1.58 0.99 1.56 1.00 1.57 0.98 1.92 0.98 1.95 0.99 1.89 0.99 1.94
16 2 8 35 0.99 1.82 0.98 1.80 0.98 1.77 0.97 1.85 0.98 2.29 0.98 2.26 0.98 2.32 0.96 2.29
18 9 2 140 1.00 1.21 1.00 1.20 1.00 1.21 1.00 1.20 1.00 1.33 1.00 1.33 1.00 1.34 1.00 1.34
22 11 2 140 1.00 1.21 0.99 1.21 1.00 1.20 1.00 1.21 1.00 1.33 1.00 1.32 1.00 1.32 1.00 1.34
24 3 8 35 0.98 1.84 0.99 1.79 0.99 1.82 1.00 1.82 0.99 2.31 0.98 2.27 0.99 2.29 0.99 2.24
25 5 5 56 0.99 1.55 1.01 1.56 1.00 1.53 1.00 1.55 0.99 1.92 1.00 1.88 1.00 1.89 1.00 1.87
26 13 2 140 1.00 1.20 0.99 1.20 1.00 1.20 1.00 1.21 1.00 1.33 1.00 1.32 1.00 1.32 1.00 1.32
30 3 10 28 1.00 1.93 0.99 1.91 0.99 1.89 1.00 1.96 0.99 2.48 0.98 2.53 0.98 2.52 0.99 2.47
32 4 8 35 1.00 1.81 0.99 1.79 1.00 1.80 1.00 1.80 1.00 2.24 1.00 2.27 1.01 2.28 0.98 2.26
34 17 2 140 1.00 1.20 1.00 1.20 1.00 1.21 1.00 1.19 1.00 1.33 1.00 1.33 1.00 1.33 1.00 1.32
36 9 4 70 0.99 1.44 1.00 1.44 1.00 1.44 0.99 1.44 0.99 1.71 1.00 1.75 1.00 1.75 1.00 1.70
38 19 2 140 1.00 1.20 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.34 1.00 1.32 1.01 1.32 1.00 1.33
42 3 14 20 0.97 2.13 0.98 2.19 0.99 2.19 0.98 2.13 1.00 2.81 0.98 2.93 1.00 2.83 0.99 2.80
44 11 4 70 1.00 1.46 1.00 1.46 1.00 1.47 0.99 1.46 0.99 1.71 1.00 1.74 1.00 1.72 1.01 1.74
45 9 5 56 1.01 1.56 1.00 1.55 1.00 1.54 1.00 1.53 0.99 1.90 1.01 1.91 0.99 1.88 0.98 1.90
46 23 2 140 1.00 1.20 1.00 1.19 1.00 1.20 1.00 1.20 1.00 1.33 1.00 1.33 1.00 1.32 1.00 1.32
48 6 8 35 1.01 1.79 1.01 1.82 0.98 1.76 1.01 1.78 1.00 2.27 1.00 2.30 1.00 2.29 1.00 2.26
49 7 7 40 1.00 1.72 0.99 1.70 0.99 1.70 0.99 1.74 1.00 2.13 1.00 2.16 0.99 2.11 1.00 2.12
50 5 10 28 1.00 1.92 0.99 1.96 1.00 1.96 0.98 1.94 1.01 2.47 0.99 2.48 1.00 2.46 1.00 2.42
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6. VARIANCE OF Ŝ2
MSSM IN THE PRESENCE OF LINEAR TREND

The variance of Ŝ2
MSSM under the linear Model (3.1) is given by

(6.1)

V
(

Ŝ2
MSSM

)

=
β4

(

k2
1 − 1

)

m (N − 1)2
(N − s)2 k1

(m − 1)

×

[

(

3k2
1 − 7

)

240

{

(m − 1)

(k1 − 1)
−

(m − 2) (m − 3)

(k1 − 2) (k1 − 3)

}

+
1

144

(

k2
1 − 1

)

×

{

(k1 − 3) − (m − 2) (k1 + 3)

(k1 − 1)2
(m − 2) (m − 3)

(

k2
1 − 3

)

(k1 − 1)2 (k1 − 2) (k1 − 3)

}

]

(see details in Appendix B).

Substituting m = n, s = 1 and k1 = N in (B.7), the variance of Ŝ2
SRS can

be obtained in the presence of linear trend, i.e.,

(6.2)

V
(

Ŝ2
SRS

)

=
β4

(

N2 − 1
)

N

n(n − 1)

[

(

3N2 − 7
)

240

{

(n − 1)

(N − 1)
−

(n − 2) (n − 3)

(N − 2) (N − 3)

}

+
1

144

(

N2 − 1
)

{

(N − 3) − (n − 2) (N + 3)

(N − 1)2

+
(n − 2) (n − 3)

(

N2 − 3
)

(N − 1)2 (N − 2) (N − 3)

}

]

.

Similarly, substituting m = m′, k1 = m′k and s = n/m′ in Equation (B.7), one

can get the following formula of variance of unbiased variance estimator with m′

random starts for LSS in the presence of linear trend.

(6.3)

V
(

Ŝ2
LSS

)

=
β4

(

m′2k2 − 1
)

(N − 1)2
(m′N − n)2 k

m′2 (m′ − 1)

×

[

(

3m′2k2 − 7
)

240

{

(m′ − 1)

(m′k − 1)
−

(m′ − 2) (m′ − 3)

(m′k − 2) (m′k − 3)

}

+
1

144

(

m′2k2 − 1
)

{

(m′k − 3) − (m′ − 2) (m′k + 3)

(m′k − 1)2

+
(m′ − 2) (m′ − 3)

(

m′2k2 − 3
)

(m′k − 1)2 (m′k − 2) (m′k − 3)

}

]

.
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6.1. Efficiency Comparison of Ŝ2
MSSM and Ŝ2

SRS in the Presence of

Linear Trend

Due to complicated expressions given in Equation (B.7) and (6.2), the-

oretical comparison of Ŝ2
MSSM and Ŝ2

SRS is not easy. Therefore, a numerical

comparison is carried out by considering the linear Model (3.1) and results are

presented in Table 6.

Table 6: Efficiency of MSSM over SRS using linear model.

N n m s k1 Efficiency N n m s k1 Efficiency

160

12 3 4 40 34.76

280

12 3 4 70 34.81

14 7 2 80 6.72 15 3 5 56 65.24

15 3 5 32 65.13 16 2 8 35 169.87

18 9 2 80 6.98 18 9 2 140 6.98

22 11 2 80 7.15 22 11 2 140 7.15

24 3 8 20 250.30 24 3 8 35 250.80

25 5 5 32 84.36 25 5 5 56 84.56

26 13 2 80 7.27 26 13 2 140 7.27

28 7 4 40 49.07 30 3 10 28 479.29

30 3 10 16 478.57 32 4 8 35 299.77

34 17 2 80 7.42 34 17 2 140 7.43

35 7 5 32 94.01 36 9 4 70 52.04

36 9 4 40 51.92 38 19 2 140 7.49

38 19 2 80 7.48 42 3 14 20 1282.26

44 11 4 70 53.96

45 9 5 56 100.13

46 23 2 140 7.57

48 6 8 35 356.73

49 7 7 40 252.94

50 5 10 28 641.04

In Table 6, one can easily see that the lower the number of groups k1, the

higher is the efficiency, and vice versa. Note that different choices of α and β do

not have any effect on the efficiencies as the parameters α and β will drop out

from variance and efficiency expressions respectively.
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7. CONCLUSION

The proposed MSSM design is based on adjusting the population units

in groups. Thus, except the two extreme cases of this design, MSSM is neither

completely systematic nor random but displaying the amalgamation of systematic

and simple random sampling. In the two extreme cases, one of them becomes LSS

and other SRS. The MSSM makes it possible to develop the modified expressions

of all the results that relates to the LSS. A few such modifications are reported

in Sections 2 and 3. A theoretical efficiency comparison of MSSM and SRS using

the variances of mean in the presence of linear trend is carried out and is shown

in Equation (3.1). This comparison clearly indicates that MSSM is more efficient

than SRS.

In this study, population variance is unbiasedly estimated in MSSM for all

possible combinations of N and n. An explicit expression for variance of unbiased

variance estimator is also obtained in the proposed design. Moreover, it enables

us to deduce the expressions for variance of unbiased variance estimator for LSS

and SRS. Due to the complex nature of these expressions, theoretical comparison

is not an easy task. Therefore, numerical comparison of MSSM and SRS is carried

out in Sections 5 and 6. This numerical efficiency comparison is done for natural

population, simulated population and linear model having a perfect linear trend.

The results show that if populations (with linear or parabolic trend) are arranged

with certain characteristics then MSSM is more efficient than SRS. However, in

simulated populations, MSSM is almost equally efficient to SRS as units are not

arranged in specific order. In this case, one can benefit from MSSM due to

its simplicity and economical status. Furthermore, the findings reveal that the

efficiency of MSSM is quite high for those combinations of N and n in which all

population units are arranged in minimum number of groups.
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APPENDIX A — Variance of Ŝ2
MSSM

The variance of Ŝ2
MSSM can be written as

(A.1)
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Ŝ2
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− ȳrv

)2
)

+ 2
N

m

(N − s)

m(m − 1)
Cov

(

m
∑

u=1

σ̂2
ru

,

m−1
∑

u=1

m
∑

v=u+1

(ȳru
− ȳrv
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− ȳrv

)2
}

+ 2

[

m
∑

u=1

m
∑

v=1
v 6=u

m
∑

u′=1
u′ 6=u,v

Cov
{

(ȳru
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where
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Putting (A.4), (A.5) and (A.6) in (A.3), we have
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(ȳru
− ȳrv
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where
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Putting (A.1), (A.7) and (A.8) in (A.1) and then simplifying, we have
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APPENDIX B — Variance of Ŝ2
MSSM

Assuming the linear Model (3.1), the mean of the rth (r = 1, 2, ..., k1) group

can be written as
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Putting Equations (B.1)–(B.6) in (A.9), we have
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