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Abstract:

• Receiver operating characteristic (ROC) curves are useful statistical tools for medi-
cal diagnostic testing. It has been proved its capability to assess diagnostic marker’s
ability to distinguish between healthy and diseased subjects and to compare differ-
ent diagnostic markers. In this paper we introduce non parametric ROC summary
statistics to assess a ROC curve across the entire range of FPFs ∈ (0, 1) as well as
over a restricted range of FPFs and compare them with some existing ones through a
simulation study and through some real data examples. We also show their capability
to compare two diagnostic markers.
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1. INTRODUCTION

In a diagnostic setting, the performance of any continuous diagnostic marker

is primarily assessed through the receiver operating characteristic (ROC) curve

and the area under the ROC curve (AUC). The ROC curve is a plot of the sen-

sitivity (the probability that the marker will be above a given threshold for the

diseased subjects) against 1−specificity (the specificity being the probability that

the marker will be below the threshold for the healthy subjects) or, equivalently,

of the true positive fraction (TPF ) against false positive fraction (FPF ). Using

a threshold c,

ROC(·) = {(FPF (c), TPF (c)), c ∈ (−∞,∞)}.

The AUC is a summary measure of the sensitivity and specificity over the range

of thresholds. Because of the AUC is scale free, ranging between 0.5 and 1, this

measure provides a natural common scale for comparing the different markers

regardless of their measurement scale. The ROC curve essentially provides a

distribution-free description of the separation between the distributions of dis-

eased and healthy subjects. Therefore, each of the summary measures is, in a

sense, a summary of the distance between these two distributions. In fact, the

empirical estimator of the AUC is equivalent to the Mann-Whitney U-statistic,

thus representing the probability that a subject, randomly selected among the

diseased, shows a marker value higher than a subject randomly extracted from

the healthy. Other summary measure is the maximum vertical distance between

the ROC curve and the 45o line, which is an indicator of how far the curve is

from that of the uninformative test. It ranges from 0 for the uninformative test

to 1 for an ideal test. This index is closely related to Kolmogorov-Smirnov mea-

sure of distance between two distributions ([7], [5]). Other test statistics such as

Anderson-Darling, Neyman and Watson tests were studied in [16] to assess diag-

nostic markers. They conclude that Anderson-Darling test is more powerful than

Kolmogorov-Smirnov test and it is a good alternative to AUC. However, it can

not be written in terms of functionals of the empirical ROC curve and it does not

have value itself. In this paper, we propose to measure the distance between the

ROC curve and the 45o line through their derivatives to assess the discriminatory

ability of a biomarker. This approach is closely related to a nonparametric test

for two sample problem based on an order statistic introduced in [1]. It does not

have value itself since it is not bounded but it has a geometric interpretation in

terms of the ROC curve.

When measurements on two diagnostic markers A and B are available,

the question of interest is which marker best discriminates between healthy and

diseased subjects. Various methods have been proposed for comparing the per-

formances of two diagnostic markers. See, for example [8], [11], [19], [23] and [5].

The most commonly approach to comparing ROC curves is to test the equality
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of their respective AUCs. The nonparametric version of the area test was devel-

oped in [9] and [10] for both unpaired and paired data. The test was refined in

[6]. Two permutation tests for comparing paired ROC curves were proposed in

[2] and [4]. However, when there is no uniform dominance between the involved

curves, we can find different curves with the same AUC. Therefore, these tests

are not valid to compare the equality among the ROC curves. In [21] it was

developed a fully nonparametric test to compare two ROC curves when the data

are paired and continuous. Later, [22] extended it for continuous unpaired data.

In [16] it was suggested that the Anderson-Darling statistic can be viably used

in comparing two diagnostic markers. Recently, [12] and [13] used the analogy

between the ROC curve and the cumulative distribution function to propose a

general methodology which allows us to use the traditional k-sample tests to the

ROC curves comparison problem on unpaired and paired designs, respectively.

Therefore, we propose, following [3], the difference between the values of our

approach for each marker to compare ROC curves.

Although we focus primarily on comparing a ROC curve across the entire

range of FPFs ∈ (0, 1), in practice, one might also be interested in a part of

the ROC curve that is of primary interest. For example, in screening studies,

FPFs must be kept very low and so the ROC curve over a restricted range of

FPFs may be of interest. If FPFs in the range (0, t0) is of interest, the value of

partial ROC analysis has been recognized. [14] and [15] proposed a method for

comparing a portion of ROC curves when binomial is appropriate. [24] present

a nonparametric method for the analysis of partial ROC curves. Recently, [18]

contruct nonparametric confidence intervals for the partial AUC. However, to

our knowledge neither of the above approaches used to evaluate the whole ROC

curve based on two-sample tests, have been extended to evaluate the ROC curve

over a specific range. In order to fill this gap, we extend our summary statistic

to evaluate ROC curves over a range of FPFs of interest.

This paper is organized as follows: in Section 2 a new ROC summary statis-

tic which can be written as a nonparametric test based on spacings is provided

as well as its partial counterpart. In Section 3 its statistical power is investigated

in extensive simulations and compared with that of the standard test on AUC

and the Anderson Darling test. Furthermore, the performance of the difference

of our ROC summary statistic for each marker for comparing ROC curves is

studied across the entire as well as restricted range of FPFs. In Section 4 the

new proposed method is applied to two real data sets. Finally, in Section 5, we

make some concluding remarks.
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2. THE NEW ROC SUMMARY STATISTICS

Some ROC summary measures are based on evaluating geometrically the

distance between the ROC curve and the 45o line, which is an indicator of how far

the curve is from that of an uninformative marker. For example, considering the

area between them or the maximum vertical distance between them, we obtain

the well-known AUC or the Kolmogorov-Smirnov index, respectively. However,

to our knowledge, the distance between the derivatives of these two functions has

not been explored as a ROC summary statistic. Therefore, our proposal is to

take into account that the ROC of a noninformative marker verifies

dROC(t)

dt
= lim

∆t→0

ROC(t + ∆t) − ROC(t)

∆t
= 1

and to define as a summary statistic the sum of the squared differences between

an approach of the derivative of the ROC curve

ROC(t) − ROC(t − 1
N

)
1
N

, for N big enough,

and the derivative of y = x, which is 1, for a number N of equidistant points

N∑

k=1

(ROC( k
N

) − ROC(k−1
N

)
1
N

− 1
)2

.

In particular, we propose to consider N = 1 + nD where nD is the number

of healthy subjects and to define

η =

n
D

+1∑

k=1

((
ROC

(
k

nD + 1

)
− ROC

(
k − 1

nD + 1

))
−

1

nD + 1

)2

.

Note that the value of this summary statistic is not worthwhile by itself

but it can be used to test if a biomarker is discriminatory of healthy and diseased

individuals.

Let
{

YDi
, i = 1, ..., nD

}
be an i.i.d. sample of a continuous distribution F

representing nD measurements of healthy subjects and let
{
YDj

, j = 1, ..., nD

}

be an i.i.d. sample of a continuous distribution G representing nD measurements

of diseased subjects. It is common in the ROC methodology to assume that

diseased subjects tend to have higher measurements than healthy subjects.

The empirical estimator of the ROC curve simply applies the definition of

the ROC curve to the observed data. Thus, for each possible cut-point c, the
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empirical true and false positive fractions are calculated as follows:

T̂PF (c) =

nD∑
i=1

I (YDi
≥ c)

nD

F̂PF (c) =

n
D∑

j=1
I

(
YDj

≥ c
)

nD

.

The empirical ROC curve is a plot of T̂PF (c) versus F̂PF (c) for all c ∈ (−∞,∞).

Equivalently, the empirical ROC can be written as

R̂OC (t) = T̂PF
(
F̂PF

−1
(t)

)
, t ∈ (0, 1).

Let −∞ = YD(0)
≤ YD(1)

≤ YD(2)
≤ ... ≤ YD(n

D
)
≤ YD(n

D
+1)

= ∞ be the or-

der statistics constructed from
{

YDj
, j = 1, ..., nD

}
. Therefore, an estimator of

η can be obtained replacing ROC by its empirical estimator:

η̂ =

n
D

+1∑

k=1

((
R̂OC

(
k

nD + 1

)
− R̂OC

(
k − 1

nD + 1

))
−

1

nD + 1

)2

.

Note that this index is the sum of squared errors between the jump of

the ROC curve evaluated in two equidistant points and the distance between

these two equidistant points. The value 0 means to be a noninformative test.

Furthermore, this index, η̂, is closely related to the nonparametric test for a two

sample problem based on order statistics proposed in [1]. Indeed, we see that

R̂OC

(
k

nD + 1

)
= T̂PF

(
F̂PF

−1
((

k

nD + 1

)))

so first we look for a value v such as

F̂PF (v) =
k

nD + 1

or equivalently,
n

D
+1∑

j=1

I
(
YDj

≥ v
)

= k

so v = YD(n
D

−k+1)
. Therefore,

R̂OC

(
k

nD + 1

)
=

nD∑
i=1

I

(
YDi

≥ YD(n
D

−k+1)

)

nD

.
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In a similar way,

R̂OC

(
k − 1

nD + 1

)
=

nD∑
i=1

I

(
YDi

≥ YD(n
D

−k+2)

)

nD

.

Finally,

η̂ =

n
D

+1∑

k=1





nD∑
i=1

ξi
k

nD

−
1

nD + 1





2

where

ξi
k =

{
1, YDi

∈ ∆k

0, YDi
/∈ ∆k

for k = 1, ...., nD + 1, i = 1, ..., nD,

with ∆k =

[
YD(n

D
−k+1)

, YD(n
D

−k+2)

)
, is the test statistic proposed in [1]. They

obtained its exact distribution that can be seen in Theorem 1.

If FPFs in the range (0, t0) is of interest, the partial η̂ can be similarly

defined as

(2.1)

η̂p(t0) =
∑

1≤k≤[t0(n
D

+1)]

n
D

+1∑

k=1

((
R̂OC

(
k

nD + 1

)
− R̂OC

(
k − 1

nD + 1

))
−

1

nD + 1

)2

where [·] denotes the integer part of ·.

In the following section we evaluate the performance of η̂ and compare it

to the ordinary nonparametric ROC test ÂUC given by

ÂUC =

∑n
D

i=1

∑nD

j=1 I(YDi
< YDj

)

nDnD

.

and the Anderson-Darling test of uniformity of the distribution of the false posi-

tive fraction, proposed in [16] (AD) to assess one diagnostic marker.

On the other hand, the test statistic

T =
ÂUCA − ÂUCB√

var(ÂUCA) + var(ÂUCB) − 2covar(ÂUCA, ÂUCB)

,

proposed by [6] and ∆Z = ZB − ZA, for ZL = η̂, AD, where L = A, B, indicates

the value of the test statistic for biomarker A or B, are compared to assess two

biomarkers. Finally, the partial summary measure η̂p(t0) is compared to the

partial AUC, pAUC(t0), via bootstrap.
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3. SIMULATION STUDIES

Firstly, simulations are conducted to assess the performance of the new

ROC summary statistic η̂, to evaluate one marker. We have compared the power

of our statistic η̂ with ÂUC and AD.

Table 1 compares the power of η̂ obtained when the exact distribution

studied in [1] is used to obtain the critical values and when 1,000 Monte Carlo

replicates are used instead. Due to the relatively large computational time re-

quired for the implementation of the exact procedure, the comparisons presented

here are limited to small samples (nD = nD = 15). However, even with these

small samples, there is a good agreement between the exact and simulated test.

Thus, for the large sample sizes as presented in the subsequent tables, we cal-

culate only the power of the simulated test since the results for the exact test

should be essentially the same.

Table 1: Comparison of the power of η̂ obtained using the exact dis-
tribution and the one obtained via 1,000 independent Monte
Carlo simulations, for nD = n

D
= 15. Healthy subjects follow

(from left to right) a N(0, 1), Γ(1/2, 1/2) or LN(0, 1) distribu-
tion while diseased subjects are sampled from G.

G Exact MC G Exact MC G Exact MC

N(0.3, 1) 0.074 0.074 Γ(2, 1) 0.987 0.986 LN(1.275, 0.5) 0.793 0.771
N(0.3, 1.42) 0.133 0.119 Γ(4, 1) 1.000 1.000 LN(0, 3/2) 0.056 0.050
N(0.3, 0.32) 0.981 0.977 Γ(4.3, 4) 1.000 1.000 LN(0.7, 0.2) 0.894 0.894
N(0, 1.42) 0.117 0.111 Γ(1/8, 1/8) 0.844 0.830 LN(−3/2, 2) 0.576 0.540
N(0, 0.32) 0.973 0.969 Γ(4, 4) 1.000 1.000 LN(1/4, 1/2) 0.279 0.258

For 1,000 independent simulations, one-sided tests were conducted at level

α = 0.05 to compare the ÂUC, AD and η̂ tests. To determine appropriate critical

values we have carried out Monte Carlo simulation with M = 5, 000 replicates.

The type I error values are not presented as they are all around 0.05 but they

can be provided by the authors upon request. Tables 2–4 compare the proportion

of rejections (power) for different pairs of distributions for diseased and healthy

subjects. These three tables distinguish three different distributions for the mark-

ers: Normal, Gamma and Lognormal, respectively. The markers for the healthy

subjects are generated from a N(0,1), Gamma(1/2,1/2) and LN(0,1), respectively

while the markers for the diseased subjects are generated from five different alter-

natives each one. These alternatives have been considered taking into account all

the possible combinations changing the location and shape of the distribution of

the diseased subjects in relation to the healthy subjects. Some of the probability
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distribution functions and their corresponding ROC curves for Table 2 can be

seen in Figure 1.

Table 2: Power based on 1,000 independent simulations of Normal ran-
dom variables. Healthy subjects follow a N(0, 1) distribution
while diseased subjects are sampled from G.

nD = nD
G Test

15 30 50 100

ÂUC 0.118 0.216 0.319 0.539
N(0.3, 1) bη 0.067 0.098 0.087 0.096

AD 0.097 0.145 0.270 0.489

ÂUC 0.104 0.156 0.202 0.438
N(0.3, 1.42) bη 0.057 0.098 0.156 0.347

AD 0.112 0.188 0.284 0.650

ÂUC 0.210 0.332 0.520 0.801
N(0.3, 0.32) bη 0.626 0.817 0.929 0.993

AD 0.059 0.119 0.254 0.676

ÂUC 0.057 0.068 0.053 0.058
N(0, 1.42) bη 0.049 0.060 0.108 0.220

AD 0.089 0.101 0.091 0.275

ÂUC 0.076 0.065 0.060 0.048
N(0, 0.32) bη 0.590 0.778 0.909 0.992

AD 0.036 0.113 0.208 0.622
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Figure 1: Probability distribution functions and their corresponding ROC
curves (nD = n

D
= 100) for some cases described in Table 2.

From left to right: N(0, 1) versus N(0.3, 1), N(0.3, 0.32) and
N(0, 0.32), respectively.
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Table 3: Power based on 1,000 independent simulations of Gamma ran-
dom variables. Healthy subjects follow a Γ(1/2, 1/2) distribu-
tion while diseased subjects are sampled from G.

nD = nD
G Test

15 30 50 100

ÂUC 0.755 0.958 0.998 1.000
Γ(2, 1) bη 0.393 0.601 0.782 0.926

AD 0.147 0.441 0.708 0.977

ÂUC 0.999 1.000 1.000 1.000
Γ(4, 1) bη 0.885 0.989 1.000 1.000

AD 0.129 0.560 0.789 0.991

ÂUC 0.363 0.635 0.817 0.981
Γ(4.3, 4) bη 0.578 0.750 0.907 0.995

AD 0.063 0.158 0.307 0.738

ÂUC 0.522 0.796 0.953 1.000
Γ(1/8, 1/8) bη 0.416 0.753 0.943 1.000

AD 0.617 0.903 0.995 1.000

ÂUC 0.329 0.507 0.754 0.964
Γ(4, 4) bη 0.573 0.721 0.887 0.996

AD 0.049 0.129 0.319 0.742

Table 4: Power based on 1,000 independent simulations of LogNormal
random variables. Healthy subjects follow a LN(0, 1) distri-
bution while diseased subjects are sampled from G.

nD = nD
G Test

15 30 50 100

ÂUC 0.976 1.000 1.000 1.000
LN(1.275, 0.5) bη 0.734 0.946 0.995 0.999

AD 0.133 0.424 0.744 0.985

ÂUC 0.055 0.064 0.051 0.051
LN(0, 3/2) bη 0.058 0.083 0.182 0.325

AD 0.089 0.106 0.174 0.420

ÂUC 0.706 0.922 0.999 1.000
LN(0.7, 0.2) bη 0.883 0.987 1.000 1.000

AD 0.038 0.096 0.198 0.541

ÂUC 0.668 0.941 0.995 1.000
LN(−3/2, 2) bη 0.536 0.895 0.993 1.000

AD 0.711 0.976 0.999 1.000

ÂUC 0.132 0.224 0.334 0.584
LN(1/4, 1/2) bη 0.270 0.364 0.517 0.718

AD 0.067 0.159 0.283 0.688

Every table follows the same pattern: in the first three designs the mean of

the diseased subjects is larger than the mean corresponding to the healthy ones

and in the last two designs it does not change. In the first design, the standard
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deviation of both groups of patients is the same, in the second and forth one the

standard deviation of the diseased subjects is larger, and in the third and fifth

one the standard deviation of the diseased subject is smaller.

As [16] already observed, these results reveal that the ÂUC test is more

powerful when location differences between the distributions under consideration

are primarily involved. However, in our study, although the mean increases if the

standard deviation decreases (design 3) our procedure has higher power than the

others. When scale differences are prominent, ÂUC test is incapable of discrim-

inating between these distributions. In particular, when the standard deviation

of the distribution of the healthy subjects is larger than that for the diseased

subjects, the new measure η̂ is significantly better than ÂUC and AD tests. If

the standard deviation of the distribution of the healthy subjects is smaller than

that for the diseased subjects, the AD test is preferable to the others. Therefore,

our procedure is the best when the standard deviation of the distribution of the

healthy subjects is larger than that for the diseased subjects independently that

the location of the distribution of the diseased subjects changes or not (designs 3

and 5). These two designs as can be seen in Figure 1 correspond to ROC curves

crossing the diagonal reference line. Moreover, for the other designs it is the sec-

ond best except for designs 1 and 2 in Table 2. Although ÂUC test is preferable

when location differences between the distributions under consideration are pri-

marily involved, we must not use it in the other situations. Finally, AD test has

only slight high power than our procedure in one of the five considered designs.

3.1. Assessment of two diagnostic markers

We compare the performance of our test statistic, ∆η̂, to that of [6], T , and

Anderson Darling approach, ∆AD, via simulation. In [16] it was concluded that

the DeLong test is in general more powerful than the Anderson-Darling approach

to assess two diagnostic markers, particularly when the correlation between mea-

surements is substantial. In the simulations to obtain the distributions of AD

test and our test we have used bootstrap following [3].

We perform simulations to investigate the empirical power for different un-

derlying AUCs, correlations between the markers (ρ = 0, 0.5) and different simple

sizes (nD = nD = 20, 40, 80) at level α = 0.05. In these simulations, the marker

values of the healthy subjects were generated from a standard normal distribu-

tion and those of the diseased subjects from N(µA, σ2
A = 1) and N(µB, σ2

B) for

markers A and B, respectively. The uniform alternative (where one curve is

uniformly above the other) occurs when σ2
A = σ2

B and the crossing alternative

(when the two curves cross) when 4σ2
A = σ2

B. For each considered scenario, 1000

replications were used. The different scenarios are that considered in [21].
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For equal AUCs arising from crossing ROC curves, the power of our test

is the highest as can be seen in Table 5 and the use of the T test is inappropriate.

On the other hand, highly correlated biomarkers lead to increase power. For

non-crossing ROC curves, the power of T test is the highest as can be seen in

Table 6. The power of ∆η̂ is higher than the power of ∆AD.

Table 5: Power against crossing alternatives.

T ∆bη ∆AD
AUCA AUCB nD = nD

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.046 0.066 0.014 0.019 0.015 0.018
0.6 0.6 40 0.063 0.048 0.088 0.075 0.072 0.073

80 0.046 0.049 0.327 0.338 0.162 0.190

20 0.055 0.046 0.042 0.025 0.040 0.039
0.7 0.7 40 0.057 0.045 0.132 0.148 0.095 0.127

80 0.039 0.043 0.421 0.478 0.092 0.136

20 0.054 0.037 0.069 0.074 0.061 0.062
0.8 0.8 40 0.061 0.051 0.193 0.209 0.110 0.155

80 0.051 0.053 0.475 0.577 0.111 0.155

20 0.044 0.038 0.092 0.108 0.070 0.095
0.9 0.9 40 0.049 0.041 0.195 0.218 0.147 0.157

80 0.056 0.054 0.459 0.541 0.232 0.277

Table 6: Power against uniform alternatives.

T ∆bη ∆AD
AUCA AUCB nD = nD

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.116 0.207 0.018 0.013 0.002 0.003
0.6 0.7 40 0.209 0.340 0.022 0.021 0.043 0.043

80 0.368 0.626 0.054 0.055 0.214 0.264

20 0.410 0.623 0.105 0.123 0.005 0.014
0.6 0.8 40 0.689 0.925 0.249 0.242 0.183 0.214

80 0.951 0.998 0.542 0.554 0.675 0.779

20 0.821 0.967 0.481 0.511 0.013 0.010
0.6 0.9 40 0.987 1.000 0.835 0.854 0.323 0.324

80 1.000 1.000 0.982 0.995 0.857 0.877

20 0.140 0.219 0.066 0.057 0.007 0.003
0.7 0.8 40 0.282 0.419 0.106 0.108 0.058 0.059

80 0.443 0.709 0.222 0.222 0.176 0.232

20 0.561 0.766 0.350 0.391 0.012 0.014
0.7 0.9 40 0.837 0.984 0.608 0.702 0.108 0.110

80 0.991 1.000 0.878 0.933 0.395 0.434

20 0.210 0.283 0.163 0.181 0.012 0.013
0.8 0.9 40 0.354 0.605 0.263 0.304 0.032 0.031

80 0.688 0.888 0.473 0.526 0.075 0.092
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In summary, the behavior of our test is the same as AD test studied in [16]

and permutation tests introduced in [21]. That is to say, they have clearly superior

power in Table 5 to T test but the power of ours is the highest. However, the

power of the permutation test proposed in [2] is close to the nominal significance

level suggesting that a rejection of the null hypothesis is unlikely to occur. On

the other hand, for non-crossing ROC curves, T test is preferable although as

sample size increases the power of ∆η̂ is closer to the power of T test. Note that

in most of the cases ∆AD test has very low power (see Table 6).

Finally, suppose one is only interested in some range of specificities. For

example, acceptable specificities are high for early cancer detection tests. A

lower specificity for a large population leads to many more falsely classified non-

diseased subjects who may have to undergo a more invasive test subsequently.

It is thus desired to compare screening markers at a higher range of specificities.

The partial AUC, which summarizes part of the ROC curve in the range of

desired specificities, uses to be a better alternative to T test. The value of partial

ROC analysis has been recognized and several methods have been developed.

See [14], [15], [20] and [17]. However, the methods for analysing partial ROC

presented in these papers use a parametric approach which assumes the data

have an underlying normal distribution.

We perform a new simulation to compare pAUC and the proposed η̂p,

defined in (2.1), for crossing ROC curves only, since in those cases T test doesn’t

work properly and pAUC is an alternative to focus on some range of interest.

We consider two different ranges (0, 0.4) and (0, 0.8) although by brevity we only

present the results for t0 = 0.4 in Table 7.

Table 7: Power of the partial measures against
crossing alternatives.

pAUC bηp
AUCA AUCB nD = nD

ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

20 0.054 0.051 0.031 0.031
0.6 0.6 40 0.140 0.175 0.071 0.078

80 0.255 0.369 0.230 0.314

20 0.042 0.029 0.038 0.051
0.7 0.7 40 0.104 0.117 0.136 0.147

80 0.219 0.296 0.389 0.470

20 0.022 0.024 0.059 0.084
0.8 0.8 40 0.072 0.086 0.207 0.244

80 0.132 0.172 0.470 0.566

20 0.007 0.002 0.071 0.085
0.9 0.9 40 0.032 0.023 0.202 0.247

80 0.069 0.063 0.445 0.555
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As can be seen in Table 7, pAUC works better that its counterpart T with

higher power in most of the cases. However, our proposed summary statistic η̂p

works much better than pAUC and similarly to its counterpart η̂. That is to say,

the new partial summary statistic seems to be a good alternative.

4. REAL DATA EXAMPLES

4.1. Pancreatic cancer biomarker study

The first dataset studied has been used by various statisticians to illustrate

statistical techniques for diagnostic tests. First published in [23], it is a case-

control study ding 90 cases with pancreatic cancer and 51 controls that did not

have cancer but who had pancreatitis. Serum samples from each patient were

assayed for CA-125, a cancer antigen, and CA-19-9, a carbohydrate antigen, both

of which are measured on a continuous positive scale. It can be assumed that

both biomarkers are independent. A natural question is to determine which of the

two markers best discriminates diseased from healthy subjects. See Figure 2 (a).
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Figure 2: (a) Empirical ROC curves and (b) Empirical ROC curves
once we have eliminated from the data those cases with the
smallest values for the second biomarker.

The ÂUC values are 0.861 and 0.706 for CA-125 (called biomarker A) and

CA-19-9 (called biomarker B), respectively. The T statistic, which is based on the

methodology described in [6] for paired data, is statistically significantly different

from 0 (p = 0.007). The two differences ∆η̂ = η̂A − η̂B and ∆AD = ADA −

ADB are also statistically significantly different from 0 (p = 0 and p = 0.015,

respectively). As [23], we have also focus our comparison on the range of FPFs

below 0.2 using the differences of the partial measures pAUC(0.2) and η̂p(0.2).
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The difference is highly significant from 0 based on the bootstrap distribution

(p = 0.002 and p = 0, respectively).

In order to illustrate the behaviour of the tests in a different scenario (cross-

ing ROC curves), we have eliminated from the data those cases with the smallest

values for the second biomarker. Therefore, now we consider 80 cases and 51 con-

trols. In this case, the two test statistics ∆η̂ = η̂A− η̂B and △AD = ADA−ADB

are also statistically significantly different from 0 (p = 0) but the statistic T leads

us to conclude that both biomarkers are not significantly different (p = 0.128).

See Figure 2 (b).

4.2. A method for early recognition of malignant melanoma

The second data set we have considered can be found in [21]. The dataset

consists of the clinical scoring scheme without a dermoscope and a dermoscope

scoring scheme on 72 suspicious lesions in order to determine whether the der-

moscope contributes diagnostic information. The p-value for T for paired data,

constructed following [6], is p = 0.882. The p-values for ∆η̂ and ∆AD are 0.717

and 0.555, respectively. We have also compared both biomarkers through the

differences of the partial measures pAUC(0.2) and η̂p(0.2) obtaining p = 0.716

and p = 0.763, respectively. Then, we can conclude that both biomarkers are

statistically significantly equal. Therefore, the dermoscope contributes no useful

information in this sense.

5. DISCUSSION

There is an interesting relationship between some summary measures for

ROC curves and two sample test statistics. Some of them, the Mann-Whitney

U-statistic and the Kolmogorov-Smirnov statistic, can be written in terms of

functionals of the empirical ROC curve. The former is the well-known AUC

(area under the ROC curve) and the later Youden index. Other test statistics

such as Anderson-Darling, Neyman and Watson tests were studied in [16] to

assess diagnostic markers. However, it can not be written in terms of functionals

of the empirical ROC curve and they do not have value themselves. In this paper,

we propose the sum of squared errors between the derivative of the ROC curve

and 1, that is the derivative of the 45o line, as a ROC summary statistic. This

statistic is closely related to a nonparametric test for two sample problem based

on an order statistic introduced in [1]. The exact distribution of this index is

known but the simulated version is used ought to computational time since it is

checked that the exact test should be essentially the same. For the purpose of
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assesing part of a ROC curve, we also define a new partial summary statistic

based on the same idea as above but ending the summation as close as possible

to the specific FPF of interest.

The simulations show that our ROC summary statistics exhibit much

higher power in discriminating between the diseased and healthy distributions

and are thus an attractive alternative to ROC-based methodology and indeed

constitute in many cases an improvement over AUC and pAUC, respectively.

Nevertheless, the fact that our ROC summary statistic does not have value itself

is a drawback. The same index value can be obtained for two absolutely different

curves. Therefore, after concluding that a new marker is diagnostic, we should

study in which way the diseased and healthy distributions are different.

In case of the comparison of two diagnostic markers in the whole range,

the use of the difference of our individual ROC summary statistics associated

with the two diagnostic markers has higher power than the conventional non-

parametric test in [6], the test based on AD test statistic and the permutation

test proposed in [21] for crossing ROC curves. However, if the primary interest is

to detect differences in AUCs, then the permutation tests of [2] and [4] should be

used. On the other hand, when we are interested on a specific range of specificity,

pAUC uses to be an alternative to AUC but we show that our partial summary

statistic η̂p is better to discriminate between two ROC curves that cross each

other when the biomarkers are not correlated as well as when they are correlated.
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