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Abstract:

• In this paper, we generalize the mixture integer-valued ARCH model (MINARCH)
introduced by Zhu et al. (2010) (F. Zhu, Q. Li, D. Wang. A mixture integer-valued
ARCH model, J. Statist. Plann. Inference, 140 (2010), 2025–2036.) to a mixture
integer-valued GARCH (MINGARCH) for modeling time series of counts. This model
includes the ability to take into account the moving average (MA) components of the
series. We give the necessary and sufficient conditions for first and second order
stationarity solutions. The estimation is done via the EM algorithm. The model
selection problem is studied by using three information criterions. We also study the
performance of the method via simulations and include a real data application.
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1. INTRODUCTION

Time series count data are widely observed in real-world applications (epi-

demiology, econometrics, insurance). Many different approaches have been pro-

posed to model time series count data, which are able to describe different types

of marginal distribution. Zeger (1988) discusses a model for regression analy-

sis with a time series of counts by illustrating the technique with an analysis of

trends in U.S. polio incidence, while Ferland et al. (2006) proposed an integer-

valued autoregressive conditional heteroscedastic (INARCH) model to deal with

integer-valued time series with overdispersion. Zhu (2011) proposed a negative

binomial INGARCH (NBINGARCH) model that can deal with both overdisper-

sion and potential extreme observations simultaneously. Zhu (2012) introduced a

generalized Poisson INGARCH model, which can account for both overdispersion

and underdispersion, among others.

In the literature, time series are often assumed to be driven by a unimodal

innovation series. However, many time series may exhibit multimodality either

in the marginal or the conditional distribution. For example, Martin (1992) pro-

posed to model multimodal jump phenomena by a multipredictor autoregressive

time series (MATS) model, while Wong and Li (2000) generalized the GMTD

model to the full mixture autoregressive (MAR) model whose predictive distribu-

tion could also be multimodal. Muller and Sawitzki (1991) proposed and studied

a method for analyzing the modality of a distribution.

Recently, Zhu et al. (2010) have used the idea of Saikkonen (2007) on the

definition of a very general mixture model to generalize the INARCH model to the

mixture (MINARCH) model, which has the advantages over the INARCH model

because of its ability to handle multimodality and non-stationary components.

But, they did not take into account the MA part of the model. Sometimes,

as in the classical GARCH model, large number of lagged residuals must be

included to specify the model correctly. As it is well known that computational

problem may arise when the autoregressive polynomial in the conditional mean

of the MINARCH model presents high order, we introduce in this paper the

MINGARCH model which is a natural generalization of the MINARCH model.

The paper is organized as follows. In Section 2 we describe the MINGARCH

model and the stationarity conditions. In Section 3, we discuss the estimation

procedures by using an expectation-maximization (EM) algorithm introduced by

Dempster et al. (1997) with a simulation study. We illustrate the usefulness of the

model in Section 4 by an empirical example. A brief discussion and concluding

remarks are given in Section 5.
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2. THE MIXTURE INTEGER-VALUED GARCH MODEL

The MINGARCH(K; p1, ..., pK ; q1, ..., qK) model is defined by:

(2.1)






Xt =
∑K

k=1 1(ηt = k)Ykt ,

Ykt|Ft−1 : P(λkt) ,

λkt = αk0 +
∑pk

i=1 αkiXt−i +
∑qk

j=1 βkj λk(t−j) ,

where P(λ) is the Poisson distribution with parameter λ, αk0 > 0, αki ≥ 0, βkj ≥ 0,

(i = 1, ..., pk, j = 1, ..., qk, k = 1, ..., K), 1(·) denotes the indicator function,

pk and qk are respectively the MA and AR orders of λkt, Ft−1 indicates the in-

formation given up to time t − 1, ηt is a sequence of independent and identically

distributed random variables with P(ηt = k) = αk, k = 1, ..., K. It is assumed

that Xt−j and ηt are independent for all t and j > 0, the variables Ykt and ηt

are conditionally independent given Ft−1, α1 ≥ α2 ≥ ... ≥ αK for identifiability

(see Titterington (1985)) and
∑K

k=1 αk = 1. If βkj = 0, k = 1, ..., K, j = 1, ..., qk,

the model is denoted MINARCH(K; p1, ..., pK).

The MINGARCH model is able to handle the conditional overdispersion in

integer-valued time series. In fact, the conditional mean and variance are given

by

E

(
Xt|Ft−1

)
=

K∑

k=1

αk λkt ,

and

Var
(
Xt|Ft−1

)
= E

(
Xt|Ft−1

)
+

K∑

k=1

αk λ2
kt −

(
K∑

k=1

αk λkt

)2

.

Using the Jensen’s inequality, we can easily see that:

K∑

k=1

αk λ2
kt −

(
K∑

k=1

αk λkt

)2

> 0 .

Hence the conditional variance is greater than the conditional mean. Furthermore

Var
(
Xt

)
= E

(
Var
(
Xt|Ft−1

))
+ Var

(
E
(
Xt|Ft−1

))

= E

(
K∑

k=1

αk λkt +
K∑

k=1

αk λ2
kt −

( K∑

k=1

αk λkt

)2)
+ Var

(
K∑

k=1

αk λkt

)

= E

(
Xt

)
+

K∑

k=1

αk E

(
λ2

kt

)
−
(
E
(
Xt

))2

≥ E

(
Xt

)
+ E

(
K∑

k=1

αk λ2
kt −

( K∑

k=1

αk λkt

)2)
.
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Then the variance is larger than the mean, which indicates that model (2.1) is

also able to describe the time series count with overdispersion.

Let us now introduce the polynomials Dk(B) = 1 − βk1B − βk2B
2 − ··· −

βkqB
q, k = 1, ..., K, where B is the backshift operator. In the following, we

assume that

H1 : For k = 1, ..., K, the roots of Dk(z) = 0 lie outside the unit circle ,

H2 : λkt < ∞ a.s. for any fixed t and k .

Let p = max(p1, ..., pK); q = max(q1, ..., qK); αki = 0, for i > pk ; βkj = 0,

for j > qk and L = max(p, q).

First and second-order stationarity conditions for the MINGARCH model

(2.1) are given in Theorem 2.1 and Theorem 2.2.

Theorem 2.1. Assume that the conditions H1 and H2 hold. A necessary

and sufficient condition for model (2.1) to be stationarity in the mean is that the

roots of the equation:

(2.2) 1 −

K∑

k=1

αk

( ∑pk

i=1 αkiZ
−i

1 −
∑qk

j=1 βkj Z−j

)
= 0

lie inside the unit circle.

Proof: Let µt = E(Xt) =
∑K

k=1 αk E(λkt) for all t ∈ Z. Since

λkt = αk0 +

pk∑

i=1

αkiXt−i +

qk∑

j=1

βkj λk(t−j) ,

the recursion equation gives, for all m > 1,

λkt = αk0
+

L∑

i=1

αkiXt−i +
m∑

l=1

L∑

j1,...,jl=1

αk0 βkj1···βkjl

+
m∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−···−jl−jl+1

+
L∑

j1,...,jm+1=1

βkj1···βkjm+1
λk(t−j1−···−jm+1) .

Let Ck0 = αk0 +
∑∞

l=1

∑L
j1,...,jl=1 αk0 βkj1···βkjl

. We define

(2.3) λ′
kt = Ck0 +

L∑

i=1

αkiXt−i +
∞∑

l=1

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1
.
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Since
∑L

j=1 βkj < 1 it is easy to see that 0 ≤ λ′
kt < ∞ a.s. for any fixed t and k.

We will show below that λkt = λ′
kt almost surely as m → ∞ for any fixed

t and k. In what follows, C will denote any positive constant whose value is

unimportant and may vary from line to line. Let t and k be fixed now. It follows

that for any m ≥ 1

∣∣λkt − λ′
kt

∣∣ ≤
∞∑

l=m+1

L∑

j1,...,jl=1

αk0 βkj1···βkjl

+
∞∑

l=m+1

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

+
L∑

j1,...,jm+1=1

βkj1···βkjm+1
λk(t−j1−···−jm+1) .

Under H2, we have

E






L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1




 ≤ C




L∑

j=1

βkj




l

,

and

E






L∑

j1,...,jm+1=1

βkj1···βkjm+1
λk(t−j1−···−jm+1)




 ≤ C




L∑

j=1

βkj




m+1

.

The expectation of the right-hand side of the above is bounded by



Ck0 + C1

(
1 −

L∑

j=1

βkj

)−1







L∑

j=1

βkj




m+1

.

Let Am =
{
|λkt − λ′

kt| > 1
m

}
. Then

P(Am) ≤ m



Ck0 + C1

(
1 −

L∑

j=1

βkj

)−1







L∑

j=1

βkj




m+1

.

Then, using Borel–Cantelli lemma and the fact that Am ⊂ Am+1, we can show

that λkt = λ′
kt a.s. Therefore,

µt =

K∑

k=1

αk Ck0 +

L∑

i=1

K∑

k=1

αk αki µt−i(2.4)

+
∞∑

l=1

L∑

j1,...,jl+1=1

K∑

k=1

αk αkjl+1
βkj1···βkjl

µt−j1−j2−···−jl+1
.
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The necessary and sufficient condition for a non-homogeneous difference equation

(2.4) to have a stable solution, which is finite and independent of t, is that all

roots of the equation

1−
L∑

i=1

K∑

k=1

αk αkiZ
−i −

∞∑

l=1

L∑

j1,...,jl+1=1

K∑

k=1

αk αkjl+1
βkj1···βkjl

Z−(j1+j2+ ···+jl+1) = 0

lie inside the unit circle (see Goldberg (1958)). This equation is equivalent to

1 −
K∑

k=1

αk

(
pk∑

i=1

αkiZ
−i

)
∞∑

l=0

(
qk∑

j=1

βkj Z−j

)l

= 0 .

Since
∑qk

j=1 βkj < 1, k = 1, ..., K and ‖Z‖ < 1, the equation (2.2) follows.

As an illustration, we consider in the following corollary the MINARCH(K;

p1, ..., pK).

Corollary 2.1. A necessary and sufficient condition for the MINARCH(K;

p1, ..., pK) model to be first-order stationary is that the roots of the equation

1 −

p∑

i=1

(
K∑

k=1

αk αki

)
Z−i = 0

lie inside the unit circle, where p = max(p1, ..., pK).

Now, we consider the MINGARCH model with pk = qk = 1 for all k =

1, ..., K. The following corollary gives a necessary and sufficient condition for the

MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be stationary in the mean.

Corollary 2.2. A necessary and sufficient condition for the

MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be first-order stationarity is that the

roots of the equation

1 + C1Z
−1 + C2Z−2 + ··· + CK Z−K = 0

lie inside the unit circle where

C1 = −
K∑

k=1

(
δk + αk γk

)

and

Cj = (−1)j




K∑

k1>k2>...>kj

δk1
δk2

···δkj
+

K∑

k=1

αkγk




K∑

k1>k2>...>kj−1

k1 6=k, k2 6=k, ..., kj−1 6=k

δk1
δk2

...δkj−1







for j = 2, ..., K, with γk = αk1 and δk = βk1.
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Proof: The equation (2.2) becomes

1 −
K∑

k=1

αk γk Z−1

1 − δk Z−1
= 0 .

Reducing to the same denominator, the preceding equation is equivalent to:

K∏

k=1

(
1 − δk Z−1

)
−

K∑

k=1

αk γk Z−1
K∏

k′=1
k′ 6=k

(
1 − δk′Z−1

)
=

= 1 + C1Z
−1 + C2Z−2 + ··· + CK Z−K = 0 .

From equation (2.4), we have

E(Xt) = µ =

K∑

k=1

αk Ck0 + µ

∞∑

l=0

L∑

j1,...,jl+1=1

K∑

k=1

αk αkjl+1
βkj1···βkjl

.(2.5)

Hence

µ =

∑K
k=1

(
αk αk0

1−
Pqk

j=1
βkj

)

1 −
∑K

k=1

(Ppk
i=1

αk αki

1−
Pqk

j=1
βkj

) .

A necessary condition for first-order stationarity of model (2.1) is given in

the following proposition.

Proposition 2.1. Under conditions H1 and H2, a necessary condition for

first-order stationarity of model (2.1) is

K∑

k=1

( ∑pk

i=1 αk αki

1 −
∑qk

j=1 βkj

)
< 1 .

Remark 2.1.

1. As a special case, a necessary condition for the MINGARCH(2; 1, 1; 1, 1)

model to be stationary in the mean is:

α1α11

1 − β11
+

α2α21

1 − β21
< 1 .

2. When the process (Xt) follows a MINARCH(K; p1, ..., pK), the condi-

tion stated in Proposition 2.1, reduced
∑K

k=1 (
∑pk

i=1 αk αki) < 1 as in

Zhu et al. (2010).



A Mixture Integer-Valued GARCH Model 253

The second order stationarity condition for the MINGARCH model (2.1)

in given the following theorem. Its proof is postponed in an Appendix.

Theorem 2.2. Let (Xt)t∈Z
be a MINGARCH(K; p1, ..., pK ; q1, ..., qK)

model. Assume that the conditions H1 and H2 hold. If the process (Xt)t∈Z
is

first-order stationary then a necessary and sufficient condition for the process to

be second-order stationary is that all roots of 1−c1Z
−1−c2Z

−2−···−cLZ−L = 0

lie inside the unit circle, where

cu =
K∑

k=1

αk

(
∆k,u−

L−1∑

v=1

Λkv bvu ωu0

)
, u = 1, ..., L−1 and cL =

K∑

k=1

αk ∆k,L ,

with

∆k,i = ∆
(1)
k,i + ∆

(2)
k,i ,

∆
(1)
k,i =

∞∑

l=0

L∑

jl+2=i
jl+2=j1+ ···+jl+1

αkjl+1
αkjl+2

βkj1···βkjl
,

∆
(2)
k,i =

∞∑

l=0
l′=0

L∑

j1+ ···+jl+2=i
j1+ ···+jl+2=j′

1
+ ···+j′

l′+1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′
1
···βkj′

l′
,

Λkv = Λ
(1)
kv + Λ

(2)
kv ,

Λ
(1)
kv =

∞∑

l=0

L∑

|jl+2−j1−···−jl+1|=v

αkjl+1
αkjl+2

βkj1···βkjl
,

Λ
(2)
kv =

∞∑

l=0
l′=0

L∑���j1+ ···+jl+2−j′
1
−···−j′

l′+1

���=v

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′
1
···βkj′

l′
,

and Γ = (ωij)
L−1
i,j=1 , Γ−1 = (bij)

L−1
i,j=1, two matrices such that

ωi0 =
∞∑

l=0

K∑

k=1

αkδi0kl , ωiu =
∞∑

l=0

K∑

k=1

αkδiukl for u 6= i, ωii =
∞∑

l=0

K∑

k=1

αkδiikl −1 ,

δiukl =
∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

.

We remark that when (Xt) follows a MINARCH(K; p1, ..., pK), Theorem

2.2 reduces to Theorem 2 of Zhu et al. (2010), where L = max(p1, ..., pK).

If the process (Xt) following a MINGARCH(K; p1, ..., pK ; q1, ..., qK) model

is second-order stationary, then from (5.2), we have

E(X2
t ) =

c0

1 −
∑L

u=1 cu

,
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where c0 > 0 (see Appendix B). Hence, necessary second order stationary condi-

tion for a special case is given by the following proposition.

Proposition 2.2. The second order stationary condition for a

MINGARCH(K; 1, ..., 1; 1, ..., 1) is c1 < 1 where c1 =
∑K

k=1 αk α2
k1.

In the following theorem, we give a necessary and sufficient condition for the

process (Xt) following a MINGARCH(K; 1, ..., 1; 1, ..., 1) model to be m order sta-

tionary. The results for the general model MINGARCH(K; p1, ..., pK ; q1, ..., qK)

are difficult to obtain and need further investigations.

Theorem 2.3. The m-th moment of a MINGARCH(K; 1, ..., 1; 1, ..., 1)

model is finite if and only if

(2.6)
K∑

k=1

αk (αk1 + βk1)
m < 1 .

Proof: Since Ykt|Ft−1 is a Poisson random variable with mean λkt = αk0 +

αk1Xt−1 + βk1λk(t−1) conditionally to time t− 1, the m-th moment of Xt is given

by

E (Xm
t ) =

K∑

k=1

αk

m∑

j=0

{
m

j

}
E
(
λj

kt

)

where
{

m
j

}
is the Stirling number of the second kind (see Gradshteyn and Ryzhik

(2007), p. 1046) and

λj
kt =

j∑

n=0

(
j

n

)
αj−n

k0

n∑

r=0

(
n

r

)(
αk1Xt−1

)r(
βk1λk(t−1)

)n−r
.

We mimic the proof of Proposition 6 in Ferland et al. (2006) by setting

Λk,t =
(
λm

kt, ..., λ
2
kt, λkt

)T

and showing that for all k

E(Λk,t|Ft−2) = dk + DkΛk,t−1

where dk and Dk are respectively a constant vector and an upper triangular

matrix. The derivation of the required condition follows the great lines of the

proof of Proposition 6 in Ferland et al. (2006).

The result obtained in Theorem (2.6) is an extension of Proposition 6 in

Ferland et al. (2006) for an INGARCH(1, 1) process. When the βki’s equal to

zero, the (necessary) condition (2.6) is a special case of the result obtained in

Theorem 3 of Zhu et al. (2010).
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3. PARAMETER ESTIMATION AND SIMULATION

3.1. Estimation procedure

In this section, we discuss the estimation of the parameters of a MIN-

GARCH model by using the expectation-maximization (EM) algorithm (see

Dempster et al. (1997)). Suppose that the observation X = (X1, ..., Xn) is gen-

erated from the MINGARCH model.

Let Z = (Z1, ..., Zn) be the random variable where Zt = (Z1,t, ..., ZK,t)
T is

a vector whose components are defined by:

Zi,t =

{
1 if Xt comes from the i-th component; 1 ≤ i ≤ K ,

0 otherwise .

The vectors Zt are not observed and its distribution is:

P
(
Zt = (1, 0, ..., 0)T

)
= α1 , ... , P

(
Zt = (0, 0, ..., 0, 1)T

)
= αK .

Let α = (α1, ..., αK−1)
T , α(k) = (αk0, αk1, ..., αkpk

)T , β(k) = (βk1, ..., βkqk
)T

θ(k) = (αT
(k), β

T
(k)) and θ = (α, θ(1), ..., θ(K))

T ∈ Θ (the parameter space).

Given Zt, the distribution of the complete data (Xt, Zt) is then given by

K∏

k=1

(
αk

λXt

kt exp(−λkt)

Xt!

)Zkt

.

Let lt be the conditional log-likelihood function at time t. The log-likelihood

is given by l(θ) =
∑n

t=1 lt.

l(θ) is the joint log-likelihood function of the first L random variables of

the series and l∗(θ) =
∑n

t=L+1 lt is called the conditional log-likelihood function.

When the sample size n is large, the influence of
∑L

t=1 lt will be negligible. In

this study, the parameters will be estimated by maximizing the conditional log-

likelihood function l∗ given by

l∗(θ) =

n∑

t=L+1

{
K∑

k=1

Zkt log(αk) + Xt

K∑

k=1

Zkt log(λkt) −

K∑

k=1

Zktλkt − log(Xt!)

}
.

The first derivatives of the conditional log-likelihood with respect to θ are:

(3.1)
∂l∗

∂αk
=

n∑

t=L+1

(
Zkt

αk
−

ZKt

αK

)
, k = 1, ..., K − 1 ,
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(3.2)
∂l∗

∂αki
=

n∑

t=L+1

Zkt
Xt − λkt

λkt
U(Xt, i) , k = 1, ..., K, i = 0, ..., pk ,

(3.3)
∂l∗

∂βkj
=

n∑

t=L+1

Zkt
Xt − λkt

λkt
λk,t−j , k = 1, ..., K, j = 1, ..., qk ,

where U(Xt, i) = 1 for i = 0 and U(Xt, i) = Xt−i for i > 0.

Given that the process {Zt} is not observed, the data that we have do not

allow the estimation of the parameter θ. An iterative procedure (EM) is pro-

posed for estimating the parameters by maximizing the conditional log-likelihood

function l∗(θ), which consists of two steps (E and M) that we describe in the

following.

E-step:

Suppose that θ is known. The missing data Z are then replaced by their

conditional expectations, conditional on the parameters and on the observed data

X. In this case the conditional expectation of the k-th component of Zt is just the

conditional probability that the observation Xt comes from the k-th component

of the mixture distribution conditional on θ and X. Let τk,t be the conditional

expectation of Zkt.

Then the E-step equation is given by:

τk,t =
αkλkt

Xt exp(−λkt)∑K
i=1 αiλit

Xt exp(−λit)

where k = 1, 2, ..., K and t = L + 1, ..., n. In practice, we take Zkt = τk,t from the

previous E-step of the EM procedure.

M-step:

The missing data Z are replaced by their conditional expectations on the

parameters θ and on the observed data X1, ..., Xn. The estimates of the parame-

ters θ can then be obtained by maximizing the conditional log-likelihood function

l∗(θ) by equating expressions (3.2)–(3.3) to 0.

The M-step equations become

α̂k =
1

n − L

n∑

t=L+1

τk,t , k = 1, ..., K .

From the equation (3.2), we have:

n∑

t=L+1

τt,kXt

λ̂kt

U(Xt, i) =
n∑

t=L+1

τk,t U(Xt, i) .
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Then

n∑

t=L+1

{
τk,t Xt∑pk

j=0 α̂kj U(Xt, j) +
∑qk

j=1 β̂kjλ̂k(t−j)

U(Xt, i)

}
=

n∑

t=L+1

τk,t U(Xt, i) ,

for k = 1, ..., K, i = 0, ..., pk.

Similarly equation (3.3) gives:

n∑

t=L+1

τk,t Xt

λ̂kt

λ̂k,t−j =
n∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j .

Then

n∑

t=L+1





τ

(s)
k,t Xt

∑pk

i=0 α̂
(s)
ki U(Xt, i) +

∑qk

t=L+1 β̂
(s)
ki λ̂

(s)
k,t−i

λ̂
(s)
k,t−j




 =
n∑

t=L+1

τ
(s)
k,t λ̂

(s)
k,t−j ,

for k = 1, ..., K, j = 1, ..., qk.

The estimate of θ is then obtained by iterating these two steps until con-

vergence. The criterion used for checking convergence of the EM procedure is

max

{∣∣∣∣∣
θ
(s+1)
i − θ

(s)
i

θ
(s)
i

∣∣∣∣∣ , s, i ≥ 1

}
≤ 10−5

where θ
(s)
i is the i-th component of θ obtained in the s-th iteration.

Among different strategies for choosing starting initial values for the EM

algorithm (see Karlis and Xekalaki (2003), Melnykov and Melnykov (2012)), the

random initialization method is employed in this paper (the initial values for

θ(k) are chosen randomly from a uniform distribution and the mixing proportions

are generated from a Dirichlet distribution). The asymptotic properties are not

treated in this paper but they have been studied by many authors. For exam-

ple, Nityasuddhia and Böhning (2003) have studied the asymptotic properties of

the EM algorithm estimate for normal mixture models. They show that the EM

algorithm gives reasonable solutions of the score equations in an asymptotic unbi-

ased sense. The performance of the EM algorithm is assessed by some simulation

experiments.

3.2. Simulation studies

Monte Carlo experiment was conducted to investigate the performance of

the EM estimation method. In all these simulation experiments, we use 100
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independent realizations of the MINGARCH model defined in (2.1) with sizes n =

100, n = 200 and n = 500. The following two models were used in the experiment.

The first, denoted Model (I), is a MINGARCH(2; 1,1; 1,1) model with parameter

values (
α1 α10 α11 β11

α2 α20 α21 β21

)
=

(
0.75 1.00 0.20 0.30
0.25 5.00 0.50 0.30

)
.

The second, denoted Model (II), is a MINGARCH(3; 1,1,1; 1,1,1) model with

parameter values




α1 α10 α11 β11

α2 α20 α21 β21

α3 α30 α31 β31



 =




0.55 0.80 0.40 0.30
0.25 1.00 0.50 0.25
0.20 0.50 0.60 0.20



 .

The performances of the estimators are evaluated by the root mean square error

(RMSE) and the mean absolute error (MAE).

Based on the results in Tables 1 and 2, we can see that as the sample

size increases, the estimates seem to converge to the true parameter values.

Table 1: Results of the simulation study with model (I).

Sample size k αk αk0 αk1 βk1

100

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7410 1.1883 0.1833 0.2446

RMSE 0.0523 0.5789 0.0623 0.2137

MAE 0.0405 0.4726 0.0506 0.1801

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2590 5.1660 0.4619 0.2901

RMSE 0.0523 2.6410 0.2823 0.2588

MAE 0.0405 2.2060 0.2103 0.2274

200

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7463 1.0093 0.1909 0.3054

RMSE 0.0359 0.4429 0.0468 0.1773

MAE 0.0291 0.3641 0.0381 0.1460

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2537 5.2571 0.4612 0.2928

RMSE 0.0359 2.2616 0.1728 0.2380

MAE 0.0291 1.8728 0.1314 0.1976

500

1

True values 0.7500 1.0000 0.2000 0.3000

Mean estimated 0.7510 1.0646 0.1959 0.2817

RMSE 0.0259 0.2525 0.0272 0.1035

MAE 0.0212 0.1867 0.0214 0.0783

2

True values 0.2500 5.0000 0.5000 0.3000

Mean estimated 0.2490 5.3064 0.5026 0.2688

RMSE 0.0259 1.6316 0.0982 0.1702

MAE 0.0212 1.3483 0.0774 0.1443
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Table 2: Results of the simulation study with model (II).

Sample size k αk αk0 αk1 βk1

100

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5435 0.7671 0.4429 0.2163

RMSE 0.1063 0.4997 0.1898 0.2339

MAE 0.0828 0.4054 0.1482 0.1977

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2240 1.0888 0.5344 0.2532

RMSE 0.0802 0.7182 0.3804 0.2563

MAE 0.0607 0.5504 0.2420 0.2113

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2323 0.9516 0.4475 0.2714

RMSE 0.0600 0.7127 0.2413 0.2263

MAE 0.0429 0.5490 0.1895 0.1850

200

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5286 0.7471 0.4113 0.2552

RMSE 0.1117 0.4363 0.1563 0.1942

MAE 0.0838 0.3566 0.1190 0.1545

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2316 1.0570 0.5340 0.2433

RMSE 0.0785 0.6025 0.2584 0.1928

MAE 0.0602 0.4787 0.1751 0.1506

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2397 0.8867 0.4450 0.3042

RMSE 0.0652 0.6088 0.2306 0.2439

MAE 0.0452 0.4959 0.1806 0.1825

500

1

True values 0.5500 0.8000 0.4000 0.3000

Mean estimated 0.5556 0.7040 0.4248 0.2725

RMSE 0.0825 0.3246 0.1171 0.1797

MAE 0.0614 0.2595 0.0934 0.1407

2

True values 0.2500 1.0000 0.5000 0.2500

Mean estimated 0.2182 0.9508 0.5223 0.2656

RMSE 0.0620 0.4723 0.2059 0.2132

MAE 0.0487 0.3853 0.1569 0.1576

3

True values 0.2000 0.5000 0.6000 0.2000

Mean estimated 0.2261 0.8985 0.4690 0.2815

RMSE 0.0536 0.5883 0.1963 0.1988

MAE 0.0298 0.4780 0.1586 0.1506

The performance of the estimate improves when the sample size increases. But

this performance varies depending on the parameters. Indeed the parameter

estimate αk seems to give good results for all sample sizes considered. For the

parameter αk0, the RMSE and the MAE are slightly higher.
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4. REAL DATA EXAMPLE

In this section we investigate the time series representing a count of the

calls monthly reported in the 22nd police car beat in Pittsburg, starting in Jan-

uary 1990 and ending in December 2001. The data are available online at the

forecasting principles site (http://www.forecastingprinciples.com), in the sec-

tion about crime data. The summary statistics are given in Table 3. Mean and

variance are estimated as 6.3056 and 23.0249, respectively. Hence the data seem

to be overdispersed. The histogram of the series in Figure 1 shows that the series

seems to be bimodal. Using the bimodality index of Der and Everitt (2002),

Zhu et al. (2010) show that the series is bimodal. Moreover, they found that the

MINARCH model is more appropriate for this dataset than the INARCH model.

The autocorrelation function in Figure 2 implies that the moving average poly-

nomial order is at most equal to three (i.e. 0 ≤ q ≤ 3) while when considering the

partial autocorrelation function, we can choose p such that 1 ≤ p ≤ 3. Thus, in

the following, we consider a MINGARCH model (2.1) with K = 1, 2, 3.

Table 3: Summary statistics of the crime counts series.

Sample size Minimum Maximum Median Mean Variance Skewness Kurtosis

144 0 30 5 6.3056 23.0249 1.9732 8.7530
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Figure 1: Histogram of the crime counts series.
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Time Plot
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Figure 2: Crime counts series: the time plot, the sample autocorrelation
and partial autocorrelation function.

The model selection criteria considered here are the Akaike information criterion

(AIC), the Bayesian information criterion (BIC) and the mixture regression cri-

terion (MRC) proposed by Naik et al. (2007). These two first criteria are both

defined as minus twice the maximized log-likelihood plus a penalty term. The

first choice is the maximum log-likelihood given by the EM estimation, it includes

the information of the unobserved random variable Z. The second choice is com-

puted from the (conditional) probability density function of the MINGARCH

model and is defined as

l′ =
n∑

t=L+1

log

{
K∑

k=1

αk
λXt

kt exp(−λkt)

Xt!

}
.

We use l
′

in this paper, it may have better performance in finite samples (see

Wong and Li (2000)). The AIC and the BIC are given by:

AIC = −2l′ + 2

(
2K − 1 +

K∑

k=1

pk +
K∑

k=1

qk

)
,

BIC = −2l′ + log
(
n − max(pmax, qmax)

)(
2K − 1 +

K∑

k=1

pk +

K∑

k=1

qk

)
.
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The MRC consists of three terms: the first measures the lack of fit, the second im-

poses a penalty for regression parameters, and the third is the clustering penalty

function. For the MINGARCH model, the MRC is defined as

MRC =
K∑

k=1

n̂k log(σ̂2
k) +

K∑

k=1

n̂k(n̂k + ĥk)

n̂k − ĥk − 2
− 2

K∑

k=1

n̂k log(α̂k),

where n̂k = tr(Ŵk), ĥk = tr(Ĥk), σ̂2
k = (U − V θ∗k)

T Ŵ
1/2
k (I − Ĥk)(U − V θ∗k)/n̂k

with

Ŵk = diag
(
(τ̂k,L+1, ..., τ̂kn)T

)
, V̂k = Ŵ

1/2
k V, Ĥk = V̂k

(
V̂ T

k V̂k

)−1
V̂ T

k , k=1, ..., K,

V = (VL+1, ..., Vn)T , Vj = (1, Xj−1, ..., Xj−p, λkj(j−1), ..., λkj(j−q))
T ,

kj | τkj ,j = max {τ1,j , ..., τK,j} , j = L + 1, ..., n,

θ∗k =
(
α(k)

T ,0T , β(k)
T ,0T

)T
(p+q+1)×1

, U = (XL+1, ..., Xn)T .

The problem of model selection for MINGARCH models requires two as-

pects. First, we must select the number of components K. Second, the model

identification problem needs to be addressed (i.e. the AR polynomial order, pk,

and the MA polynomial order, qk). In this paper we not discuss the selection

problem for the number of components. We concentrate on the order selection of

each component. The order of the components is chosen to be that minimizing

the values of the three criterions. The results are given in Tables 4, 5 and 6.

Table 4: AIC, BIC and MRC values for the crime counts series, K = 1.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 832.52 813.55 811.50 838.44 822.41 823.29 558.37 546.64 545.87

q = 1 815.11 813.62 813.31 824.01 825.44 852.80 550.56 548.57 547.16

q = 2 813.04 815.06 813.39 824.87 829.84 831.09 548.57 550.50 549.37

q = 3 807.35 809.35 811.82 846.83 827.04 832.46 546.31 548.31 547.19

Table 5: AIC, BIC and MRC values for the crime counts series, K = 2.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 767.11 760.23 757.05 781.93 780.92 783.59 607.93 606.19 596.61

q = 1 760.55 758.91 755.24 781.29 785.52 787.68 557.14 548.20 550.90

q = 2 756.33 760.51 757.54 782.94 793.02 795.88 537.59 540.95 548.81

q = 3 751.82 755.78 759.26 838.69 794.12 803.49 538.54 541.92 546.76
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Table 6: AIC, BIC and MRC values for the crime counts series, K = 3.

Order
AIC BIC MRC

p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

q = 0 766.75 760.89 759.21 790.46 793.41 800.49 647.45 660.88 720.25

q = 1 559.52 759.75 758.96 792.11 801.13 809.09 575.82 577.42 631.02

q = 2 756.75 766.67 756.16 798.13 816.91 824.13 573.34 642.36 649.52

q = 3 749.04 757.72 763.83 799.17 804.11 945.47 573.38 573.62 938.79

For the AIC, the BIC and the MRC, the minimums are represented by the un-

derlined values. Based on the results in these tables (4, 5 and 6), the BIC and the

MRC retain the two-component mixture model respectively with (p, q) = (2, 0)

and (p, q) = (1, 2), which confirm the bimodality observed in the histogram. In

contrast, the AIC retains the three-component mixture model with (p, q) = (1, 3),

which confirms the phenomena often observed in a lot of applications, namely

that the AIC overclusters and overfits the data (for instance, see Naik et al.

(2007)). In practice, it is observed that the BIC criterion selects the model of

dimension smaller than the AIC criterion, which is not surprising since the BIC

penalizes more than the AIC (when n > 7). We notice also that the next smallest

AIC, BIC and MRC values are obtained in the two-component model with re-

spectively (p, q) = (1, 3), (p, q) = (1, 1) and (p, q) = (1, 3). These results confirm

the result of the histogram and lends substantial support to the two-component

model with p = 1 and q 6= 0. The values of the AIC and MRC obtained in our

model are better than those of the MINARCH model. The values of BIC suggest

the MINARCH(2; 2, 2) model, but the smallest value is near of the BIC value

obtained with MINGARCH(2; 1, 1; 2, 2) model (780.92 and 782.94). In addition,

the AIC of the MINGARCH(2; 1, 1; 2, 2) (selected by the MRC) is better than

the one in the MINARCH(2; 2, 2) model. Hence, our results indicate that the

MINGARCH model should be preferred to the MINARCH for this dataset.

5. CONCLUDING REMARKS

In this paper, a new model which generalizes the MINARCH model is

proposed. Conditions for stationarity of the model and estimation procedure

based on EM algorithm are investigated. Moreover, we study the finite per-

formance of the estimation method using Monte Carlo simulations. Finally, a

real case study is proposed. In a forthcoming, we plan to study the ergod-

icity conditions of the model as well as the optimal choice of the parameter

K. In addition, we plan to study necessary and sufficient conditions for the

MINGARCH(K; p1, ..., pK ; q1, ..., qK) process to be m order stationary for m > 2.



264 M.L. Diop, A. Diop and A.K. Diongue

APPENDIX A — Proof of Theorem 2.2

Let γit = E(XtXt−i) for i = 0, 1, ..., L,

γit =
K∑

k=1

αkE(λktXt−i)

=
K∑

k=1

αk0αkE(Xt−i) +
m∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0αkβkj1···βkjl
E(Xt−i)

+
m∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkj+1
βkj1···βkjl

E(Xt−j1−···−jl+1
Xt−i)

+
K∑

k=1

L∑

j1,...,jm+1=1

αkβkj1···βkjm+1
E(λk(t−j1−···−jm+1)Xt−i) .

Using the same arguments as in the proof of Theorem 2.1, we can show that

almost surely

γit =
K∑

k=1

αk0αkE(Xt−i) +
∞∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0αkβkj1···βkjl
E(Xt−i)

+
K∑

k=1

L∑

j=1

αkjαkE(Xt−jXt−i)

+

∞∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkjl+1
βkj1···βkjl

E(Xt−j1−···−jl+1
Xt−i)

= I + II + III + IV

with

III =

K∑

k=1

L∑

j=1

αkjαkE(Xt−jXt−i)

=
K∑

k=1

αkiαkγ0,t−i +
K∑

k=1

L∑

j=1,i6=j

αkjαkγ|j−i|,t

=
K∑

k=1

αkiαkγ0,t−i

+
K∑

k=1

αk

( ∑

|j−i|=1

αkiγ1,t + ··· +
∑

|j−i|=i

αkjγi,t + ··· +
∑

|j−i|=L−1

αkjγL−1,t

)

=

K∑

k=1

αkδi0k0γ0,t−i +

K∑

k=1

L−1∑

u=1

αkδiuk0γu,t
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and

IV =
∞∑

l=1

K∑

k=1

L∑

j1,...,jl+1=1

αkαkjl+1
βkj1···βkjl

γ|i−j1−···−jl+1|,t

=
∞∑

l=1

K∑

k=1

L∑

j1+ ···+jl+1=i

αkαkjl+1
βkj1···βkjl

γ0,t−i

+
∞∑

l=1

K∑

k=1

L∑

j1+ ···+jl+1 6=i

αkαkjl+1
βkj1···βkjl

γ|i−j1−···−jl+1|,t

=
∞∑

l=1

K∑

k=1

αkδi0klγ0,t−i +
∞∑

l=1

K∑

k=1

L−1∑

u=1

αkδiuklγu,t

where

δiukl =
∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

.

Then

III + IV =
∞∑

l=0

K∑

k=1

αkδi0klγ0,t−i +
∞∑

l=0

K∑

k=1

L−1∑

u=1

αkδiuklγu,t

where the first term of this summation (l = 0) is III.

Moreover, using the same notation, we get

I + II =




K∑

k=1

αk0αk +

∞∑

l=1

K∑

k=1

L∑

j1,...,jl=1

αk0αkβkj1···βkjl



µ

=




∞∑

l=0

K∑

k=1

L∑

j1,...,jl=1

αk0αkβkj1···βkjl



µ =: K1

Finally, for i = 1, ..., L

K1 + ωi0γ0,t−i +
L−1∑

u=1

ωiuγu,t = 0

where

ωi0 =

∞∑

l=0

K∑

k=1

αkδi0kl, ωiu =

∞∑

l=0

K∑

k=1

αkδiukl

for u 6= i and ωii =
∞∑

l=0

K∑

k=1

αkδiikl − 1.

Let Γ = (ωij)
L−1
i,j=1 and Γ−1 = (bij)

L−1
i,j=1. The invertibility of the matrix Γ is

checked in Appendix B.
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Then

Γ(γ1,t, ..., γL−1,t)
T = −

(
K1 + ω10γ0,t−1, ..., K1 + ω(L−1)0γ0,t−(L−1)

)

which is equivalent to

(γ1,t, ..., γL−1,t)
T = −Γ−1

(
K1 + ω10γ0,t−1, ..., K1 + ω(L−1)0γ0,t−(L−1)

)
.

We can show that

γi,t = −K1

L−1∑

u=1

biu −
L−1∑

u=1

biuωu0γ0,t−u .

The second moment is given by:

γ0,t = E(Xt) +
K∑

k=1

αkE(λ2
kt) .

For k = 1, ..., K, we have

λ2
kt =

(
αk0 +

L∑

i=1

αkiXt−i +
L∑

j=1

βkjλk(t−j)

)
λkt

= αk0λkt +
L∑

i=1

αkiXt−iλkt +
L∑

j=1

βkjλk(t−j)λkt .

The hypothesis H1 implies that the process {λkt, t ∈ Z} is first-order stationary.

Hence

E(λkt) =
αk0 +

∑L
i=1 αkiµ

1 −
∑L

j=1 βkj

for k = 1, ..., K.

We have

E

( L∑

i=1

αkiXt−iλkt

)
=

= E

(
Ck0

L∑

i=1

αkiXt−i +
L∑

i=1

αkiXt−i

∞∑

l=0

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

)

= E

(
Ck0

L∑

i=1

αkiXt−i +
∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+1
αkjl+2

βkj1···βkjl
Xt−j1−j2−···−jl+1

Xt−jl+2

)

= Ck0µ
L∑

i=1

αki +
L∑

i=1

∆
(1)
k,iγ0,t−i +

L−1∑

v=1

Λ
(1)
kv γv,t

where

∆
(1)
k,i =

∞∑

l=0

L∑

jl+2=i
jl+2=j1+ ···+jl+1

αkjl+1
αkjl+2

βkj1···βkjl
,

Λ
(1)
kv =

∞∑

l=0

L∑

|jl+2−j1−···−jl+1|=v

αkjl+1
αkjl+2

βkj1···βkjl
.
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Moreover

L∑

j=1

βkjλk(t−j) =

L∑

j=1

βkj




Ck0 +

∞∑

l=0

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j−j1−j2−···−jl+1






= Ck0

L∑

j=1

βkj +

∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2
.

Hence

L∑

j=1

βkjλk(t−j)λkt =

=




Ck0

L∑

j=1

βkj +
∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2






×




Ck0 +
∞∑

l=0

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1






= C2
k0

L∑

j=1

βkj + Ck0

L∑

j=1

βkj

∞∑

l=0

L∑

j1,...,jl+1=1

αkjl+1
βkj1···βkjl

Xt−j1−j2−···−jl+1

+ Ck0

∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

Xt−j1−j2−···−jl+2

+
∞∑

l=0
l′=0

L∑

j1,...,jl+2=1
j′
1
,...,j′

l′+1
=1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′
1
···βkj′

l′
Xt−j1−j2−···−jl+2

Xt−j′
1
−j′

2
−···−j′

l′+1

.

The term E

(∑L
j=1 βkjλk(t−j)λkt

)
is given by

E

( L∑

j=1

βkjλk(t−j)λkt

)
= C2

k0

L∑

j=1

βkj + 2Ck0µ
∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

+
L∑

i=1

∆
(2)
k,iγ0,t−i +

L−1∑

v=1

Λ
(2)
kv γv,t

where

∆
(2)
k,i =

∞∑

l=0
l′=0

L∑

j1+ ···+jl+2=i
j1+ ···+jl+2=j′

1
+ ···+j′

l′+1

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′
1
···βkj′

l′

Λ
(2)
kv =

∞∑

l=0
l′=0

L∑���j1+ ···+jl+2−j′
1
−···−j′

l′+1

���=v

αkjl+2
βkj1···βkjl+1

αkj′
l′+1

βkj′
1
···βkj′

l′
.
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Let ∆k,i = ∆
(1)
k,i + ∆

(2)
k,i and Λkv = Λ

(1)
kv + Λ

(2)
kv .

For k = 1, ..., K, the expectation of λ2
kt is given by

E(λ2
k,t) = Ck +

L∑

i=1

∆k,iγ0,t−i +

L−1∑

v=1

Λkvγv,t

with

Ck = αk0E(λkt) + Ck0

L∑

i=1

αkiµ + C2
k0

L∑

j=1

βkj + 2Ck0

∞∑

l=0

L∑

j1,...,jl+2=1

αkjl+2
βkj1···βkjl+1

µ .

Then

γ0,t = µ +
K∑

k=1

αk

(
Ck +

L∑

i=1

∆k,iγ0,t−i +
L−1∑

v=1

Λkvγv,t

)

= µ +

K∑

k=1

αk

[
Ck +

L∑

u=1

∆k,uγ0,t−u

+
L−1∑

v=1

Λkv

(
−K1

L−1∑

u=1

bvu −
L−1∑

u=1

bvuωu0γ0,t−u

)]

= c0 +

K∑

k=1

αk

[
L∑

u=1

∆k,uγ0,t−u −

L−1∑

u=1

(
L−1∑

v=1

Λkvbvuωu0

)
γ0,t−u

]

where

c0 = µ +
K∑

k=1

αkCk − K1

K∑

k=1

αk

L−1∑

v=1

Λkv

L−1∑

u=1

bvu.

Hence

γ0,t = c0 +
K∑

k=1

αk

[
L−1∑

u=1

(
∆k,u −

L−1∑

v=1

Λkvbvuωu0

)
γ0,t−u + ∆k,Lγ0,t−L

]
.(5.1)

Let

cu =
K∑

k=1

αk

(
∆k,u −

L−1∑

v=1

Λkvbvuωu0

)
, u = 1, ..., L−1 and cL =

K∑

k=1

αk∆k,L .

Then the equation (5.1) is equivalent to:

(5.2) γ0,t = c0 +
L∑

u=1

cuγ0,t−u .

The necessary and sufficient condition for a non-homogeneous difference equation

(5.2) to have a stable solution, which is finite and independent of t, is that all

roots of the equation: 1 − c1Z
−1 − c2Z

−2 − ··· − cLZ−L = 0 lie inside the unit

circle.
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APPENDIX B — Invertibility of Γ and positivity of c0

In the following lines, we establish the invertibility of Γ and check the

positivity of c0. The same ideas were already used in the paper by Gonçalves et

al. (2013).

Invertibility of Γ:

We show that the matrix Γ = (ωij)
L−1
i,j=1 is strictly diagonally dominant by

rows. For i = 1, ..., L − 1,

|ωii| −
L−1∑

u=1
u 6=i

|ωiu| = 1 −
∞∑

l=0

K∑

k=1

αkδiikl −
L−1∑

u=1
u 6=i

∞∑

l=0

K∑

k=1

αkδiukl

= 1 −
L−1∑

u=1

∞∑

l=0

K∑

k=1

αkδiukl .

We have
L−1∑

u=1

∞∑

l=0

K∑

k=1

αkδiukl =

L−1∑

u=1

∞∑

l=0

K∑

k=1

αk

∑

|i−j1−···−jl+1|=u

αkjl+1
βkj1···βkjl

≤
L∑

j1,...,jl+1=1

∞∑

l=0

K∑

k=1

αkαkjl+1
βkj1···βkjl

.

Based on the necessary condition for first-order stationarity in equation (2.5), we

have
L∑

j1,...,jl+1=1

∞∑

l=0

K∑

k=1

αkαkjl+1
βkj1···βkjl

< 1 .

Hence, |ωii| −
∑L−1

u=1
u 6=i

|ωiu| > 0. Then Γ is strictly diagonally dominant by rows.

Hence, the matrix Γ is invertible by using the Levy–Desplanques Theorem (see

Horn and Jonhson (2013), pp. 352, 392).

Positivity of c0:

c0 = µ +
K∑

k=1

αkCk − K1

K∑

k=1

αk

L−1∑

v=1

Λkv

L−1∑

u=1

bvu .

To prove the positivity of c0, it suffices to show that bvu ≤ 0, v = 1, ..., L− 1, u =

1, ..., L − 1. Indeed, it is easily seen that −Γ is strictly diagonally dominant by

rows. In addition, −ωij < 0 for i 6= j and −ωii > 0 for i = 1, ..., L−1. Then −Γ is

a nonsingular M-matrix (see Quarteroni et al. (2000), p. 30, Property 1.20). This

implies that −Γ is inverse-positive that is (−Γ)−1 ≥ 0. Hence, Γ−1 ≤ 0, therefore

bvu ≤ 0 for v = 1, ..., L − 1, u = 1, ..., L − 1.
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