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Abstract:

• The present paper takes into account the estimation of the Renyi entropy of several
exponential distributions under a linex loss function. The models under study are
(i) several exponential distributions with a common scale parameter and unknown but
unequal location parameters and (ii) several exponential distributions with a common
location parameter and unknown but unequal scale parameters. Improvements over
the best affine equivariant estimator are obtained for the first model considering unre-
stricted and restricted parameter spaces. For the second model, sufficient conditions
for improvement over affine and scale equivariant estimators are obtained and con-
sequently, improvements over the maximum likelihood estimator and the uniformly
minimum variance unbiased estimator are proposed. Sections on numerical studies
have been included after each model to present comparative study of the relative risk
performance of the proposed improved estimators.
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1. INTRODUCTION

The Shannon entropy (see Shannon (1948)) is a fundamental measure of

information content and has been applied in a wide variety of fields such as

statistical thermodynamics, urban and regional planning, business, economics, fi-

nance, operations research, queueing theory, spectral analysis, image reconstruc-

tion, biology and manufacturing. One may refer to Kapur (1990) and Cover

and Thomas (2006) for examples of various applications. Several generalized

information-theoretic measures have been proposed in the literature to measure

the uncertainty of a probability distribution since the seminal work of Shannon

(1948). Among these, one of the most important and applicable measures is pro-

posed by Renyi (1961). For a random variableX with probability density function

f(x|θ), θ ∈ Θ, the Renyi entropy is given by

Rα(X) =
1

1 − α
ln

∫ ∞

−∞
fα(x|θ)dx, α (6= 1) > 0.(1.1)

Note that we are using logarithm to base e in the expression given by (1.1). Here,

the unit of the information measure is nat. Golshani and Pasha (2010) provide

some important properties of the measure given in (1.1):

(i) The Renyi entropy can be negative,

(ii) It is invariant under location transformation, but not under scale

transformation, and

(iii) For any α1 < α2, Rα2
(X) ≤ Rα1

(X) and equality holds if and only if

X is a uniform random variable.

Using L’Hospital rule, it can be shown that (1.1) retrieves the Shannon entropy

when α tends to 1. The Renyi entropy is more or less sensitive to the shape of

the probability distributions due to the parameter α. For large values of α, the

measure given in (1.1) is more sensitive to events that occur often. Likewise,

for small values of α, it is more sensitive to the events which happen seldom.

In many instances, the Renyi entropy is seen to be more useful than the Shan-

non entropy (see Nilsson (2006), Maszczyk and Duch (2008) and Pharwaha and

Khehra (2009)). The measure given in (1.1) has found a lot of applications in

different areas of science and technology. For example, in speech recognition,

different values of α determine different concepts of noisiness. Basically, small α

values tend to emphasize the noise content of signal, while large α values tend to

emphasize the harmonic content of a signal (see Obin and Liuni (2012)). It is also

used for ultrasonic molecular imaging (see Hughes et al. (2009)). For properties

of Renyi entropy one may refer to Song (2001), Bercher (2008), De-Gregorio and

Iacus (2009), Golshani and Pasha (2010) and Renyi (2012).

Recently, the problem of estimating a common characteristic of several

independent populations has received a considerable attention. There are many
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situations where this problem arises. For example, this situation arises when the

information from several independent studies are combined or in meta-analysis.

Meta-analysis is used in clinical studies. This is also seen in many statistical

designs such as balanced incomplete block designs, panel models and regression

models. The present paper is concerned with the problem of estimating the Renyi

entropy of several exponential populations with respect to linex loss function (see

Varian (1975)). The linex loss function is given as

L(△) = p′[exp{p△} − p△− 1], △ = δ − θ, p 6= 0, p′ > 0,(1.2)

where p and p′ are shape and scale parameters, respectively. Without loss of

generality, we assume p′ = 1. Note that the loss function (1.2) reduces to the

squared error loss function when |p| tends to 0. For more properties on linex loss

function one may refer to Zellner (1986).

Let Π1, ...,Πk be k (≥ 2) exponential populations with location and scale

parameters µ = (µ1, ..., µk) and σ = (σ1, ..., σk), respectively. The probability

density function of the i-th population Πi is given by

fi(x|µi, σi) =

{
σ−1

i exp{−(x− µi)/σi}, if x > µi

0, otherwise,
(1.3)

where µi ∈ R, σi > 0 and i = 1, ..., k. The expression of the Renyi entropy of k

exponential distributions can be obtained as Rα(σ) =
∑k

i=1 lnσi − k lnα/(1−α).

Several authors attempted the problem of estimating entropy of various contin-

uous probability distributions. In this direction one may refer to Misra et al.

(2005), Kayal and Kumar (2011a, 2011b, 2013), and Kayal et al. (2015). Misra et

al. (2005) showed that the best affine equivariant estimator (BAEE) of the Shan-

non entropy of a multivariate normal distribution is inadmissible with respect

to the squared error loss function. Under linex loss function, Kayal and Kumar

(2011a) derived an estimator improving upon the BAEE of the Shannon entropy

of a shifted exponential distribution. Kayal and Kumar (2011b) considered the

problem of estimating the Shannon entropy of several exponential distributions

with respect to both squared error and linex loss functions. Generalized Bayes

estimators are showed to be admissible. Kayal and Kumar (2013) obtained im-

proved estimator upon the BAEE in estimating the Shannon entropy of several

exponential distributions with a common scale but unequal location parameters

with respect to the squared error loss function. Recently, Kayal et al. (2015)

studied the problem of estimating the Renyi entropy of several exponential dis-

tributions with a common location but unequal scale parameters with respect to

squared error loss function. They derived the uniformly minimum variance unbi-

ased estimator (UMVUE) and obtained improvements over the UMVUE and the

maximum likelihood estimator (MLE). In this communication we deal with the

problem of estimating the Renyi entropy in similar models considered by Kayal

and Kumar (2013, 2015) with respect to the linex loss function.
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The rest of the paper is organized as follows. In Section 2, the problem of

estimating the Renyi entropy of several exponential distributions with a common

scale and unknown but unequal location parameters is considered. The BAEE

is shown to be inadmissible. Further, estimators improving upon the BAEE are

obtained when the parameter space is restricted. Relative risks of the proposed

estimators are compared numerically. In Section 3, the problem of estimating the

Renyi entropy of several exponential distributions with a common location and

unequal scale parameters is considered. Inadmissibility results for the scale and

affine equivariant estimators are obtained. Further, improved estimators over

the MLE and the UMVUE are derived. Some concluding remarks have been

added in Section 4. Finally, relative risk performance of the proposed estimators

is compared numerically.

2. COMMON SCALE BUT UNEQUAL LOCATION PARAME-

TERS

As mentioned earlier, in this section, we consider k independent exponen-

tial populations with unknown and possibly unequal location parameters µ and a

common but unknown scale parameter σ. This model arises in reliability engineer-

ing where location parameters can be interpreted as minimum guarantee times of

several equipments, whereas the common scale parameter can be considered as

unknown but possibly equal failure rate of those equipments. This model is also

useful in economy where one may assume the unknown location parameters as

the income levels below which the tax filling is not required in different locations.

However, the average income levels may be same due to overall economic policies

of the country. Let (Xi1, ..., Xini
) be a random sample of size ni drawn from the

i-th (i = 1, ..., k) population with the probability density function

fi(x|µi, σ) =

{
σ−1 exp{−(x− µi)/σ}, if x > µi

0, otherwise,
(2.1)

where µi ∈ R and σ > 0. For a population with probability density function (2.1),

the Renyi entropy can be obtained as Rα(σ) = k lnσ−k lnα/(1−α). It should be

mentioned that the problem of estimating Rα(σ) with respect to the loss function

of the form L(θ, δ) = W (δ − θ) is equivalent to that of estimating Q1(σ) = lnσ.

Here, the loss function is given by

L1(Q1(σ), δ) = exp{p(δ − lnσ)} − p(δ − lnσ) − 1, p 6= 0.(2.2)

Note that for the i-th population, (Xi(1), Yi) is a complete and sufficient statistic

of (µi, σ), where Xi(1) = min1≤j≤ni
Xij and Yi =

∑ni

j=1Xij . We denote X(1) =

(X1(1), ..., Xk(1)), T =
∑k

i=1

∑ni

j=1(Xij −Xi(1)) and n =
∑k

i=1 ni. Following the

factorization criterion (see Lehmann and Casella, 1998, pp. 35), it can be showed
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that (X(1), T ) is a complete and sufficient statistic of (µ, σ). Further, X(1) and

T are independently distributed. It is seen that Xi(1) follows an exponential

distribution with location parameter µi and scale parameter σ/ni, and 2T/σ

follows a chi-square distribution with 2(n− k) degrees of freedom. The MLE

and the UMVUE of Q1(σ) are given by δ1ML = lnT − lnn and δ1MV = lnT −

ψ(n− k), respectively, where ψ denotes digamma function and is given by ψ(x) =
d
dx(ln Γ(x)).

2.1. The best affine equivariant estimator and its improvement

In this section, we introduce invariance to the problem under study and

obtain an improvement over the BAEE. LetGa,bi
= {ga,bi

(xij) : ga,bi
(xij) = axij +

bi, a > 0, bi ∈ R}, j = 1, ..., ni, i = 1, ..., k be an affine group of transformations.

Under the transformation ga,bi
(xij) = axij + bi, the form of an affine equivariant

estimator can be obtained as

δ1c (X(1), T ) = lnT − c,(2.3)

where c is an arbitrary constant. In the following theorem we obtain the BAEE

of Q1(σ). The proof is omitted as it is straightforward.

Theorem 2.1. Under the linex loss function (2.2), the BAEE of Q1(σ) is

δ1c0(X(1), T ), where c0 = −(1/p) ln[Γ(n− k)/Γ(n− k + p)].

We consider a group of scale transformations Ga = {ga(xij) = axij , a >

0}, j = 1, ..., ni, i = 1, ..., k. Under the transformation ga(xij) = axij , the form

of a scale equivariant estimator is

δφ(W,T ) = lnT + φ(W ),(2.4)

where W = (W1, ...,Wk), Wi = Xi(1)/T and φ is a real valued measurable func-

tion. In the following theorem, we prove a general inadmissibility result for the

estimators of the form (2.4). First, define

φ0(w) =

{
lnu− 1

p ln
(

Γ(n+p)
Γ(n)

)
, if w ∈ (B1

⋂
B2)

⋃
(B3

⋂
Bc

2)

φ(w), otherwise,
(2.5)

where B1 = {w : w(1) > 0}, B2 = {w : u < exp(φ(w)+ (1/p) ln(Γ(n+ p)/Γ(n)))},

B3 = {w : w(k) < 0}, u =
∑k

i=1 niwi + 1, w(1) = min{w1, ..., wk}, w(k) =

max{w1, ..., wk} and wi = xi(1)/t, i = 1, ..., k.

Theorem 2.2. Let δφ be a scale equivariant estimator of the form (2.4)

and φ0(w) be as defined in (2.5). If there exists (µ, σ) such that P(µ,σ)(φ0(W ) 6=

φ(W )) > 0, then under linex loss function (2.2), the estimator δφ0
dominates δφ.



Estimating Renyi Entropy of Several Exponential Distributions 507

Proof: The risk function of the estimators of the form (2.4) is

R(µ, σ, δφ) = EWR1(µ, σ,W, δφ),

where R1 denotes the conditional risk of δφ given W = w, and is given by

R1(µ, σ, w, δφ) = E[(exp{p(lnT + φ(W ) − lnσ)}(2.6)

−p(lnT + φ(W ) − lnσ) − 1)|W = w].

Note that the conditional risk function R1(µ, σ, w, δφ) given in (2.6) is a function

of the ratio µ/σ. Hence, without loss of generality we may assume σ to be 1.

Moreover, the conditional risk is a convex function of φ, therefore the choice of φ

minimizing R1(µ, σ, w, δφ) can be obtained as

φ̂(µ,w) = −p−1 ln(E(T p|W = w)).(2.7)

To get improvement over δφ, it is required to obtain the supremum and infimum

of φ̂(µ,w) given in (2.7). These can be derived along the arguments of the proof

of Theorem 2 of Kayal and Kumar (2013). We omit the details here.

Case (i): When all µi’s, (i = 1, ..., k) are non-negative, the respective supre-

mum and infimum of φ̂(µ,w) can be obtained as

sup
µ
φ̂(µ,w) = lnu− p−1 ln(Γ(n+ p)/Γ(n)) and inf

µ
φ̂(µ,w) = −∞.

Case (ii): Assume that µi’s are negative for i = 1, ..., k. Under this restric-

tion, it is required to take into account three possibilities on wi’s: (a) all wi’s

are non-negative, (b) all wi’s are negative and (c) some of wi’s, (i = 1, ..., k) are

non-negative and remaining are negative. In the following we consider these three

sub-cases separately and obtain supremum and infimum of φ̂(µ,w).

(a) Under the assumption that wi’s are non-negative, we obtain

φ̂(µ,w) = lnu− p−1 ln(Γ(n+ p)/Γ(n)).

(b) When wi’s are negative, note that the value of u may be positive or

negative. For u > 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = lnu− p−1 ln(Γ(n+ p)/Γ(n));

and for u < 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

(c) Let some of wi’s (i = 1, ..., k) assume non-negative values and the re-

maining wi’s assume negative values. Thus u may be positive or neg-

ative. When u > 0, then

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = lnu− p−1 ln(Γ(n+ p)/Γ(n));
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and when u < 0, then

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

Case (iii): Under the constraints that some of µi’s are non-negative and

remaining are negative, we consider the following sub-cases:

(a) For the case when w1, ..., wr, ..., wk > 0, we obtain

sup
µ
φ̂(µ,w) = lnu− p−1 ln(Γ(n+ p)/Γ(n)) and inf

µ
φ̂(µ,w) = −∞.

(b) Assume that w1, ..., wr > 0 and wr+1, ..., wk < 0. Then, for u 6= 0,

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

(c) Let w1, ..., wr > 0 and within (k − r), some wi’s be non-negative and

remaining be negative. Then, for u 6= 0, we obtain

sup
µ
φ̂(µ,w) = +∞ and inf

µ
φ̂(µ,w) = −∞.

An application of the Brewster and Zidek technique (see Brewster and

Zidek (1974)) on the function R1(µ, σ, w, δφ), then completes the proof of the

theorem.

As a consequence of the Theorem 2.2, we get the following corollary which

shows that the BAEE obtained in Theorem 2.1 is inadmissible.

Corollary 2.1. The BAEE δ1c0 of Q1(σ) is dominated by the estimator

δ1IB =






ln(uT ) − p−1 ln(Γ(n+ p)/Γ(n)), if w ∈ (B1
⋂
C1)

⋃
(B3

⋂
Cc

1)

lnT + p−1 ln(Γ(n− k)/Γ(n− k + p)), otherwise,

where C1 = {w : u < exp(d)} and d = p−1 ln(Γ(n−k)Γ(n+ p)/Γ(n−k+ p)Γ(n)).

In this part of the paper we consider the problem of estimating Q1(σ) in

restricted parameter spaces. Here we consider the restriction on µi’s. However,

it is seen that it affects the improvement results for the estimation of Q(σ). First

assume that all µi’s are bounded below. This arises when the minimum guarantee

time of components is known to be more than a pre-specified constant. Without

loss of generality, we may assume that µ(1) ≥ 0, where µ(1) = min{µ1, ..., µk}. In

this case, δ1ML is the MLE of Q1(σ). Along the arguments of Case (i) of the proof
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of the Theorem 2.2, the inadmissibility of the BAEE can be established and the

improved estimator is

δ1
+

IB =






ln(uT ) − p−1 ln(Γ(n+ p)/Γ(n)), if w ∈ C1,

lnT + p−1 ln(Γ(n− k)/Γ(n− k + p)), otherwise.

We also consider the other case when the guarantee times of the components

are known to be bounded above. Without loss of generality we assume µ(k) < 0,

where µ(k) = max{µ1, ..., µk}. In this case, the MLE of Q1(σ) is δ1RM = lnT 0 −

lnn, where T 0 =
∑k

i=1(Yi − niX
0
i(1)), X

0
i(1) = min{0, Xi(1)}, i = 1, ..., k. Along

the arguments of Case (ii) of the Theorem 2.2, the inadmissibility of the BAEE

can be established. The improved estimator is given by

δ1
−

IB =






ln(uT ) − 1
p ln(Γ(n+p)

Γ(n) ), if w ∈ B1
⋃

(B3
⋂
Cc

1)
⋃

(C2
⋂
C3
⋂
Cc

1)

lnT + 1
p ln( Γ(n−p)

Γ(n−k+p)), otherwise,

where C2 = {w : w(r) < 0}, C3 = {w : w(r+1) > 0}.

2.2. Numerical comparisons

In this section, we present the relative risk performance of δ1IB, δ
1+
IB and δ1−IB

over the BAEE δ1c0 through graphs for the case k = 2. We assume σ = 1, as the

conditional risk in (2.6) is a function of (µ1

σ ,
µ2

σ ). It should be mentioned that the

risk values of various estimators were calculated using Monte-Carlo simulation

based on 10, 000 samples of different combinations of (n1, n2) and different values

of (µ1, µ2) and p. However, we present few of them considering sample sizes

(5, 5), (5, 10), (10, 5), (10, 10) and p = +0.2,−0.2. It is worthwhile to remark

that we observe similar pattern of the relative risk for other values of p and

(n1, n2).

Based on the Fig. 1 we can conclude the following points:

(i) The margin and the region of the relative risk improvement (RRI) of

δ1IB over δ1c0 becomes small when we increase sample sizes (n1, n2).

(ii) We observe considerable RRI of δ1IB over δ1c0 when both µ1 and µ2

approach to origin.

(iii) For fixed (n1, n2), the RRI of δ1IB over δ1c0 is marginally better for

negative values of p than positive values of p. For example, the RRI

of δ1IB over δ1c0 is 8.59% at (µ1 = 0.18, µ2 = 0) for (n1 = 5, n2 = 5)

and p = −2, whereas for the same values of (µ1, µ2) and (n1, n2), the

RRI of δ1IB over δ1c0 is 8.24% when p = 2.
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Figure 1: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent
relative percentage risk improvement plots of δ1IB over δ1c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),
(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when
(µ1, µ2) ∈ R2. The first and second components of the triplet
represent the sample sizes of the first and second population,
respectively whereas the third component represents the value
of p.

Based on the Fig. 2 we get the following observations.

(i) The region as well as the margin of the RRI of δ1+IB over δ1c0 become

smaller for larger values of (n1, n2).

(ii) When µi tends to the zero, the RRI of δ1+IB over δ1c0 first increases and

then decreases, i = 1, 2.

(iii) For fixed sample sizes (n1, n2), the RRI is marginally better for neg-

ative values of p than positive values of p. The RRI of δ1+IB over δ1c0
is 9.79% at (µ1 = 0.02, µ2 = 0.08) for (n1 = 5, n2 = 5) and p = −2,

whereas for the same values of (µ1, µ2) and (n1, n2), the RRI of δ1IB

over δ1c0 is 9.39%, when p = 2.
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Figure 2: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent
relative percentage risk improvement plots of δ1+IB over δ1c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),
(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when
(µ1, µ2) ∈ R

+
2 . The first and second components of the triplet

represent the sample sizes of the first and second population,
respectively whereas the third component represents the value
of p.

Based on the Fig. 3, we notice the following points.

(i) The margin and the region of the RRI of δ1−IB over δ1c0 become small

when we increase the values of (n1, n2).

(ii) When (µ1, µ2) → (0, 0), the RRI of δ1−IB over δ1c0 increases and it at-

tains maximum at some point near origin.

(iii) For fixed (n1, n2), the RRI of δ1−IB over δ1c0 is marginally better for

negative values of p than positive values of p. For example, the RRI of

δ1−IB over δ1c0 is 18.98% at (µ1 = −0.01, µ2 = −0.01) for (n1 = 5, n2 =

5) and p = 2, whereas for the same values of (µ1, µ2) and (n1, n2),

the RRI of δ1−IB over δ1c0 is 19.20%, when p = −2.
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Figure 3: Fig. (a), (b), (c), (d), (e), (f), (g) and (h) represent
relative percentage risk improvement plots of δ1−IB over δ1c0

for (5,5,+0.2), (5,5,-0.2), (10,5,+0.2), (10,5,-0.2), (5,10,+0.2),
(5,10,-0.2), (10,10,+0.2) and (10,10,-0.2), respectively when
(µ1, µ2) ∈ R

−

2 . The first and second components of the triplet
represent the sample sizes of the first and second population,
respectively whereas the third component represents the value
of p.

3. COMMON LOCATION BUT UNEQUAL SCALE PARAME-

TERS

In this section, we consider k exponential populations with a common lo-

cation parameter µ and unknown but unequal scale parameters σ. This model

arises in life testing and reliability, where the common location parameter can be

considered as minimum guarantee time of operation of several components and

scale parameters are interpreted as unknown and possibly unequal failure rates

of these components. Let the probability density function of the i-th population
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be

fi(x|µ, σi) =

{
σ−1

i exp{−(x− µ)/σi}, if x > µ
0, otherwise,

(3.1)

where µ ∈ R, σi > 0, i = 1, ..., k. Let (Xi1, ..., Xini
) be a random sample of size

ni drawn from the i-th population (i = 1, ..., k) with probability density func-

tion given in (3.1). The expression of the Renyi entropy is Rα(σ) =
∑k

i=1 lnσi −

k lnα/(1− α). It is worthwhile to mention that the problem of estimating Rα(σ)

with respect to the loss function of the form L(θ, δ) = W (δ − θ) is equivalent to

the problem of estimating Q2(σ) =
∑k

i=1 lnσi. We consider the loss function as

L2(Q2(σ), δ) = exp
{
p
(
δ −

k∑

i=1

lnσi

)}
− p
(
δ −

k∑

i=1

lnσi

)
− 1, p 6= 0.(3.2)

Denote Zi = Yi − niXi(1), i = 1, ..., k. For the i-th population, (Xi(1), Zi) is a

complete and sufficient statistic for (µ, σi). Moreover, Zi and Xi(1) are indepen-

dently distributed, where 2σ−1
i Zi follows chi-square distribution with 2(ni − 1)

degrees of freedom and Xi(1) follows an exponential distribution with location pa-

rameter µ and scale parameter σi/ni. Further, define X = min{X1(1), ..., Xk(1)}

and Ti = Yi − niX. It is easy to show that (X,T ) is a joint complete and suf-

ficient statistic for (µ, σ), where T = (T1, ..., Tk). The MLE of Q2(σ) is δ2ML =∑k
i=1 lnTi − ln(

∏k
i=1 ni). Also, X and T are independently distributed with re-

spective probability density function

fX(x) = τ exp{−τ(x− µ)}, x > µ(3.3)

and

fT (t) = Nqηlτ−1
( k∏

i=1

tni − 1
i

)
exp

{
−
( k∑

i=1

tiσ
−1
i

)}
, ti > 0,(3.4)

where η =
( k∏

i=1

σi

)−ni
, τ =

k∑

i=1

niσ
−1
i , N =

k∑

i=1

ni(ni − 1), l =
( k∏

i=1

Γ(ni)
)−1

,

q =
k∑

i=1

t−1
i and t = (t1, ..., tk). Following steps analogous to Kayal et al. (2015),

the UMVUE of Q2(σ) can be obtained as

δ2MV =
k∑

i=1

lnTi −
k∑

i=1

1 − (JTi)
−1

ni − 1
−

k∑

i=1

ψ(ni − 1),(3.5)

where J =
∑k

i=1 T
−1
i .

3.1. Affine equivariant estimator

The estimation problem under study is invariant under Ga,b, a group of

affine transformations, where Ga,b = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R}. The
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form of an affine equivariant estimator can be obtained as (see Kayal et al. (2015))

δη(X,T ) = k lnT1 + η(W1, ...,Wk−1)(3.6)

= k lnT1 + η(W ),

where W = (W1, ...,Wk−1), Wi = (Ti+1/T1), i = 1, ..., k− 1 and η is a real valued

measurable function. The following theorem provides a general inadmissibility

result for an affine equivariant estimator of the form (3.6).

Theorem 3.1. Let δη be the form of an affine equivariant estimator given

in (3.6). Further, define the estimator δ∗η by

δ∗η =






δη, if η(w) ≥ η0(w)

δη0
, if η(w) < η0(w),

where w = (w1, ..., wk−1) and η0(w) = ln[kk(
∏k−1

i=1 wi)] −
1
p ln

(
Γ(n+kp−1)

Γ(n−1)

)
. Then

under the linex loss function (3.2), δ∗η improves δη if there exists (µ, σ) such that

Pµ,σ(η(W ) < η0(W )) > 0.

Proof: The risk function of δη can be written as

R(µ, σ, δη) = EWR1(µ, σ,W, δη),

where R1(µ, σ, w, δη) denotes the conditional risk of δη given W = w, and is given

by

R1(µ, σ, w, δη) = E
[(

exp
{
p
(
k lnT1 + η(W ) −

k∑

i=1

lnσi

)}

−p
(
k lnT1 + η(W ) −

k∑

i=1

lnσi

)
− 1
)∣∣∣W = w

]
.

Note that R1 is a convex function in η and minimized at

(3.7) η̂(σ,w) =
1

p
ln

(
( k∏

i=1

σi

)p

E(T kp
1 |W = w)

)
.

To evaluate η̂(σ,w) in (3.7), we need to derive the conditional distribution of T1

given W = w which is given by

fT1|W (t1|w) = Γ−1(n− 1)sn−1 tn−2
1 e−st1 , t1 > 0, wi > 0,(3.8)

where s = σ−1
1 +

k−1∑

i=1

wiσ
−1
i+1 and n =

∑k
i=1 ni. Using (3.8) we obtain

E(T kp
1 |W = w) =

Γ(n+ kp− 1)

Γ(n− 1)

1

skp
.
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Putting E(T kp
1 |W = w) in (3.7), we get

(3.9) η̂(σ,w) = ln

(
sk

k∏

i=1

σi

)
−

1

p
ln

(
Γ(n+ kp− 1)

Γ(n− 1)

)
.

For fixed values of w, the supremum and infimum of η̂(σ,w) over σ can be obtained

as

(3.10)

sup
σ
η̂(σ,w) = +∞,

inf
σ
η̂(σ,w) = ln

[
kk
( k−1∏

i=1

wi

)]
−

1

p
ln

(
Γ(n+ kp− 1)

Γ(n− 1)

)

= φ0, say.

An application of the Brewster-Zidek technique on R1, then completes the proof

the theorem.

Note that δ2ML and δ2MV belong to the class of affine equivariant estima-

tors of the form (3.6) when η(w) is equal to ln
(

T2

T1
...Tk

T1

)
− k ln(

∏k
i=1 ni) and

ln
(

T2

T1
...Tk

T1

)
−
∑k

i=1
1−(JTi)

−1

ni−1 −
∑k

i=1 ψ(ni − 1), respectively. The Theorem 3.1

then leads to the following corollaries.

Corollary 3.1. The MLE δ2ML is inadmissible and dominated by

δ2IML =






ln[(kT1)
k(
∏k−1

i=1 wi)] −
1
p ln(Γ(n+kp−1)

Γ(n−1) ),

if ln(kk
∏k

i=1 ni) −
1
p ln(Γ(n+kp−1)

Γ(n−1) ) > 0

∑k
i=1 lnTi − ln(

∏k
i=1 ni), otherwise.

Corollary 3.2. The UMVUE δ2MV is inadmissible and dominated by

δ2IMV =






ln[(kT1)
k(
∏k−1

i=1 Wi)] −
1
p ln(Γ(n+kp−1)

Γ(n−1) ),

if ln(kk) − 1
p ln(Γ(n+kp−1)

Γ(n−1) )

+
∑k

i=1 ψ(ni − 1) +
∑k

i=1
1−(JTi)

−1

ni−1 > 0

∑k
i=1 lnTi −

∑k
i=1

1−(JTi)
−1

ni−1 −
∑k

i=1 ψ(ni − 1), otherwise.
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Figure 4: Fig. (a) represents the plot of ln(kk
∏k

i=1 ni)−
1
p

ln(Γ(n+kp−1)
Γ(n−1) )

for (n1 = 4, n2 = 4) when k = 2; and Fig. (b) represents the
plot of that for (n1 = 4, n2 = 8), when k = 2;

3.2. Scale equivariant estimator

In this section, we introduce invariance to the problem under the group of

scale transformations Ga = {ga(x) = ax, a > 0}. The form of a scale equivariant

estimator is obtained as

δξ(X,T ) = k lnT1 + ξ
(X
T1
,
T2

T1
,
T3

T1
, ...,

Tk

T1

)
(3.11)

= k lnT1 + ξ(V ), (say),

where V = (V1, V2, ..., Vk), V1 = X/T1, and Vi = Ti/T1, i = 2, 3, ..., k. The risk

function of δξ given in (3.11) is

R(µ, σ, δξ) = EVR1(µ, σ, V , δξ),

where R1(µ, σ, v, δξ) denotes the conditional risk of δξ given V = v, is given by

R1(µ, σ, v, δξ) = E
[(

exp
{
p
(
k lnT1 + ξ(V ) −

k∑

i=1

lnσi

)}

−p
(
k lnT1 + ξ(V ) −

k∑

i=1

lnσi

)
− 1
)∣∣∣V = v

]

which is minimized at

(3.12) ξ̂(µ, σ, v) =
1

p
ln

(
( k∏

i=1

σi

)p

E(T kp
1 |V = v)

)
.
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The joint probability density function of T1 and V is

f(t1, v) = C exp{µτ}
( k∏

i=2

vni−1
i

)(
1 +

k∑

i=2

v−1
i

)
(3.13)

× exp
{
−
(
v1τ +

(
σ−1

1 +
k∑

i=2

viσ
−1
i

))
t1

}
tn− 1
1 ,

where C = Nηl, t1 > 0, t1v1 > µ, v2 > 0, v3 > 0, ..., vk > 0. Note that to obtain

the supremum and infimum of ξ̂(µ, σ, v), it is required to derive the conditional

distribution of T1|V = v, which can be obtained through the arguments of the

cases considered in Section 3.2 of the paper by Kayal et al. (2015). Hence we omit

the details.

Case (i): Under the assumptions that µ > 0 and v1 > 0, we obtain

ξ̂(µ, σ, v) = ln
( k∏

i=1

σi

)
−

1

p
ln(I∗1/I1),(3.14)

where I∗1 =
∫∞
µ/v1

exp{−At1} t
kp+n−1
1 dt1, I1 =

∫∞
µ/v1

exp{−At1} t
n−1
1 dt1 and A =

v1τ + (σ−1
1 +

∑k
i=2 viσ

−1
i ). Using the monotone likelihood ratio property it is not

hard to show that

sup
µ,σ

ξ̂(µ, σ, v) = +∞ and inf
µ,σ

ξ̂(µ, σ, v) = −∞.

Case (ii): When µ < 0 and v1 > 0, we get

ξ̂(µ, σ, v) = ln
(
Ak

k∏

i=1

σi

)
−

1

p
ln
(Γ(n+ kp)

Γ(n)

)
.(3.15)

It is easy to see that supremum of ξ̂(µ, σ, v) is +∞. The infimum of ξ̂(µ, σ, v)

can be obtained by applying geometric mean-harmonic mean inequality to the

variables (σ1/n1v1 + 1), (σ2/n2v1 + v2), ..., (σk/nkv1 + vk) and is given by

inf
µ,σ

ξ̂(µ, σ, v) = ln
(
kk(n1v1 + 1)

k∏

i=2

(niv1 + vi)
)
−

1

p
ln
(Γ(n+ kp)

Γ(n)

)
.

Case (iii): Let µ < 0 and v1 < 0. Under these assumptions, we have

ξ̂(µ, σ, v) = ln
( k∏

i=1

σi

)
−

1

p
ln(I∗2/I2),(3.16)

where I∗2 =
∫ µ/v1

0 exp{−At1}t
kp+n−1
1 dt1 and I2 =

∫ µ/v1

0 exp{−At1}t
n−1
1 dt1. Note

that the value of A may be positive or negative. For both A > 0 and A < 0, it
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can be shown that the supremum and infimum of ξ̂(µ, σ, v) are +∞ and −∞,

respectively. As in the full sample space the supremum and infimum choices of

ξ̂(µ, σ, v) are +∞ and −∞, respectively, therefore we do not get any improve-

ment over the BAEE. But if we restrict the parameter space to µ < 0, then an

improvement over the BAEE exists, which is shown in the next theorem. Define

ξ0(v) =






ln(v∗) − 1
p ln(Γ(n+kp)

Γ(n) ), if v1 > 0 and

v∗ > exp{ξ(v) + 1
p ln (Γ(n+kp)

Γ(n) )}

ξ(v), otherwise,

(3.17)

where v∗ = kk(n1v1 + 1)

k∏

i=2

(niv1 + vi).

Theorem 3.2. Let δξ be a scale equivariant estimator of the form (3.12)

and ξ0(v) be as defined in (3.17). If there exists a (µ, σ) such that P(µ,σ)(ξ0(V ) 6=

ξ(V )) > 0, then the estimator δξ0 dominates δξ, with respect to the linex loss

function, when µ < 0.

As a consequence of the Theorem 3.2, the following corollary immediately

follows.

Corollary 3.3. When µ < 0, the MLE and the UMVUE are inadmissible

and dominated by

δ2−IML =






ln(T k
1 V

∗) − 1
p ln(Γ(n+kp)

Γ(n) ), if V1 > 0 and

V ∗ > exp{
∑k

i=2 lnVi − ln(
∏k

i=1 ni) + 1
p ln(Γ(n+kp)

Γ(n) )}

∑k
i=1 lnTi − ln(

∏k
i=1 ni), otherwise

and

δ2−IMV =






ln(T k
1 V

∗) − 1
p ln(Γ(n+kp)

Γ(n) ), if V1 > 0

and V ∗ > exp{
∑k

i=2 lnVi −
∑k

i=1
1−(JTi)

−1

ni−1

−
∑k

i=1 ψ(ni − 1) + 1
p ln(Γ(n+kp)

Γ(n) )}

∑k
i=1 lnTi −

∑k
i=1

1−(JTi)
−1

ni−1 −
∑k

i=1 ψ(ni − 1), otherwise,

where V ∗ = kk(n1V1 + 1)
k∏

i=2

(niV1 + Vi) and J =
∑k

i=1 T
−1
i .
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3.3. Numerical comparisons

Here we present risk and relative risk of various estimators derived in Sec-

tion 3. As in Section 2.2, the risk values were calculated using Monte-Carlo simu-

lation based on 10, 000 samples of different combinations of sample sizes (n1, n2)

and different values of (µ, σ1, σ2) and p. We present few of them in tabular form

below. Table 1 is for the risk values of δ2MV and δ2IMV when k = 2. The RRI of

the estimators δ2−IMV , δ
2−
IML and δ2MV over δ2ML is presented in Table 2 and Table 3

for k = 2. Different combinations of (n1, n2) and different values of p, σ1, σ2 have

been chosen. We have considered sample sizes (5, 5), (5, 10), (10, 5) and (10, 10).

The values of p have been chosen as −0.5,−1,+0.5 and +1. Here, we have pre-

sented very few values, however, similar observations are made for various other

values of (n1, n2), p and µ.

Table 1: The risk values of δ2MV and δ2IMV for k = 2.

p µ (n1, n2) (σ1, σ2) δ2
MV

δ2
IMV

p µ (n1, n2) (σ1, σ2) δ2
MV

δ2
IMV

-0.75 0.2 (5,5) (0.5,0.5) 0.164190 0.157732 -2 -0.2 (10,5) (0.5,0.5) 1.157259 1.068251
(0.5,1.0) 0.159419 0.153242 (0.5,1.0) 1.135408 1.009288
(1.0,0.5) 0.169174 0.162430 (1.0,0.5) 1.227956 1.157454
(1.0,1.0) 0.164190 0.157732 (1.0,1.0) 1.157259 1.068251

-1.5 0.5 (5,10) (0.5,0.5) 0.561950 0.560949 -2.5 -0.5 (10,10) (0.5,0.5) 0.974965 0.669685
(0.5,1.0) 0.657281 0.653271 (0.5,1.0) 1.007035 0.680643
(1.0,0.5) 0.622936 0.621872 (1.0,0.5) 0.931061 0.654255
(1.0,1.0) 0.561950 0.552783 (1.0,1.0) 0.974965 0.669685

Table 2: The relative percentage risk improvement over δ2ML

by δ2−IMV , δ
2−
IML and δ2MV for k = 2.

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2
MV

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2
MV

-0.5 -0.2 (5,5) (0.5,0.5) 1.18 1.50 41.46 0.5 -0.2 (5,5) (0.5,0.5) 0.38 0.69 17.72
(0.5,1.0) 1.55 2.59 41.68 (0.5,1.0) 0.59 1.31 17.81
(1.0,0.5) 3.38 3.75 41.29 (1.0,0.5) 2.23 2.41 17.85
(1.0,1.0) 5.19 7.03 41.47 (1.0,1.0) 3.21 4.05 17.72

-0.5 -0.2 (5,10) (0.5,0.5) 0.15 0.23 35.57 0.5 -0.2 (5,10) (0.5,0.5) 0.12 0.16 14.02
(0.5,1.0) 0.41 0.82 37.06 (0.5,1.0) 0.23 0.47 15.64
(1.0,0.5) 0.08 0.16 33.86 (1.0,0.5) 0.02 0.07 13.02
(1.0,1.0) 0.39 1.25 35.57 (1.0,1.0) 0.42 0.53 14.02

-0.5 -0.2 (10,5) (0.5,0.5) 0.12 0.25 36.64 0.5 -0.2 (10,5) (0.5,0.5) 0.04 0.09 15.87
(0.5,1.0) 0.23 0.55 35.37 (0.5,1.0) 0.08 0.23 15.63
(1.0,0.5) 0.24 1.31 37.83 (1.0,0.5) 0.10 0.45 16.71
(1.0,1.0) 2.66 3.68 36.65 (1.0,1.0) 0.90 1.66 15.87

-0.5 -0.2 (10,10) (0.5,0.5) 0.01 0.02 27.68 0.5 -0.2 (10,10) (0.5,0.5) 0.02 0.05 13.95
(0.5,1.0) 0.23 0.34 28.20 (0.5,1.0) 0.04 0.22 14.72
(1.0,0.5) 0.42 0.48 26.89 (1.0,0.5) 0.07 0.31 14.23
(1.0,1.0) 0.77 1.42 27.68 (1.0,1.0) 0.43 0.82 13.95
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Table 3: The relative percentage risk improvement over δ2ML

by δ2−IMV , δ
2−
IML and δ2MV for k = 2.

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2
MV

p µ (n1, n2) (σ1, σ2) δ2−

IMV
δ2−

IML
δ2
MV

-1 -0.2 (5,5) (0.5,0.5) 1.60 2.08 50.16 1 -0.2 (5,5) (0.5,0.5) 0.27 0.44 0.43
(0.5,1.0) 2.25 3.21 50.37 (0.5,1.0) 0.34 0.78 0.42
(1.0,0.5) 4.09 4.76 49.88 (1.0,0.5) 1.01 1.58 0.77
(1.0,1.0) 6.67 8.56 50.16 (1.0,1.0) 2.55 2.98 0.44

-1 -0.2 (5,10) (0.5,0.5) 0.15 0.23 43.88 1 -0.2 (5,10) (0.5,0.5) 0.10 0.11 0.98
(0.5,1.0) 0.40 1.07 45.22 (0.5,1.0) 0.21 0.37 1.03
(1.0,0.5) 0.06 0.35 42.00 (1.0,0.5) 0.02 0.05 0.76
(1.0,1.0) 0.51 1.81 43.88 (1.0,1.0) 0.29 0.42 1.20

-1 -0.2 (10,5) (0.5,0.5) 0.03 0.45 44.71 1 -0.2 (10,5) (0.5,0.5) 0.02 0.13 2.01
(0.5,1.0) 0.59 1.12 43.14 (0.5,1.0) 0.08 0.21 2.66
(1.0,0.5) 0.75 1.98 45.95 (1.0,0.5) 0.09 0.29 2.47
(1.0,1.0) 4.06 5.56 44.71 (1.0,1.0) 0.45 1.15 2.36

-1 -0.2 (10,10) (0.5,0.5) 0.12 0.16 33.43 1 -0.2 (10,10) (0.5,0.5) 0.04 0.06 5.59
(0.5,1.0) 0.18 0.27 33.84 (0.5,1.0) 0.05 0.09 6.49
(1.0,0.5) 0.16 0.30 32.81 (1.0,0.5) 0.07 0.33 4.14
(1.0,1.0) 1.24 1.73 33.43 (1.0,1.0) 0.34 0.56 5.59

The following conclusions are evident from Table 2 and Table 3:

(i) We observe marginal RRI over δ2ML by δ2−IML, δ
2−
IMV , but substantial

improvement by δ2MV .

(ii) For fixed (n1, n2) and µ, the RRIs for the estimators δ2−IMV and δ2−IML

over δ2ML are marginally better, whereas we observe substantial RRIs

for the estimator δ2MV over δ2ML for negative values of p than positive

values of p.

(iii) For fixed µ, p and (n1, n2) the RRI of δ2−IML and δ2−IMV over δML

approximately increases with (σ1, σ2), but we do not observe such

behaviour for the RRI of δ2MV over δ2ML.

4. CONCLUDING REMARKS

In this paper, the problem of estimating the Renyi entropy of several expo-

nential distributions has been investigated with respect to a linex loss function.

The concept of invariance has been used to derive improved estimators over the

standard ones such as MLE and UMVUE. We have considered two distinct mod-

els here. Both these models have various applications in real life experiments. In

the first model, the location parameters are distinct but the scale parameter is

assumed to be common. Improved estimators over the BAEE have been obtained

when parameters space is restricted as well as unrestricted. In the second model,
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the scale parameters are distinct but the location parameter is assumed to be

common. Affine and scale equivariant estimators improving over the UMVUE

and MLE are obtained under restrictions on the parameter space. Finally, mar-

gins of relative risk improvements by new estimators are determined numerically

using simulations.
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