
REVSTAT – Statistical Journal

Volume 15, Number 1, January 2017, 25–43

EXPANSIONS FOR QUANTILES

AND MULTIVARIATE MOMENTS OF EXTREMES

FOR HEAVY TAILED DISTRIBUTIONS

Authors: Christopher Withers

– Industrial Research Limited,
Lower Hutt, New Zealand

Saralees Nadarajah

– School of Mathematics, University of Manchester,
Manchester M13 9PL, UK
mbbsssn2@manchester.ac.uk

Received: August 2014 Revised: March 2015 Accepted: May 2015

Abstract:

• Let Xn,r be the r-th largest of a random sample of size n from a distribution function

F (x) = 1 −
∞∑

i=0

ci x
−α−iβ for α > 0 and β > 0. An inversion theorem is proved and

used to derive an expansion for the quantile F−1(u) and powers of it. From this
an expansion in powers of

(
n−1, n−β/α

)
is given for the multivariate moments of the

extremes {Xn,n−si
, 1 ≤ i ≤ k}/n1/α for fixed s = (s1, ..., sk), where k ≥ 1. Examples

include the Cauchy, Student’s t, F , second extreme distributions and stable laws of
index α < 1.
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1. INTRODUCTION

For 1 ≤ r ≤ n, let Xn,r be the r-th largest of a random sample of size n

from a continuous distribution function F on R, the real numbers. Let f denote

the density function of F when it exists.

The study of the asymptotes of the moments of Xn,r has been of consider-

able interest. McCord [12] gave a first approximation to the moments of Xn,1 for

three classes. This showed that a moment of Xn,1 can behave like any positive

power of n or n1 = log n. (Here, log is to the base e.) Pickands [15] explored the

conditions under which various moments of (Xn,1 − bn) /an converge to the cor-

responding moments of the extreme value distribution. It was proved that this is

indeed true for all F in the domain of attraction of an extreme value distribution

provided that the moments are finite for sufficiently large n. Nair [13] investi-

gated the limiting behavior of the distribution and the moments of Xn,1 for large

n when F is the standard normal distribution function. The results provided

rates of convergence of the distribution and the moments of Xn,1. Downey [4]

derived explicit bounds for E [Xn,1] in terms of the moments associated with F .

The bounds were given up to the order o
(
n1/ρ

)
, where

∫ ∞

−∞

|x|ρdF (x) is defined,

so E [Xn,1] grows slowly with the sample size. For other work, we refer the readers

to Ramachandran [16], Hill and Spruill [9] and Hüsler et al. [10].

The main aim of this paper is to study multivariate moments of {Xn,n−si
,

1 ≤ i ≤ k} for fixed s = (s1, ..., sk), where k ≥ 1. We suppose F is heavy tailed,

i.e.,

1 − F (x) ∼ Cx−α(1.1)

as x→ ∞ for some C > 0 and α > 0. For a nonparametric estimate of α, see

Novak and Utev [14].

There are many practical examples giving rise to {Xn,n−si
, 1 ≤ i ≤ k} for

heavy tailed F . Perhaps the most prominent example is the Hill’s estimator

(Hill [8]) for the extremal index given by

− logXn,n−k + k−1
k∑

i=1

logXn,n−i+1 .

Clearly, this is a function of Xn,n−si
, 1 ≤ i ≤ k. Real life applications of the Hill’s

estimator are far too many to list.

Since Hill [8], many other estimators have been proposed for the extremal

index, see Gomes and Guillou [6] for an excellent review of such estimators. Each

of these estimators is a function of Xn,n−si
, 1 ≤ i ≤ k. No doubt that many more
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estimators taking the form of a function of Xn,n−si
, 1 ≤ i ≤ k will be proposed in

the future.

A possible application of the results in this paper is to assess optimality of

these estimators. Suppose we can write the general form of the estimators as

ω = ω
(
Xn,n−s1 , Xn,n−s2 , ..., Xn,n−sk

;µ
)

,(1.2)

where µ contains some parameters, which include k itself. The optimum values

of µ can be based on criteria like bias and mean squared error. For example, µ

could be chosen as the value minimizing the bias of ω or the value minimizing

the mean squared error of ω. If (1.2) can be expanded as

ω =
∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

) k∏

i=1

Xθi
n,n−si

then the bias and mean squared error of ω can be expressed as

Bias(ω) =
∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

)
E

[
k∏

i=1

Xθi
n,n−si

]
− ω

and

MSE(ω) =
∑

θ1,θ2,...,θk

∑

ϑ1,ϑ2,...,ϑk

a
(
θ1, θ2, ..., θk;µ

)
a
(
ϑ1, ϑ2, ..., ϑk;µ

)
E

[
k∏

i=1

Xθi+ϑi
n,n−si

]

−





∑

θ1,θ2,...,θk

a
(
θ1, θ2, ..., θk;µ

)
E

[
k∏

i=1

Xθi
n,n−si

]



2

+
[
Bias(ω)

]2
,

respectively. Both involve multivariate moments of Xn,n−si
, 1 ≤ i ≤ k. Expres-

sions for the latter are given in Section 2, in particular, Theorem 2.2. Hence,

general estimators can be developed for µ which minimize bias, mean squared

error, etc. Such developments could apply to any future estimator (also to any

past estimator) of the extremal index taking the form of (1.2).

Note that Un,r = F (Xn,r) is the r-th order statistics from U(0, 1). For

1 ≤ r1 < r2 < ··· < rk ≤ n set Un,r = {Un,ri , 1 ≤ i ≤ k}. By Section 14.2 of Stuart

and Ord [17], Un,r has the multivariate beta density function

Un,r ∼ B (u : r) =
k∏

i=0

(ui+1 − ui)
ri+1−ri−1/Bn(r)(1.3)

on 0 < u1 < ··· < uk < 1, where u0 = 0, uk+1 = 1, r0 = 0, rk+1 = n+ 1 and

Bn(r) =
k∏

i=1

B (ri, ri+1 − ri) .(1.4)
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David and Johnson [3] expanded Xn,ri = F−1 (Un,ri) about un,i = E [Un,ri ] =

ri/(n+ 1): Xn,ri =

∞∑

j=0

G(j) (un,i) (Un,i − un,i)
j /j!, where G(u) = F−1(u) and

G(j)(u) = djG(u)/duj , and using the properties of (1.3) showed that if r de-

pends on n in such a ways that r/n→ p ∈ (0,1) as n→ ∞ then the m-th order

cumulants of Xn,r = {Xn,ri , 1 ≤ i ≤ k} have magnitude O
(
n1−m

)
— at least for

n ≤ 4, so that the distribution function of Xn,r has a multivariate Edgeworth

expansion in powers of n−1/2. (Alternatively one can use James and Mayne [11]

to derive the cumulants of Xn,r from those of Un,r.) The method requires the

derivatives of F at
{
F−1 (pi) , 1 ≤ i ≤ k

}
so breaks down if pi = 0 or pk = 1

— which is the situation we study here.

In Withers and Nadarajah [18], we showed that for fixed r when (1.1)

holds the distribution of Xn,n1−r (where 1 is the vector of ones in R
k), suitably

normalized tends to a certain multivariate extreme value distribution as n→ ∞,

and so obtained the leading terms of the expansions of its moments in inverse

powers of n. Here, we show how to extend those expansions when

F−1(u) =
∞∑

i=0

bi(1 − u)αi(1.5)

with α0 < α1 < ···, that is, {1 − F (x)}x−1/α0 has a power series in {x−δi : δi =

(αi − α0) /α0}. Hall [7] considered (1.5) with αi = i− 1/α, but did not give

the corresponding expansion for F (x) or expansions in inverse powers of n.

He applied it to the Cauchy. In Section 2, we demonstrate the method when

1 − F (x) = x−α
∞∑

i=0

ci x
−iβ ,(1.6)

where α> 0 and β > 0. In this case, (1.5) holds with αi = (iβ−1)/α. In Section 3,

we apply it to the Student’s t, F and second extreme value distributions and to

stable laws of exponent α < 1. The appendix gives the inverse theorem needed

to pass from (1.6) to (1.5), and expansions for powers and logs of series.

We use the following notation and terminology. Let (x)i = Γ(x+ i)/Γ(x)

and 〈x〉i = Γ(x+ 1)/Γ(x− i+ 1). An inequality in R
k consists of k inequalities.

For example, for x in C
k, where C is the set of complex numbers, Re(x) < 0

means that Re (xi) < 0 for 1 ≤ i ≤ k. Also let I(A) = 1 if A is true and I(A) = 0

if A is false. For θ ∈ C
k let θ denote the vector with θi =

i∑

j=1

θj .
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2. MAIN RESULTS

For 1 ≤ r1 < ··· < rk ≤ n set si = n− ri. Here, we show how to obtain

expansions in inverse powers of n for the moments of the Xn,s for fixed r when

(1.5) holds, and in particular when the upper tail of F satisfies (1.6).

Theorem 2.1. Suppose (1.6) holds with c0, α, β > 0. Then F−1(u) is

given by (1.5) with αi = ia − 1/α, a = β/α and bi = Ci,1/α, where Ci,ψ =

cψ0 Ĉi (−ψ, c0,x∗) of (A.3) and x∗i = x∗i (a, 1, c) of (A.4). In particular,

C0,ψ = cψ0 ,

C1,ψ = ψ cψ−a−1
0 c1 ,

C2,ψ = ψ cψ−2a−2
0

{
c0c2 + (ψ − 2a− 1) c21/2

}
,

C3,ψ = ψ cψ−3a−3
0

[
c20c2 + (ψ−3a−1) c0c1c2 + {(ψ+1)2/6(ψ + 3a/2)(a+1)} c31

]
,

and so on. Also for any θ in R,

{
F−1(u)

}θ
=

∞∑

i=0

(1 − u)ia−ψCi,ψ(2.1)

at ψ = θ/α.

On those rate occasions, where the coefficients di = Ci,1/α in F−1(u) =
∞∑

i=0

(1 − u)ia−1/αdi are known from some alternative formula then one can use

Ci,ψ = dθ0Ĉi (θ, 1/d0,d) of (A.3).

Proof of Theorem 2.1: By Theorem A.1 with k = 1, we have x−α =
∞∑

i=0

x∗i (1 − u)1+ia at u = F (x), where

x∗0 = c−1
0 ,

x∗1 = c−a−2
0 c1 ,

x∗2 = c−2a−3
0

{
−c0c2 + (a+ 1)c21

}
,

x∗3 = c−3a−4
0

{
−c20c3 + (2 + 3a) c0c1c2 − (2 + 3a) (1 + a) c21/2

}
,

and so on. So, for S of (A.1), x−α = c−1
0 v [1 + c0S (va,x∗)] at v = 1 − u. Now

apply (A.2).
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Lemma 2.1. For θ in C
k,

E

[
k∏

i=1

(1 − Un,ri)
θi

]
= bn

(
r : θ

)
,(2.2)

where

bn
(
r : θ

)
=

k∏

i=1

b
(
ri − ri−1, n− ri + 1 : θi

)
(2.3)

and b (α, β : θ) = B(α, β + θ)/B(α, β). Also in (1.4),

Bn (r) =
k∏

i=1

B (ri − ri−1, n− ri + 1) .(2.4)

Since B(α, β) = ∞ for Reβ ≤ 0, for (2.2) to be finite we need n− ri + 1 +

Re θi > 0 for 1 ≤ i ≤ k.

Proof of Lemma 2.1: Let Ik denote the left hand side of (2.2). Then

Ik =

∫
Bn(u : r)

k∏

i=1

(1 − ui)
θi du1···duk integrated over 0 < u1 < ··· < uk < 1 by

(1.3). So, (2.2), (2.4) hold for k = 1. Set si = (ui − ui−1) / (1 − ui−1). Then

I2 =

∫ 1

0
ur1−1

1 (1 − u1)
θ1

∫ 1

u1

(u2 − u1)
r2−r1−1 (1 − u2)

r3−r2−1+θ2 du2

/
Bn(r) ,

which is the the right hand side of (2.2) with denominator replaced by the right

hand side of (2.3). Putting θ = 0 gives (2.2), (2.4) for k = 2. Now use induction.

Lemma 2.2. In Lemma 2.1, the restriction

1 ≤ r1 < ··· < rk ≤ n may be relaxed to 1 ≤ r1 ≤ ··· ≤ rk ≤ n .(2.5)

Proof: For k = 2, the second factor in the right hand side of (2.3) is

b(r2 − r1, n− r2 + 1 : θ2) = f
(
θ2

)
/f(0), where f

(
θ2

)
= Γ

(
n− r2 + 1 + θ2

)
/

Γ
(
n− r1 + 1 + θ2

)
= 1 if r2 = r1 and the first factor is b

(
r1, n− r1 + 1 : θ1

)
=

E

[
(1 − Un,r1)

θ1
]
. Similarly, if ri = ri−1, the i-th factor is 1 and the product of the

others is E




k∏

j=1,j 6=i

(
1 − Un,rj

)θ∗j


, where θ∗j = θj for j 6= i− 1 and θ∗j = θi−1 + θi

for j = i− 1.

Corollary 2.1. In any formulas for E [g (Xn,r)] for some function g, (2.5)

holds. In particular it holds for the moments and cumulants of Xn,r.
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This result is very important as it means we can dispense with treating the

2k−1 cases ri < ri+1 or ri = ri+1, 1 ≤ i ≤ k − 1 separately. For example, Hall [7]

treats the two cases for cos (Xn,r, Xn,s) separately and David and Johnson [3]

treat the 2k−1 cases for the k-th order cumulants of Xn,r separately for k ≤ 4.

Theorem 2.2. Under the conditions of Theorem 2.1,

E

[
k∏

i=1

Xθi
n,ri

]
=

∞∑

i1,...,ik=0

Ci1,ψ1
···Cik,ψk

bn
(
r : ia− θ/α

)
(2.6)

with bn as in (2.3), where ψ = θ/α. All terms are finite if Reθ < (s + 1)α, where

si = n− ri.

Lemma 2.3. For α, β positive integers and θ in C,

b(α, β : θ) =

α+β−1∏

j=β

(1 + θ/j)−1 .(2.7)

So, for θ in C
k,

bn
(
r : θ

)
=

k∏

i=1

si−1∏

j=si+1

(
1 + θi/j

)−1
,(2.8)

where si = n− ri and r0 = 0.

Proof: The left hand side of (2.7) is equal to Γ(β + θ)Γ(α + β) /

{Γ(β + θ + α)Γ(β)}. But Γ(α+ x)/Γ(x) = (x)α, so (2.7) holds, and hence (2.8).

From (2.3) we have, interpreting
k−1∏

i=2

bi as 1,

Lemma 2.4. For si = n− ri,

bn
(
r : θ

)
= B

(
s : θ

)
n! /Γ

(
n+ 1 + θ1

)
,(2.9)

where

B
(
s : θ

)
= Γ

(
s1 + 1 + θ1

)
(s1!)

−1
k∏

i=2

b
(
si−1 − si, si + 1 : θi

)

does not depend on n for fixed s.
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Lemma 2.5. We have

n!/Γ(n+ 1 + θ) = n−θ
∞∑

i=0

ei(θ)n
−i ,

where

e0(θ) = 1 , e1(θ) = −(θ)2/2 , e2(θ) = (θ)3 (3θ + 1)/24 ,

e3(θ) = −(θ)4 (θ)2/ (4! · 2) , e4(θ) = (θ)5
(
15θ3 + 30θ2 + 5θ − 2

)
/ (5! · 48) ,

e5(θ) = −(θ)6 (θ)2
(
3θ2 + 7θ − 2

)
/ (6! · 16) ,

e6(θ) = (θ)7
(
63θ5 + 315θ4 + 315θ3 − 91θ2 − 42θ + 16

)
/ (7! · 576) ,

e7(θ) = −(θ)8 (θ)2
(
9θ4 + 54θ3 + 51θ2 − 58θ + 16

)
/ (8! · 144) .

Proof: Apply equation (6.1.47) of Abramowitz and Stegun [1].

So, (2.6), (2.9) yield the joint moments of Xn,rn
−1/α for fixed s as a power

series in (1/n, n−α):

Corollary 2.2. Under the conditions of Theorem 2.1,

E

[
k∏

i=1

Xθi
n,n−si

]
=

∞∑

j=0

n! Γ
(
n+ 1 + ja− ψ1

)−1
Cj (s : ψ) ,(2.10)

where ψ = θ/α and

Cj (s : ψ) =
∑{

Ci1,ψ1
···Cik,ψk

B
(
s : ia−ψ

)
: i1 + ··· + ik = j

}
.

So, if s, θ are fixed as n→ ∞ and Re
(
θ
)
< (s + 1)α, then the left hand

side of (2.10) is equal to

nψ1

∞∑

i,j=0

n−i−ja ei
(
ja− ψ1

)
Cj (s : ψ) .(2.11)

If a is rational, say a = M/N then the left hand side of (2.10) is equal to

nψ1

∞∑

m=0

n−m/Ndm (s : ψ) ,(2.12)

where

dm (s : ψ) =
∑{

ei
(
ja− ψ1

)
Cj (s : ψ) : iN + jM = m

}

=
∑{

em−ja

(
ja− ψ1

)
Cj (s : ψ) : 0 ≤ j ≤ m/a

}

if N = 1; so for dm to depend on c1 and not just c0 we need m ≤M .
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The leading term in (2.11) does not involve c1 so may be deduced from

the multivariate extreme value distribution that the law of Xn,n−si
, suitably

normalized, tends to. The same is true of the leading terms of its cumulants.

See Withers and Nadarajah [18] for details.

The leading terms in (2.11) are

nψ1

[{
1 − n−1〈ψ1〉2/2

}
C0 (s : ψ) + n−aC1 (s : ψ) +O

(
n−2a0

)]
,

where

a0 = min(a, 1) ,

C0 (s : ψ) = c0B
(
s : −ψ

)
,

C1 (s : ψ) = c
ψ1−a−2
0 c1

k∑

j=1

ψjB
(
s : aIj −ψ

)

and Ij,m = I(m ≤ j). For k = 1,

C0(s : ψ) = cψ0 (s+ 1)−ψ = cψ0 /〈s〉ψ ,

C1(s : ψ) = ψcψ−a−1
0 c1(s+ 1)a−ψ = ψcψ−a−1

0 c1/〈s〉ψ−a .

Set

πs(λ) = b (s1 − s2, s2 + 1 : λ) =

s1∏

j=s2+1

1/ (1 + λ/j)

for λ an integer. For example, πs(1) = (s2 + 1) / (s1 + 1) and πs(−1) = s1/s2.

Then for k = 2,

C0 (s : λ1) = c2λ0 〈s1〉−1
2λ πs(−λ)

= c20 (s1 − 1)−1 s2 for λ = 1

= c20〈s2 − 2〉−1
2 〈s2〉−1

2 for λ = 2

and

C1 (s : λ1) = λ c2λ−a−1
0 c1〈s1〉−1

2λ−a

{
πs(−λ) + πs(a− λ)

}

= λ c1−a0 c1〈s1〉−1
2−a

{
s1/s2 + πs(a− 1)

}
for λ = 1

= λ c3−a0 c1〈s1〉−1
4−a

{
〈s1〉2 〈s2〉−1

2 + πs(a− 2)
}

for λ = 2 .

Set λ = 1/α, Yn,s = Xn,n−s/ (nc0)
λ and Ec = λ c−a−1

0 c1. Then for s > λ− 1

E [Yn,s] =
{
1 − n−1〈λ〉2/2

}
〈s〉−1

λ + n−aEc〈s〉−1
λ−a +O

(
n−2a0

)
(2.13)

and for s1 > 2λ− 1, s2 > λ− 1, s1 ≥ s2,

E [Yn,s1Yn,s2 ] =
{
1 − n−1〈2λ〉2/2

}
B2,0 + n−aEcDa +O

(
n−2a0

)
,(2.14)
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where B2,0 = 〈s1〉−1
2λ πs(−λ), Da = 〈s1〉−1

2λ−a {πs(−λ) + πs(a− λ)} and

Cov (Yn,s1 , Yn,s2) = F0 + F1/n+ EcF2/n+O
(
n−2a0

)
,(2.15)

where F0 = B2,0 − 〈s1〉−1
λ 〈s2〉−1

λ , F1 = 〈λ〉2〈s1〉−1
λ 〈s2〉−1

λ − 〈2λ〉2B2,0/2 and F2 =

Da − 〈s1〉−1
λ 〈s2〉−1

λ−a − 〈s1〉−1
λ−a〈s2〉−1

λ . Similarly, we may use (2.11) to approxi-

mate higher order cumulants. If a = 1 this gives E [Yn,s] and Cov (Yn,s1 , Yn,s2) to

O
(
n−2

)
.

Example 2.1. Suppose α = 1. Then Yn,s = Xn,n−s/ (nc0), Ec = c−a−1
0 c1,

B2,0 =−F1 = (s1−1)−1 s−1
2 , F0 = 〈s1〉−1

2 s−1
2 , Da = 〈s1〉−1

2−aGa, whereGa = s1s
−1
2 +

πs(a− 1) for s1 ≥ s2, Ga = 2 for s1 = s2 and F2 = Da− s−1
1 〈s2〉−1

1−a− s−1
2 〈s1〉−1

1−a.

So,

E [Yn,s] = s−1 + n−aEc〈s〉−1
1−a +O

(
n−2a0

)
(2.16)

for s > 0 and (2.14)–(2.15) hold if

s1 > 1 , s2 > 0 , s1 ≥ s2 .(2.17)

A little calculation shows that C0 (s : 1) = ck0Bk,0, C1 (s : 1) = ck−a−1
0 c1Bk,·, and

E

[
k∏

i=1

Yn,si

]
=

{
1 + n−1〈k〉2/2

}
Bk,0 + n−aEcBk,· +O

(
n−2a0

)

= m0(s) + n−1m1(s) + n−ama(s) +O
(
n−2a0

)

say for si > k − i, 1 ≤ i ≤ k and s1 ≥ ··· ≥ sk, where

Bk,· =
k∑

j=1

Bk,j ,

Bk,0 =
k∏

i=1

1/ (s1 − k + i) ,

Bk,j =

j−1∏

i=1

(si − k + a+ i)−1 〈sj − k + j + 1〉a−1

k∏

i=j+1

(si − k + i)−1 ,

Bk,k =
k−1∏

i=1

(si − k + a+ i)−1 〈sk〉−1
1−a

for si > k − i and 1 ≤ j < k. For example, B1,0 = s1, B2m,0 = (s1 − 1)−1 s−1
2

and B3,0 = (s1 − 2)−1 (s2 − 1)−1 s−1
3 . So, κn(s) = κ (Yn,s1 , ..., Yn,sk

), the joint cu-

mulant of (Yn,s1 , ..., Yn,sk
), is given by κn(s) = κ0(s) + n−1κ1(s) + n−aκa(s) +
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O
(
n−2a0

)
, where, for example,

κ0 (s1, s2, s3) = m0 (s1, s2, s3) −m0 (s1)m0 (s2, s3) −m0 (s2)m0 (s1, s3)

−m0 (s3)m0 (s1, s2) + 2
3∏

i=1

m0 (si)

= 2 (s1 + s2 − 2)D (s1, s2, s3) ,

κ1 (s1, s2, s3) = m1 (s1, s2, s3) −m0 (s1)m1 (s2, s3) −m0 (s2)m1 (s1, s3)

−m0 (s3)m1 (s1, s2)

= 2
{
s2 (1 − 2s1) + s1 − s21

}
/D (s1, s2, s3) since m1 (s1) = 0 ,

κa (s1, s2, s3) = ma (s1, s2, s3) −m0 (s1)ma (s2, s3) −ma (s1)m0 (s2, s3)

−m0 (s2)ma (s1, s3) −ma (s2)m0 (s1, s3) − m0 (s3)ma (s1, s2)

−ma (s3)m0 (s1, s2) + 2m0 (s1)m0 (s2)ma (s3)

+ 2m0 (s3)m0 (s1)ma (s2) + 2m0 (s2)m0 (s3)ma (s1) ,

where D (s1, s2, s3) = 〈s1〉3 〈s2〉2s3.

Consider the case a = 1. Then κa (s1, s2, s3) = 0 so

κn (s1, s2, s3) = 2
{
s1 + s2 − 2 + n−1

(
s2 (1 − 2s1) + s1 − s21

)}/
D (s1, s2, s3)

+ O
(
n−2

)
.(2.18)

Set s· =
k∑

j=1

sj . Then

B1,· = B1,1 − 1 , B2,2 = 1/s2 , B2,2 = 1/s2 , B2,2 = s1 ,

B2,· = s−1
1 + s−1

2 = (s1 + s2) / (s1s2) ,

B3,1 = (s2 − 1)−1 s−1
3 , B3,2 = (s1 − 1)−1 s−1

3 , B3,3 = (s1 − 1)−1 s−1
2 ,

B3,· =
{
s2 (s· − 2) − s3

}
(s1 − 1)−1 〈s2〉−1

2 s−1
3 ,

B4,1 = (s2 − 2)−1 (s3 − 1)−1 s−1
4 , B4,2 = (s1 − 2)−1 (s3 − 1)−1 s−1

4 ,

B4,3 = (s1 − 2)−1 (s2 − 1)−1 s−1
4 , B4,4 = (s1 − 2)−1 (s2 − 1)−1 s−1

3 ,

B4,· =
{
s·s3 (s2 − 2) + s3 (s2 − 4s2 + 4) − s2s4

} {
(s1 − 2) 〈s2 − 2〉2 〈s3〉2 s4

}−1
.

Also Ec = c−2
0 c1, Da = s−1

1 + s−1
2 , F2 = 0, and

E [Yn,s] = s−1 + n−1Ec +O
(
n−2

)
for s > 0 ,(2.19)

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
B2,· + n−1EcDa +O

(
n−2

)
if (2.17) holds ,(2.20)

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2 s−1

2

(
s2 − n−1s1

)
+O

(
n−2

)
if (2.17) holds .(2.21)

In the case a≥ 2, (2.19)–(2.21) hold with Ec replaced by 0. In the case a≤1,

(2.14)–(2.16) with a0 = a give terms O
(
n−2a

)
with the n−1 terms disposable if

a ≤ 1/2.
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We now investigate what extra terms are needed to make (2.19)–(2.21)

depend on c when a = 1 or 2.

Example 2.2. α = β = 1. Here, we find the coefficients of n−2. By (2.12),

d2 (s : ψ) =
2∑

j=0

e2−j
(
j − ψ1

)
Cj (s : ψ)

= e2
(
−ψ1

)
C0 (s : ψ) + e1

(
1 − ψ1

)
C1 (s : ψ) + C2 (s : ψ)

= C2 (s : ψ) if ψ1 = 1 or 2 .

For k = 1, C2(s : ψ) = C2,ψ(s+1)2−ψ, where C2,ψ = ψcψ−4
0

{
c0c2 + (ψ − 3)c21/2

}
,

so d2(s : 1) = (s+ 1)Fc, where Fc = c−3
0

(
c0c2 − c21

)
, so in (2.19) we may replace

O
(
n−2

)
by n−2(s+ 1)Fcc

−1
0 +O

(
n−3

)
. For k = 2,

C2 (s : 1) =
∑{

Ci,1Cj,1B (s : 0, j − 1) : i+ j = 2
}

= C0,1C2,1

{
B (s : 0, 1) +B (s : 0,−1)

}
+ C2

1,1B (s : 0, 0) ,

where B (s : 0, λ) = b (s1 − s2, s2 + 1 : λ) = πs(λ), so d2 (s : 1) = C2 (s : 1) −
D2,sHc + c−2

0 c21, where D2,s = (s2 + 1) (s1 + 1)−1 + s1s
−1
2 , Hc = c−2

0

(
c0c2 − c21

)

and in (2.20) we may replace O
(
n−2

)
by n−2d2 (s : 1) c−2

0 +O
(
n−3

)
. Upon sim-

plifying this gives

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2 s−1

2

(
1 − n−1s1

)
− c−2

0 HcF3,s n
−2 +O

(
n−2

)
,

where F3,s = (s2 + 1) /〈s1〉2 + s−1
2 .

Example 2.3. α = 1, β = 2. So, a = 2, λ = 1, ψ = θ. By (2.12),

d2 (s : ψ) =
1∑

j=0

e2−2j

(
2j − ψ1

)
Cj (s : ψ)

= e2
(
−ψ1

)
C0 (s : ψ) + C1 (s : ψ)

= C1 (s : ψ) if ψ1 = 0, 1 or 2 .

For k = 1,

C1(s : ψ) = ψ cψ−3
0 c1〈s〉−1

ψ−2 =

{
c−2
0 c1(s+ 1) , if ψ = 1 ,

2 c−1
0 c1 , if ψ = 2 ,

so E [Yn,s] = s−1 + c−3
0 c1(s+ 1)n−2 +O

(
n−3

)
for s > 0. For k = 2, C1 (s : 1) =

c−1
0 c1D2,s for D2,s above, so

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
(s1 − 1)−1 s−1

2 + n−2 c−3
0 c1D2,s +O

(
n−3

)

and

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2 s−1

2

(
1 − n−1s1

)
− n−2 c−3

0 c1F3,s +O
(
n−3

)
.
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3. EXAMPLES

Example 3.1. For Student’s t distribution, X = tN has density function

(
1 + x2/N

)−γ
gN =

∞∑

i=0

di x
−2γ−2i ,

where γ = (N + 1)/2, gN = Γ(γ)/
{√

Nπ Γ(N/2)
}

and di =

(−γ
i

)
Nγ+igN .

So, (1.6) holds with α = N , β = 2 and ci = di/(N + 2i). In particular,

c0 = Nγ−1gN ,

c1 = −γNγ+1(N + 2)−1gN = −Nγ+1(N + 1) (N + 2)−1gN/2 ,

c2 = (γ)2N
γ+2(N + 4)−1gN/2 ,

c3 = −(γ)3N
γ+3gN (N + 6)−1/6 ,

and so on. So, a = 2/N and (2.12) gives an expression in powers of n−a/2 if N is

odd or n−a if N is even. The first term in (2.12) to involve c1, not just c0, is the

coefficient of n−a.

Putting N = 1 we obtain

Example 3.2. For the Cauchy distribution, (1.6) holds with α = 1, β = 2

and ci = (−1)i(2i+ 1)−1π−1. So, a = 2, ψ = θ, C0,ψ = π−ψ, C1,ψ = −ψ π2−ψ/3,

C2,ψ = ψ π4−ψ {1/5 + (ψ − 5)/a} and C3,ψ = −ψ π6−ψ {1/105 − 2ψ/15 +

(ψ + 1)2/162}. By Example 2.3, Yn,s = (π/n)Xn,n−s satisfies

E [Yn,s] = s−1 − n−2π2(s+ 1) +O
(
n−3

)
(3.1)

for s > 0 and when (2.17) holds

E [Yn,s1Yn,s2 ] =
(
1 − n−1

)
(s1 − 1)−1 s−1

2 − n−2π2D2,s/3 +O
(
n−3

)
(3.2)

for D2,s = (s2 + 1) / (s1 + 1) + s1/s2 and

Cov (Yn,s1 , Yn,s2) = 〈s1〉−1
2 s−1

2

(
1 − n−1s1

)
+ n−2π2F3,s/3 +O

(
n−3

)

for F3,s = (s2 + 1) /〈s1〉2 + s−1
2 . Page 274 of Hall [7] gave the first term in (3.1)

and (3.2) when s1 = s2 but his version of (3.2) for s1 > s2 replaces (s1 − 1)−1 s−1
2

and D2,s by complicated expressions each with s1 − s2 terms. The joint order of

order three for {Yn,si
, 1 ≤ i ≤ 3} is given by (2.18). Hall points out that F−1(u) =

cot (π − πu), so F−1(u) =
∞∑

i=0

(1−u)2i−1Ci,1, where Ci,1 =
(
−4π2

)i
π−1B2,i/(2i)!.
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Example 3.3. Consider the F distribution. For N,M ≥ 1, set ν = M/N ,

γ = (M +N)/2 and gM,N = νM/2/B (M/2, N/2). Then X = FM,N has density

function

xM/2 (1 + νx)−γ gM,N = ν−γ x−N/2
(
1 + ν−1x−1

)−γ
gM,N =

∞∑

i=0

di x
−N/2−i ,

where di = hM,N

(−γ
i

)
νi and hM,N = gM,N ν

−γ = ν−N/2
/
B(M/2, N/2). So, for

N > 2, (2.1) holds with α = N/2 − 1, β = 1 and ci = di/(N/2 + i− 1). If N = 4

then α = 1 and Examples 2.1–2.2 apply. Otherwise (2.13)–(2.15) give E [Yn,s],

E [Yn,s1Yn,s2 ] and Cov (Yn,s1 , Yn,s2) to O
(
n−2a0

)
, where Yn,s = Xn,n−s/ (nc0)λ,

λ = 1/α, a = 2/(N − 2), a0 = min(a, 1) = a if N ≥ 4 and a0 = min(a, 1) = 1 if

N < 4.

Example 3.4. Consider the stable laws. Page 549 of Feller [5] proves that

the general stable law of index α ∈ (0, 1) has density function

∞∑

k=1

|x|−1−αkak(α, γ) ,

where ak(α, γ) = (1/π) Γ(kα + 1)
{
(−1)k/k!

}
sin{kπ(γ − α)/2} and |γ| ≤ α.

So, for x > 0 its distribution function F satisfies (2.1) with β = α and ci =

ai+1(α, γ) γ
−1(i+1)−1. Since a=1 the first two moments of Yn,s =Xn,n−s/ (nc0)

λ,

where λ = 1/α are O
(
n−2

)
by (2.13)–(2.15).

Example 3.5. Finally, consider the second extreme value distribution.

Suppose F (x) = exp (−x−α) for x > 0, where α > 0. Then (1.6) holds with β = α

and ci = (−1)i/(i+ 1)!. Since a = 1 the first two moments of Yn,s = Xn,n−s/n
1/α

are given to O
(
n−2

)
by (2.13)–(2.15).
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APPENDIX: AN INVERSION THEOREM

Given xj = yj/j! for j ≥ 1 set

S = Ŝ(t,x) =
∞∑

j=1

xj t
j = S(t,y) =

∞∑

j=1

yj t
j/j! .(A.1)

The partial ordinary and exponential Bell polynomials B̂r,i(x) and Br,i(y) are

defined for r = 0, 1, ... by

Si =
∞∑

r=i

trB̂r,i(x) = i!
∞∑

r=i

trBr,i(y)/r! .

So, B̂r,0(x) = Br,0(y) = I(r = 0), B̂r,i(λx) = λiB̂r,i(x) and Br,i(λy) = λiBr,i(y).

They are tabled on pages 307–309 of Comtet [2] for r ≤ 10 and 12. Note that

(1 + λS)α =
∞∑

r=0

trĈr =
∞∑

r=0

trCr/r! ,(A.2)

where

Ĉr = Ĉr (α, λ,x) =

r∑

i=0

B̂r,i(x)

(
α

i

)
λi(A.3)

and

Cr = Cr (α, λ,y) =
r∑

i=0

Br,i(y) 〈α〉iλi .

So, Ĉ0 = 1, Ĉ1 = αλx1, Ĉ2 = αλx2 + 〈α〉2λ2x2
1/2, Ĉ3 = αλx3 + 〈α〉2λ2x1x2 +

〈α〉3λ3x3
1/6 and C0 = 1, C1 = αλy1, C2 = αλy2 + 〈α〉2λ2y2

1. Similarly,

log(1 + λS) =
∞∑

r=1

trD̂r =
∞∑

r=1

trDr/r!

and

exp(λS) = 1 +
∞∑

r=1

trB̂r = 1 +
∞∑

r=1

trBr/r! ,

where

D̂r = D̂r(λ,x) = −
r∑

i=1

B̂r,i(x) (−λ)i/i! ,

Dr = Dr(λ,y) = −
r∑

i=1

Br,i(y) (−λ)i/(i− 1)! ,
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B̂r = B̂r(λ,x) =
r∑

i=1

B̂r,i(x)λi/i!

and

Br = Br(λ,y) =
r∑

i=1

Br,i(y)λi .

Here, B̂r(1,x) and Br(1,y) are known as the complete ordinary and exponential

Bell polynomials. If xj = yj = 0 for j even, then S = t−1
∞∑

j=1

Xjt
2j , where Xj =

x2j−1, so

Si = t−i
∞∑

r=i

t2rB̂r,i(X) and exp(λS) = 1 +
∞∑

k=1

tkB̂k ,

where

B̂k =
∑ {

B̂r,i(X)λi/i! : i = 2r − k, k/2 < r ≤ k
}
.

The following derives from Lagrange’s inversion formula.

Theorem A.1. Let k be a positive integer and a any real number.

Suppose

v/u =
∞∑

i=0

xi u
ia =

∞∑

i=0

yi v
ia/i!

with x0 6= 0. Then

(u/v)k =
∞∑

i=0

x∗i v
ia =

∞∑

i=0

y∗i v
ia/(ia)! ,

where x∗i = x∗i (a, k,x) and y∗i = y∗i (a, k,y) are given by

x∗i = k n−1Ĉi (−n, 1/x0,x) = k x−n0

i∑

j=0

(n+ 1)j−1 B̂i,j (x) (−x0)
−j /j!(A.4)

and

y∗i = k n−1Ci (−n, 1/y0,y) = k y−n0

i∑

j=0

(n+ 1)j−1Bi,j(y) (−y0)
−j ,(A.5)

respectively, where n = k + ai.

Proof: u/v has a power series in va so that (u/v)k does also. A little work

shows that (A.4)–(A.5) are correct for i = 0, 1, 2, 3 and so by induction that x∗ix
ia
0

and y∗i y
ia
0 are polynomials in a of degree i− 1. Hence, (A.4)–(A.5) will hold true

for all a if they hold true for all positive integers a. Suppose then a is a positive
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integer. Since v/u = x0

(
1 + x−1

0 S
)

for S = Ŝ (ua,x) = S (ua,y), the coefficient

of uai in (v/u)−n is x−n0 Ĉi (−n, 1/x0,x) = y−n0 Ci (−n, 1/y0,y) /(n− k)!. Now

set n = k + ai and apply Theorem A in page 148 of Comtet [2] to v = f(u) =
∞∑

i=0

xiu
1+ai.

Theorem F in page 15 of Comtet [2] proves (A.4) for the case k = 1 and a

a positive integer.
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