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Abstract:

• In this paper, we consider a general framework for constructing new valid densities
regarding a random matrix variate. However, we focus specifically on the Wishart
distribution. The methodology involves coupling the density function of the Wishart
distribution with a Borel measurable function as a weight. We propose three different
weights by considering trace and determinant operators on matrices. The charac-
teristics for the proposed weighted-type Wishart distributions are studied and the
enrichment of this approach is illustrated. A special case of this weighted-type dis-
tribution is applied in the Bayesian analysis of the normal model in the univariate
and multivariate cases. It is shown that the performance of this new prior model is
competitive using various measures.
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1. INTRODUCTION

The modeling of real world phenomena is constantly increasing in complex-
ity and standard statistical distributions cannot model these adequately. The
question arises whether we can introduce new models to compete with and en-
hance the standard approaches available in the literature. Various generalizations
and extensions have been proposed for standard statistical models, since more
complex models are needed to solve the modeling complications of real data. To
mention a few: Sutradhar et al. (1989) generalized the Wishart distribution for
the multivariate elliptical models, however Teng et al. (1989) considered ma-
trix variate elliptical models in their study. Wong and Wang (1995) defined the
Laplace-Wishart distribution, while Letac and Massam (2001) defined the nor-
mal quasi-Wishart distribution. In the context of graphical models, Roverato
(2002) defined the hyper-inverse Wishart and Wang and West (2009) extended
the inverse Wishart distribution for using hyper-Markov properties (see Dawid
and Lauritzen (1993)), while Bryc (2008) proposed the compound Wishart and
q-Wishart in graphical models. Abul-Magd et al. (2009) proposed a generaliza-
tion to Wishart-Laguerre ensembles. Adhikari (2010) generalized the Wishart
distribution for probabilistic structural dynamics, and Dı́az-Garćıa et al. (2011)
extended the Wishart distribution for real normed division algebras. Munilla
and Cantet (2012) also formulated a special structure for the Wishart distribu-
tion to apply in modeling the maternal animal. These generalizations justify the
speculative research to propose new models based on the concept of weighted dis-
tributions Rao (1965). Assuming special cases of these new models as priors for
an underlying normal model in a Bayesian analysis exhibit interesting behaviour.

In this paper we propose a weighted-type Wishart distribution, making use
of the mathematical mechanism frequently used in proposing weighted-type dis-
tributions, from length-biased viewpoint, and consider its applications in Bayesian
analysis. The building block of our contribution is an extension of the math-
ematical formulation of univariate weighted-type distributions to multivariate
weighted-type distributions. Specifically, if f(x;σ2) is the main/natural proba-
bility density function (pdf) which is imposed by a scalar weight function h(x;φ)
(not necessarily positive), then the weighted-type distribution is given by

g(x;θ) = Ch(x;φ)f(x;σ2), θ = (σ2, φ),(1.1)

where C−1 = Eσ2 [h(X;φ)] and the expectation Eσ2 [.] is taken over the same
probability measure as f(.). The parameter φ can be seen as an enriching pa-
rameter.

For the multivariate case, one can simply use the pdf of a multivariate
random variable for f(.) in (1.1). Further, the parameter space can be multi-
dimensional. However, the weight function h(.) should remain of scalar form.
Thus the question that arises is: Why not replace f(.) in (1.1) with the pdf
of a matrix variate random variable? To address this issue and using (1.1) as
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departure, we define matrix variate weighted-type distributions, from where new
matrix variate distributions originate.

Initially let Sm be the space of all positive definite matrices of dimension m.
To set the platform for what we are proposing, consider a random matrix variate
X ∈ Sm having a pdf f(.;ΨΨΨ) with parameter ΨΨΨ. We construct matrix variate
distributions, with pdf g(.; Θ), where Θ = (ΨΨΨ,Φ) and enrichment parameter
Φ ∈ Sm, by utilizing one of the following mechanisms:

1. (Loading with a weight of trace form)

g(X; Θ) = C1h1(tr[XΦ])f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ).(1.2)

2. (Loading with a weight of determinant form)

g(X; Θ) = C2h2(|XΦ|)f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ).(1.3)

3. (Loading with a mixture of weights of trace and determinant forms)

g(X; Θ) = C3h1(tr[XΦ1])h2(|XΦ2|)f(X;ΨΨΨ),Θ = (ΨΨΨ,Φ1,Φ2),(1.4)

where hi(.), i = 1, 2 is a Borel measurable function (weight function) which admits
Taylor’s series expansion, Cj is a normalizing constant and f(.) can be referred
to as a generator.
In this paper, we consider the f(.) in (1.2)-(1.4) to be the pdf of the Wishart
distribution with parameters n and Σ, i.e. ΨΨΨ = (n,Σ), given by

|Σ|−
n
2

2
nm
2 Γm

(
n
2

) |X|n2−m+1
2 etr

(
−1

2
Σ−1X

)
,(1.5)

with X,Σ ∈ Sm, denoted by Wm(n,Σ), and incorporate a weight function, hi(.),
as given by (1.2)-(1.4). Note that Γm(.) is the multivariate gamma function and
etr(.) = exp(tr(.)).

We organize our paper as follows: In Section 2, we discuss the weighted-type
Wishart distribution that originated from (1.2) and propose some of its impor-
tant properties. The enrichment of this approach is illustrated by the graphical
display of the joint density function of the eigenvalues of the random matrix for
certain cases. In Section 3, the weighted-type Wishart distributions emanating
from (1.3) and (1.4) are proposed. The significance of this approach of extend-
ing the well-known Wishart distribution, will be demonstrated in Section 4, by
assuming special cases as a priors for the underlying univariate and multivariate
normal model. Comparison results of these cases with well-known priors path the
way for integrating these models in Bayesian analysis. Finally, some thoughts of
other possible applications are given in Section 5.
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2. WEIGHTED-TYPE I WISHART DISTRIBUTION

In this section we consider the construction methodology of a weighted-type
I Wishart distribution according to (1.2).

Definition 2.1. The random matrix X ∈ Sm is said to have a weighted-
type I Wishart distribution (W1WD) with parameters ΨΨΨ, Φ ∈ Sm and the weight
function h1(.), if it has the following pdf

g(X; Θ) =
h1(tr[XΦ])f(X;ΨΨΨ)

E [h1(tr[XΦ])]

= cn,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h1(tr[XΦ]), Θ = (ΨΨΨ,Φ),(2.1)

with

{cn,m(Θ)}−1 = 2
nm
2 Γm

(n
2

) ∞∑
k=0

2kh
(k)
1 (0)

k!

∑
κ

(n
2

)
κ
Cκ (ΦΣ) ,(2.2)

written as X ∼WI
m(n,Σ,Φ). In (2.1) f(X;ΨΨΨ) is the pdf of the Wishart distri-

bution (Wm(n,Σ)) (see 1.5) i.e. ΨΨΨ = (Σ, n), n > m − 1, Σ ∈ Sm and h1(.) is a

Borel measurable function that admits Taylor’s series expansion, (a)κ = Γm(a,κ)
Γm(a)

and Γm(a, κ) is the generalized gamma function. The parameters are restricted
to take those values for which the pdf is non-negative.

Remark 2.1. Note that using Taylor’s series expansion for h1(.) in (2.1)
it follows that

h1(tr[XΦ]) =
∞∑
k=0

h
(k)
1 (0)

k!
tr(XΦ)k =

∞∑
k=0

h
(k)
1 (0)

k!
Cκ(XΦ),(2.3)

from Definition 7.21, p.228 of Muirhead (2005) where h
(k)
1 (0) is the k -th derivative

of h1(.) at the point zero. Therefore using Theorem 7.2.7, p.248 of Muirhead
(2005) follows from Definition 2.1 that

E [h1(tr[XΦ])] =

∫
Sm

h1(tr[XΦ])f(X;ΨΨΨ)dX

=
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2kh
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∑
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)
κ
Cκ (ΦΣ) ,

and (2.2) follows (Cκ (aXXX) = akCκ (XXX) and Cκ(.) is the zonal polynomial corre-
sponding to κ (Muirhead (2005)).
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Remark 2.2. Here we consider some thoughts related to Definition 2.1
and (2.1).

(1) As formerly noticed, the weight function should be a scalar function. In
Definition 2.1, we used the trace operator, however any relevant operator
can be used. The determinant operator will be discussed in Section 3.
Another interesting operator can be the eigenvalue. In this respect one
may use the result of Arashi (2013) to get closed expression for the expected
value of the weight function.

(2) For h1(tr[XΦ]) = etr(XΦ) in (2.1) we obtain an enriched Wishart distri-
bution with scale matrix ΣΣΣ−1 + ΦΦΦ.

(3) For h1(xφ) = exp(xφ) and m = 1 in (2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
−
(

1

2σ2
− φ

)
x

)
,(2.4)

which is the pdf of a gamma random variable with parameters n
2 and 1

2σ2−φ,

with cn(θ) =

(
1

2σ2
−φ

)n
2

Γ(n2 )
, θ = (σ2, φ), written as G(α = n

2 , β = 1
2σ2 − φ).

(4) For h1(x) = x and m = 1 in (2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
− 1

2σ2
x

)
x=cn(θ)(σ2)−

n
2 x

n
2 exp

(
− 1

2σ2
x

)
,

with cn(θ) =

(
1

2σ2
−φ

)n+2
2

Γ(n2 +1)
, θ = (σ2, φ), hence X ∼ G(α = n

2 +1, β = 1
2σ2−φ).

This is also called the length-biased or size-biased gamma distribution (see
Patil and Ord (1976)) with parameters n

2 and 1
2σ2 − φ.

(5) For h1(tr[XΦ]) = (1 + tr[XΦ]) in (2.1) the pdf simplifies to

g(X; Θ) = cn,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
(1 + tr(XΦ)),(2.5)

with cn,m(Θ) as in (2.2), Θ = (n,Σ,Φ), which is defined as the Kummer
Wishart distribution and denoted as KWm(n,Σ,Φ).

(6) For h1(xφ) = (1 + xφ)γ , where γ is a known fixed constant, and m = 1 in
(2.1) the pdf simplifies to

g(x; θ) = cn(θ)(σ2)−
n
2 x

n
2
−1 exp

(
− 1

2σ2
x

)
(1 + φx)γ(2.6)

with cn(θ) = 2
n
2 Γ
(
n
2

)∑∞
k=0

(2φ2σ2)kγ!
(γ−k)!k!

∑
κ

(
n
2

)
κ
, θ = (σ2, φ). If φ = 1 then

this is also known as the Kummer gamma or generalized gamma distribu-
tion, written as KG(α = n

2 , β = 1
2σ2 , γ), by expanding the term (1 + φx)γ

(see Pauw et al. (2010)).

(7) Various functional forms of h1(.) are explored and the joint density of eigen-
values of the matrix variates are graphically illustrated to show the flexi-
bility built in by this construction, see Table 1.
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2.1. Characteristics

In this section some statistical properties of the W1WD (Definition 2.1)
are derived. Most of the computations here deal with the relevant use of (2.3)
and Theorem 7.2.7, p.248 of Muirhead (2005), though we do not mention every
time.

Theorem 2.1. Let X ∼WI
m(n,Σ,Φ), then the rth moment of |X| is

given by

E (|X|r) =
cn,m(Θ)

c2(n
2

+r),m(Θ)
|Σ|r,

where cn,m(Θ) and c2(n
2

+r),m(Θ) as in (2.2).

Proof: Similarly as in Remark 2.1, by using (2.1),

E (|X|r) = cn,m(Θ)|Σ|−
n
2

∫
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|X|r+
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2
−m+1

2 etr

(
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2
Σ−1X

)
h1(tr[XΦ])dX

= cn,m(Θ)|Σ|−
n
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k=0

h
(k)
1 (0)

k!

∑
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∫
Sm
|X|r+

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
×Cκ(XΦ)dX,

the result follows.

In the following, we give the exact expression for the moment generating
function (MGF) of the W1WD, provided its existence.

Theorem 2.2. Let X ∼WI
m(n,Σ,Φ), then the moment generating func-

tion of X is given by

MX(T) = cn,m(Θ)dn,m|IIIm − 2ΣTΣTΣT |−
n
2 ,

with cn,m(Θ) as in (2.2) and dn,m = 2
nm
2 Γm

(
n
2

)∑∞
k=0

∑
κ

2kh
(k)
1 (0)
k!

(
n
2

)
κ

× Cκ
(
Φ(ΣΣΣ−1 − 2TTT )−1

)
.

Proof: Using equation (2.1) we have

MX(T ) = E(etr(TX))

= cn,m(Θ)|Σ|−
n
2

∫
Sm
|X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X + TX

)
h1(tr[XΦ])dX

= cn,m(Θ)|Σ|−
n
2

∞∑
k=0

∑
κ

2
nm
2

+kh
(k)
1 (0)(n2 )κΓm(n2 )Γ(nm2 + k)

k!Γ(nm2 + k)

×|ΣΣΣ−1 − 2TTT |−
n
2Cκ(ΦΦΦ(ΣΣΣ−1 − 2TTT )−1)

and the proof is complete.
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Another important statistical characteristic is the joint pdf of the eigenval-
ues of X, which is given in the next theorem.

Theorem 2.3. Let X ∼WI
m(n,Σ,Φ), then the joint pdf of the eigen-

values λ1 > λ2 > ... > λm > 0 of X is

cn,m(Θ)|Σ|−
n
2 π

1
2
m2

Γm
(
m
2

) m∏
i<j

(λi − λj) |Λ|
n
2
−m+1

2

×
∞∑
r=0

∞∑
k=0

∑
ρ

∑
κ

∑
φ∈ρ,κ

h
(k)
1 (0)Cρ,κφ (Im, Im)Cρ,κφ

(
−1

2Σ−1,Φ
)

r!k! [Cφ (Im)]2
Cφ (Λ) .

Proof: From Theorem 3.2.17, p.104 of Muirhead (2005) the pdf of Λ =
diag(λ1, ..., λm) is

π
1
2
m2

Γm
(
m
2

) m∏
i<j

(λi − λj)
∫
O(m)

g(HΛH′; Θ)dH,

where O(m) is the space of all orthogonal matrices H of order m.

Note that

I =

∫
O(m)

g(HΛH′; Θ)dH

= cn,m(Θ)|Σ|−
n
2

∫
O(m)
|HΛH′|

n
2
−m+1

2 etr

(
−1

2
Σ−1HΛH

′
)
h1(tr[HΛH′Φ])dH

By using (2.3), we get

I = cn,m(Θ)|Σ|−
n
2 |Λ|

n
2
−m+1

2

∞∑
r=0

1

r!

∞∑
k=0

h
(k)
1 (0)

k!

×
∑
ρ

∑
κ

∫
O(m)

Cρ

(
−1

2
Σ−1HΛH

′
)
Cκ
(
ΦHΛH′

)
dH.

Note that ∫
O(m)

Cρ

(
−1

2
ΣHΛH′

)
Cκ
(
ΦHΛH′

)
dH

=
∑
φ∈ρ,κ

Cφ (Λ)Cρ,κφ (Im, Im)Cρ,κφ
(
−1

2Σ,Φ
)

[Cφ (Im)]2

from (1.2), p.468 of Davis (1979) and the result follows.
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Remark 2.3. For Σ = c1III and Φ = c2III the result can be obtained from
Theorem 3.2.17, p.104 of Muirhead (2005) as follows:

I = cn,m(Θ)c
−mn

2
1 |Λ|

n
2
−m+1

2 etr
(
−c1

2
Λ
)
h1 (c2ΛΛΛ) .(2.7)

Based on Remark 2.3, Table 1 illustrates the joint pdf of the eigenvalues of X2×2

for specific c1, c2 and n and different weight functions using (2.7). It is evident
that the functional form of the weight function provides increased flexibility for
the user. Negative and positive correlations amongst the eigenvalues can be
obtained using different weight functions, h1(.).

Table 1: Joint pdf of the eigenvalues for n = 9, c2 = 1 and c1 = 0.1
(Left), c1 = 0.5 (Middle) and c1 = 1.5 (Right)

h1(c2x) = exp(c2x)

h1(c2x) = exp( 1
c2x

)

h1(c2x) = 1 + c2x
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3. FURTHER DEVELOPMENTS

3.1. Weighted-type II Wishart distribution

In this section we focus on the construction of a weighted-type Wishart
distribution for which the weight function is of determinant form (see (1.3)).
Before exploring the form of the weighted-type Wishart distribution based on a
weight of determinant form, let X ∼Wm(n,Σ) and µk denote the k-th moment
of |X|. Then from (15), p.101 of Muirhead (2005)

µk = E
[
|X|k

]
=

2kΓm
(
n
2 + k

)
Γm
(
n
2

) |Σ|k.

Thus for any Borel measurable function h2(.), making use of Taylor’s series ex-
pansion, we have

(3.1) h2(|XΦ|) =

∞∑
k=0

h
(k)
2 (0)

k!
|XΦ|k.

Hence

E [h2(|XΦ|)] =
∞∑
k=0

h
(k)
2 (0)

k!
|Φ|kµk =

∞∑
k=0

2kΓm
(
n
2 + k

)
h

(k)
2 (0)

k!Γm
(
n
2

) |ΦΣ|k.

Accordingly, we have the following definition for a weighted-type Wishart distri-
bution with weight of determinant form (see (1.3)).

Definition 3.1. The random matrix X ∈ Sm is said to have a weighted-
type II Wishart distribution (W2WD) with parameters Ψ, Φ ∈ Sm and the weight
function h2(.), if it has the following pdf

g(X; Θ) =
h2(|XΦ|)f(X;ΨΨΨ)

E [h2(|XΦ|)]

= c∗n,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h2(|XΦ|), Θ = (ΨΨΨ,Φ)

with {
c∗n,m(Θ)

}−1
=

∫
Sm
|Σ|−

n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h2(|XΦ|)dX

=

∞∑
k=0

h
(k)
2 (0)2

(n+2k)m
2 Γm

(
n+2k

2

)
k!

|ΦΣ|k.

and f(X;ΨΨΨ) is the pdf of the Wishart distribution (Wm(n,Σ)) i.e. ΨΨΨ = (Σ, n),
n > m−1, Σ ∈ Sm and h2(.) is a Borel measurable function that admits Taylor’s
series expansion. The parameters are restricted to take those values for which
the pdf is non-negative. We write this as X ∼WII

m (n,Σ,Φ).
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3.2. Weighted-type III Wishart distribution

As before, in this section we give the definition of the weighted-type III
Wishart distribution (W3WD). Utilizing a more extended version of (1.4) (allow-
ing more parameters) we have the following definition:

Definition 3.2. The random matrix X ∈ Sm is said to have a weighted-
type III Wishart distribution (W3WD) with parameters ΨΨΨ, Φ1 and Φ2 ∈ Sm and
the weight functions h1(.) and h2(.), if it has the following pdf

g(X; Θ) =
h1(tr[XΦ1])h2(|XΦ2|)f(X;ΨΨΨ)

E [h1(tr[XΦ1])h2(|XΦ2|)]
, Θ = (ΨΨΨ,Φ1,Φ2)

= c∗∗n,m(Θ)|Σ|−
n
2 |X|

n
2
−m+1

2 etr

(
−1

2
Σ−1X

)
h1(tr[XΦ1])h2(|XΦ2|)

with

{c∗∗n,m(Θ)}−1 =
1

2
nm
2

∞∑
k=0

∞∑
t=0

h
(k)
1 (0)h

(t)
2 (0)

k!t!
2mt+kΓm

(n
2

+ t
)
|Φ1Σ|t

∑
κ

(n
2

+ t
)
κ

×Cκ(Φ1Σ).

where f(X;ΨΨΨ) is the pdf of the Wishart distribution (Wm(n,Σ)) i.e. ΨΨΨ = (Σ, n),
n > m−1, Σ ∈ Sm and h1(.) and h2(.) are Borel measurable functions that admit
Taylor’s series expansion. We denote this as X ∼ WIII

m (n,Σ,Φ1,Φ2). The
parameters are restricted to take those values for which the pdf is non-negative.

4. APPLICATION

In this section special cases of Definition 1 are applied as priors for the
normal model under the squared error loss function. First the Kummer gamma
distribution ((2.6) with φ = 1) as a prior for the variance of the univariate
normal distribution and secondly the Kummer Wishart (2.5) as a prior for the
covariance matrix of the matrix variate normal distribution. Bekker and Roux
(1995) considered the Wishart prior as a competitor for the conjugate inverse-
Wishart prior for the covariance matrix of the matrix variate normal distribution.
Van Niekerk et al. (2016a) confirmed the value added of the latter by a numerical
study. This is the stimulus to consider other possible priors.

4.1. Univariate Bayesian illustration

In this section a special univariate case of the weighted-type I Wishart
distribution is applied as a prior for the variance of the normal model. Consider
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a random sample of size n1 from a univariate normal distribution with unknown
mean and variance, i.e. Xi ∼ N(µ, σ2),XXX = (X1, ..., Xn1). Let h(x) = (1 + x)γ ,
m = 1 and Σ1×1 = σ2 in Definition 2.1 (see (2.6)), and consider this distribution
as a prior for σ2, and an objective prior for µ. This prior model is compared
with the well-known inverse gamma and gamma priors in terms of coverage and
median credible interval width. The three priors under consideration are

• Inverse gamma prior (IG(α1, β1)) with pdf

g(x;α1, β1) =
βα1

1

Γ(α1)
x−α1−1 exp

(
−β1

x

)
, x > 0

• Gamma prior (2.4) (G(α2, β2))

• Kummer gamma prior (2.6) (KG(α3, β3, γ = 1)).

The marginal posterior pdf and Bayes estimator of σ2 under the Kummer gamma
prior are calculated using Remark 5 of Van Niekerk et al. (2016b) as

q(σ2|XXX)=

(
σ2
)α3−n12 −

1
2 exp

(
−β3σ

2
)

(1 + φσ2) exp
(
− 1

2σ2

[∑n1
i=1X

2
i −X

2
])

Γ
(
α3 + 1

2

)
β
α3+ 1

2
3 Eσ2

1

[
(σ2

1)−
n1
2 (1+φσ2

1) exp
(
− 1

2σ2
1

[∑n1
i=1X

2
i −X

2
])] ,

and

σ̂2 =
β3Γ

(
α3 + 3

2

)
Eσ2

2

[
(σ2

2)−
n1
2 (1 + φσ2

2) exp
(
− 1

2σ2
2

[∑n1
i=1X

2
i −X

2
])]

Γ
(
α3 + 1

2

)
Eσ2

1

[
(σ2

1)−
n1
2 (1 + φσ2

1) exp
(
− 1

2σ2
1

[∑n1
i=1X

2
i −X

2
])] ,

where σ2
1 ∼ G

(
α3 + 1

2 , β3

)
and σ2

2 ∼ G
(
α3 + 3

2 , β3

)
.

A normal sample of size 18 is simulated with mean µ = 0 and variance
σ2 = 1. The hyperparameters are chosen such that E(σ2) = σ2

0 = 0.9.

Four combinations of hyperparameter values are investigated and summa-
rized in Table 2. Note that in combination 4, the prior belief for the Kummer
gamma is not 0.9 but 5.23, which is quite far from the target value of 1 and the
prior information is clearly misspecified. It is clear from Table 2 that the Kum-
mer gamma prior, with parameter combination 4, is very vague when compared
to the other two priors. To evaluate the performance of the new prior structure,
1000 independent samples are simulated and for each one the posterior densi-
ties and estimates are calculated. This enables the calculation of the coverage
probabilities and median credible interval width as given in Table 3.

The coverage probability obtained under the Kummer gamma prior is
higher than for the inverse-gamma and gamma priors, while the median width
of the credible interval (indicated in brackets) is competitive. It is interesting to
note that even under total misspecification (see combination 4 in Table 2), the
Kummer gamma prior is still performing well. The performance superiority of
the Kummer gamma prior is clear from Table 3.
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Table 2: Influence of hyperparameters on the prior pdf’s (– Kummer
gamma prior, - - Inverse gamma prior, ... Gamma prior)

Combination 1 2 3 4

Inverse
gamma
prior

α1 = 3.22,
β1 = 2

α1 = 4.33,
β1 = 3

α1 = 3.22,
β1 = 2

α1 = 3.22,
β1 = 2

Gamma
prior

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

α2 = 1.8,
β2 = 2

Kummer
gamma
prior

α3 = 1.2,
β3 = 2.1

α3 = 0.8,
β3 = 1.8

α3 = 1.8,
β3 = 2.5

α3 = 5.0,
β3 = 2.5

Table 3: Coverage probabilities (median credible interval width) calcu-
lated from the posterior density functions

Combination Inverse gamma
prior

Gamma prior Kummer
gamma prior

1 74.5%(0.8) 77.4%(2.15) 90.8%(0.85)

2 72%(0.75) 78.1%(2.125) 89.2%(0.9)

3 76.8%(0.85) 77.7%(2.05) 92.1%(0.9)

4 73.2%(0.8) 77.6%(1.8) 87.8%(1.4)

4.2. Multivariate Bayesian illustration

In this section the Kummer Wishart (2.5) prior is considered for the co-
variance matrix of the matrix variate normal model. Consider a random sample
of size n1 from a matrix variate normal distribution with unknown mean µµµ and
covariance matrix ΣΣΣ, i.e. XXXi ∼ Nm,p(µµµ,ΣΣΣ⊗ IIIp) with likelihood function

L(µµµ,ΣΣΣ|XXX,VVV ) ∝ |ΣΣΣ|−
n1p
2 etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
.

The three priors for ΣΣΣ under consideration are

• Inverse Wishart prior (IWm(p1,ΦΦΦ)) with pdf

g(XXX; p1,Φ) =

[
2
m(p1−m−1)

2 Γm

(
p1 −m− 1

2

)]−1

|XXX|−
p1
2 |ΦΦΦ|

p1−m−1
2

×etr
[
−1

2
XXX−1ΦΦΦ

]
, XXX ∈ Sm
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• Wishart prior (1.5) (Wm(p2,ΦΦΦ))

• Kummer Wishart prior (2.5) (KWm(p3, III,Φ)).

The conditional posterior pdf’s of µµµ and ΣΣΣ with a Kummer Wishart prior and
objective prior for µµµ, necessary for the simulation of the posterior samples, are

q
(
µµµ|ΣΣΣ,XXX,VVV

)
∝ etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
,

and

q
(
ΣΣΣ|µµµ,XXX,VVV

)
∝ |ΣΣΣ|−

n1p
2

+n
2
−m+1

2 etr

[
−1

2
ΣΣΣ−1

[
VVV + n1(XXX −µµµ)(XXX −µµµ)′

]]
× etr

(
−1

2
Φ−1Σ

)
(1 + tr(ΣΘ)).

with VVV =
∑n1

i=1(XXXi −XXX)(XXXi −XXX)′. A sample of size 10 is simulated from a
multivariate normal distribution (p = 1) with µµµ = 000 and ΣΣΣ = IIIm. The hyperpa-
rameters are chosen as ΦΦΦ = IIIm,m = 3, p1 = 9.5, p2 = p3 = 3, according to the
methodology of Van Niekerk et al. (2016a). Posterior samples of size 5000, are
simulated using a Gibbs sampling scheme with an additional Metropolis-Hastings
algorithm, similarly to Van Niekerk et al. (2016a).

The estimates calculated for ΣΣΣ under the three different priors as well as
the MLE are

Σ̂ΣΣMLE =

1.8719 0.2168 0.9523
0.2168 2.9553 −0.2471
0.9523 −0.2471 1.0715

 , Σ̂ΣΣIW =

0.6600 0.0772 0.3355
0.0772 1.0256 −0.0873
0.3355 −0.0873 0.3762


Σ̂ΣΣW =

 0.5547 0.0627 −0.2247
0.0627 0.7968 0.0255
−0.2247 0.0255 1.2348

 , Σ̂ΣΣKW =

 1.1389 0.0115 −0.0098
0.0115 1.0401 −0.0132
−0.0098 −0.0132 1.0763


The above estimates are obtained for one posterior sample. The Frobenius
norm (see Golub and Van Loan (1996)) of the errors, defined as ||Σ̂ΣΣ − ΣΣΣ||F =√
tr
(
Σ̂ΣΣ−ΣΣΣ

)′ (
Σ̂ΣΣ−ΣΣΣ

)
, are calculated for each estimate and given in Table 4.

The Kummer Wishart prior results in the smallest Frobenius norm of the
error. For further investigation, this sampling scheme is repeated 100 times to
obtain 100 estimates under each prior as well as the MLE for each of the 100
simulated samples. The Frobenius norm of the error for each estimate and every
repetition is calculated and the empirical cumulative distribution function (ecdf)
of each set of Frobenius norms calculated for each estimator is obtained and
given in Figure 1. The ecdf which is most left in the figure is regarded as the
best since for a specific value of the error norm, a higher proportion of estimates
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Table 4: Frobenius norm of the error of the estimates calculated from the
simulated sample

Frobenius norm Value

||Σ̂ΣΣMLE −ΣΣΣ||F 1.2336

||Σ̂ΣΣIW −ΣΣΣ||F 0.9928

||Σ̂ΣΣW −ΣΣΣ||F 1.5766

||Σ̂ΣΣKW −ΣΣΣ||F 0.1468

Figure 1: The empirical cumulative distribution function (ecdf) of the
Frobenius norm of the estimation errors for n = 10(Left) and
n = 100(Right)

from that particular prior results in less error. It is evident from Figure 1 that
the performance of the sample estimate improves as the sample size increases,
which is to be expected, and the performance of the Kummer Wishart prior is
still competitive. From Figure 1 we conclude that the Kummer Wishart prior
results in an estimate of ΣΣΣ, for small and larger sample sizes, with less error and
preference should be given to this prior. To validate the graphical interpretation,
a two-sample Kolmogorov-Smirnov test is performed for n = 10, pairwise, on the
three different ecdf’s and the p-value for some pairs are given in Table 5.

Table 5: p-values of the Kolmogorv-Smirnov two-sample test based on
samples (n = 10) of the Frobenius norms

Pairwise comparison p-value

MLE and IW < 0.001

IW and KW < 0.001

W and KW < 0.001

MLE and KW < 0.001

From Table 5 it is clear that the ecdf of the errors under the Kummer
Wishart prior is significantly different from the other priors. Therefore, the asser-
tion can be made that the Kummer Wishart prior structure produces an estimate
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that results in statistically significant less error.

5. DISCUSSION

In this paper, we proposed a construction methodology for new matrix
variate distributions with specific focus on the Wishart distribution, followed
by weighting the Wishart distribution with different weight functions. It was
shown from Bayesian viewpoint, by simulation studies, that the Kummer gamma
and Kummer Wishart priors, as special cases of the weighted-type I Wishart
distribution, outperformed the well-known priors. The weighted-type III Wishart
distribution gives rise to a Wishart distribution with larger degrees of freedom and
scaled covariance matrix that might have application in missing value analysis.

In the following we list some thoughts that might be considered as plausible
applications of the proposed distributions.

(i) Let N1 and N2 observations be independently and identically derived from
Z1 ∼ Nm(0,Σ1) and Z2 ∼ Nm(0,Σ2), respectively. Then the statistic
T =

∑N
j=1(Z1 + Z2)(Z1 + Z2)T , has the Wishart distribution Wm(N1 +

N2,Σ1 +Σ2). Suppose the focus of the paper is on the covariance structure
Σ1 +Σ2 (similar to standby systems), then, to reduce the cost of sampling,
one may only consider N1 observations from the W1WD and take h1(.) to
be of exponential form in (2.1).

(ii) A weight of the form h2(|XΦ|) = |X|
q
2 , where q is a known fixed constant

with Φ = Im in Definition 3.1 has applications in missing value analysis.
To see this, let Y 1, . . . ,Y n+q be a random sample from Nm(0,Σ). Define
T =

∑n
i=1 Y iY

T
i . Then T ∼ Wm(n,Σ). Now, using the weight h2(X) =

|X|
q
2 one obtains the Wm(n + q,Σ) distribution and without having the

observations n+ 1, . . . , n+ q we can find the distribution of the full sample
and the relative analysis.

(iii) Finally, one may ask what is the sampling distribution regarding Defini-
tion 3.2? To answer this question, we recall that if Y ∼ N(0, In ⊗ Σ),
then X = Y TY ∼ Wm(n,Σ). Now, assume matrices A ∈ Sm and
B ∈ Sm exist such that [Σ + Φ]−1 = A−1 + B−1. Then if we sample
Y ∗ ∼ N (0, In+α ⊗ [Σ + Φ]), the quadratic form X∗ = Y TY will have the
distribution as in Definition 3.2, where A = Σ, B = Φ1 and Φ2 = I. In
other words, if we enlarge both the covariance and number of samples in a
normal population and consider the distribution of the quadratic form, we
are indeed weighting a Wishart distribution with a Wishart.
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[14] Pauw, J., Bekker, A. and Roux, J.J.J. (2010). Densities of composite weibul-
lized generalized gamma variables, South African Statistical Journal, 44, 17–42.

[15] Rao, C. R. (1965). On discrete distributions arising out of methods of ascertain-
ment, In Classical and Contagious Pergamon Press and Statistical Publishing
Society, 320–332.
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