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Abstract:

• Extreme value theory is dedicated to characterise the behaviour of the extreme ob-
servations. The interest is then focused in the tails of the underlying distribution.
It is important to test for the adequate shape of the tail, because it influences the
estimation of parameters of extreme or even rare events. The aim of this work is to
present a brief overview on several tests and parameter estimation procedures avail-
able in the literature. They will be applied to daily mean flow discharge rate values in
the hydrometric station of Fragas da Torre in the river Paiva, collected from 1946/47
to 2005/06.
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1. INTRODUCTION

Extreme value theory (EVT) is concerned with the stochastic behaviour

of extremes values. In EVT we need to deal with events that are more extreme

than any that have already been observed. The question is how to make inference

beyond the sample data. Obviously, statistical inference can be deduced only from

those observations which are extreme in some sense.

There are a few parameters whose estimation is of major importance. The

extreme value index (EVI), which is directly related with the heaviness of the

right tail of the underlying distribution of the data, is a crucial parameter.

It influences the estimation of other parameters of extreme values, such as, high

quantiles of probability 1− p, with p “small”, i.e., the high levels usually designed

by the return levels associated with the return periods, 1/p, i.e. the expected

waiting time between independent exceedances of a specific high level.

In all areas of application it is of major importance to use adequate and

accurate statistical methods. The R software (R Development Core Team, [55])

is an open source environment that incorporates in its base a huge amount of

statistical packages built and made freely available by the scientific community.

Penalva et al. ([52], [53]) have illustrated the application of some procedures

of modelling and estimating in EVT, under a parametric framework. Some R

packages were explained and some data sets were considered. The Block Maxima

(BM), the Peaks Over Threshold (POT) and the k Largest Observations (k-LO)

methods were described and applied. Different methodologies for parameter es-

timation were also considered. In Neves et al. ([50]) R procedures for the semi-

parametric estimation in EVT have been presented and discussed. A real data

set of daily mean flow discharge rate values from the hydrometric station of Fra-

gas da Torre in the river Paiva during the years from 1946/47 to 1996/97 was

considered.

In this paper parametric and semi-parametric frameworks are briefly re-

viewed. In both cases EVT theory relies on certain assumptions that should be

validated when dealing with an application. Regardless the framework followed

statistical inference will be improved if one makes the choice of the most adequate

tail previously. A brief overview of some testing procedures for the so-called

extreme value condition and for the statistical choice of the tail will be given.

An application to a larger data set than the one mentioned above will be per-

formed, now considering the years from 1946/47 to 2005/06.

Section 2 provides a brief review on the basic notions in EVT. In Section 3

parametric and semi-parametric statistical approaches in EVT are summarized

and the main statistical methods for the estimation of parameters are described.
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Section 4 and 5 are dedicated to a brief reference to testing issues and finally

Section 6 presents a case study and the application of some of the methods

described in the previous sections, still giving some attention to the main packages

available in R software for the extreme value analysis.

2. PRELIMINARIES IN EVT LIMITING LAWS

Classic theory of extremes is concerned with the limiting behaviour of the

maximum Mn := max
(
X1, ..., Xn

)
or the minimum mn := min

(
X1, ..., Xn

)
, as

n → ∞, of a sample (X1, ..., Xn) of independent and identically distributed (i.i.d.)

or possibly stationary, weakly dependent, random variables with unknown distri-

bution function (d.f.) F . It is well known that in those conditions the distribution

of the maximum Mn is Fn(·), and also for the minimum mn, i.e., 1− [1− F (·)]n.

However the d.f. Fn is of little help in practice since F is itself unknown and

should F be misspecified, this can lead to large errors in the distribution of the

maximum.

First results in EVT date back to Fréchet ([27]), Fisher and Tippet ([22]),

Gumbel ([39]) and von Mises ([60]), but Gnedenko ([30]) and de Haan ([41]) have

solved the problems related with the asymptotic behaviour of statistical extremes,

giving conditions for the existence of sequences {an} ∈ R
+ and {bn} ∈ R such that

(2.1) lim
n→∞

P

(
Mn− bn

an
≤ x

)
= lim

n→∞
Fn(anx + bn) = EVξ(x) ∀x ∈ R ,

where EVξ is a nondegenerate distribution function.

This function, known as the Extreme Value d.f., is usually denoted by EVξ

and is given by

(2.2) EVξ(x) =

{
exp

{
−[1 + ξx]−1/ξ

}
, 1 + ξx > 0 , if ξ 6= 0 ,

exp
{
− exp[−x]

}
, x ∈ R , if ξ = 0 ,

where ξ ∈ R is the shape parameter.

Definition 2.1. We say that F is in the domain of attraction (for maxima)

of EVξ and write F ∈ DM(EVξ), whenever (2.1) holds.

As a consequence of the existence of that limit, when n → ∞ we may con-

sider the approximation, P [Mn≤ x] = Fn(x) ≈ EVξ

(
(x− bn)/an

)
.

The EVξ incorporates the three (Fisher–Tippett) families: the Gumbel

family, that is the limit for exponential tailed distributions, Λ(x) = EV0(x) =
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exp
(
− exp(−x)

)
, x ∈ R, ξ = 0; the Fréchet family, that is the limit for heavy

tailed distributions, Φα(x) = EV1/α

(
α(x−1)

)
= exp(−x−α), x > 0, ξ = 1/α > 0

and the Weibull family, that is the limit for short tailed distributions, Ψα(x) =

EV−1/α

(
α(x+1)

)
= exp

(
−(−x)α

)
, x < 0, ξ = −1/α < 0.

The shape parameter, ξ, is the so-called extreme value index (EVI), it is

the primary parameter in EVT and it measures the heaviness of the right-tail,

F := 1 − F . If ξ = 0, the right tail is of an exponential type; if ξ > 0, the right

tail is heavy, it is of a negative polynomial type and if ξ < 0, the right tail is short

and F has a finite right endpoint.

The limit distribution family, EVξ in (2.2), seems to present some difficulties

due to the normalizing constants, {an} and {bn} be unknown. However that limit

can be interpreted, for sufficiently large n, as

(2.3) P

(
Mn− bn

an
≤ x

)
≈ EVξ(x) ⇐⇒ P

(
Mn≤ x

)
≈ EVξ

(
x− bn

an

)
.

We can further consider location and scale parameters, λ ∈ R and δ ∈ R
+, re-

spectively, in the EVξ d.f., denoting it by EVξ(x; λ, δ) ≡ EVξ

(
(x−λ)/δ

)
, so the

constants in (2.3) can incorporate this location/scale version.

Instead of just considering the maximum value of a sample as an extreme

value, we may consider all the observations, Xi, above a high level or threshold, u,

established previously, as extremes. The differences Xi−u, are called exceedances

over that threshold. Balkema and de Haan ([1]) and Pickands ([54]) proved that if

F ∈ DM(EVξ), see Definition (2.1), then for large enough u, Y =
(
(X−u) |X > u

)

is approximately the generalized Pareto (GP ) d.f.,

(2.4) Hξ(y) = 1 −
(
1 + ξy/δ̃

)−1/ξ
, for y > 0 and

(
1 + ξy/δ̃

)
> 0 ,

where ξ is the shape parameter, equal to that of the corresponding EV distribu-

tion, and the scale parameter δ̃ = δ + ξ(u− λ), where λ is the location parameter

in the EV d.f.. The reciprocal of the stated above is also true.

We can also consider the joint distribution of the k top order statistics.

More specifically, if X is a random variable with d.f. F belonging to the domain

of attraction of an EV d.f. then, for fixed k, the limiting distribution, as n → ∞,

of the k-dimensional random vector, suitably normalized by constants {an} ∈ R
+

and {bn} ∈ R ,
(

M
(1)
n −bn

an
, ..., M

(k)
n −bn

an

)
, where M

(k)
n ≡ Xn−k+1:n := k largest of

{X1, ..., Xn} and the joint probability density function is given by

(2.5) g(w1, ..., wk) = EVξ(wk)

k∏

i=1

evξ(wi)

EVξ(wi)
, w1 > ···> wk ,

with EVξ(w) defined in (2.2) and where evξ(w) =
∂EVξ(w)

∂w is the probability den-

sity function of the EV model. This model is known as the Multivariate-EVξ

model, also known as the extremal process, Dwass ([20] ).
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3. MODELLING AND ESTIMATING IN EVT

Statistical inference in EVT is based on extreme observations, however

there are different ways of defining such observations leading to the application

of different models. Classical parametric approaches for modelling and estimation

were the first to appear, based on limiting distributions defined in the previous

section. In the late seventies, estimation procedures in EVT began to be per-

formed on a semi-parametric approach based on probabilistic asymptotic results

in the tail of the unknown distribution.

3.1. Parametric statistical approaches and estimation

The first approach for modelling extremes is the so-called Block Maxima

(BM), Annual Maxima or Gumbel’s approach, Gumbel ([40]). In this approach

the n-sized sample is splitted into m sub-samples (usually m corresponds to the

number of the observed years) of size l (n = m×l for a sufficiently large l). EVξ

or one of the models, Gumbel, Fréchet or Weibull, with unknown ξ ∈ R, λ ∈ R

or δ ∈ R
+ are then fitted to the m maxima values of the m sub-samples.

However, in many applications there is no natural way of defining blocks of

observations. Besides it may occur that the maximum within a block has a lower

value than some values in another block. Thus, some extreme values contained

in a block may not be included in data for the analysis. So, BM methodology

may not be the best method for studying the behaviour of extreme values.

Another methodology consists of setting a high level or threshold, u, and

defining as extremes all the observations above that value. The idea is then

to fit the model referred to in (2.4) to the excesses over such a high level, u.

This method, known as Peaks Over Thresholds (POT) method, uses relevant

information that can be lost by the BM method. Details of this procedure can

be seen in Davison ([15]), Davison and Smith ([16]) and Smith ([57]).

Another approach, in some sense parallel to the previous one, consists of

considering the k top order statistics of the sample. In this methodology, usually

denoted as the k-Largest Observations (k-LO), inference can be done when the

size n of the sample is large and k fixed, based on the multivariate structure of

the k top order statistics, referred to in (2.5). This model was developed and

studied by Weissman ([61]) and Gomes ([31]).

Note that the use of POT method needs the choice of a suitable threshold,

u, what is equivalent to the choice of the number, k, of upper order statistics to

be taken on the k-LO approach.
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We can also think of combining the BM and the k-LO approaches. In each

of the m sub-samples, we can collect a few top order statistics and, in this case,

inference is based on the m random k-dimensional vectors. These m random

k-dimensional vectors, after being suitably normalized by constants {an} ∈ R
+

and {bn} ∈ R , are well modelled by the Multivariate-EVξ defined in (2.5). This

methodology is known as Multidimensional -EVξ approach.

For estimating extreme value parameters several procedures have been pro-

posed: (i) graphical methods; (ii) moment-based methods and (iii) likelihood

methods. All these procedures have been extensively studied and applied in clas-

sical parametric modelling. In this work we will review parameter estimation

using the maximum likelihood (ML) method , the profile likelihood (PL) method

and the probability weighted moments (PWM) method.

Difficulties that arose with the “regularity conditions” for the maximum

likelihood estimation were solved by Smith ([58]), who showed that the usual

property of asymptotic normality holds provided the extreme value parameter ξ

is larger than −0.5. Recently, Zhou ([62], [63]) showed that the ML estimators

verify the property of asymptotic normality for ξ > −1. This condition, that is

not verified for very light tailed distributions, is satisfied for most environmental

applications.

The asymptotic normality, that would allow to obtain confidence intervals,

is not very accurate because the normal approximation to the true sampling

distribution of the estimator is rather poor. An alternative, and usually more

accurate method of estimation is based on the profile likelihood function. Given

a parameter vector θ the profile log-likelihood function of the component θi is

defined as log Lp(θi) := maxθ
−i

log L(θi, θ−i) where θ−i denotes a vector with all

components of vector θ excluding θi. For each value of θi, the profile log-likelihood

is defined as the maximized log-likelihood with respect to the other components

of the parameter vector θ.

So, for example, for the estimation of ξ in the EV model,

log Lp(ξ) := max
λ,δ |ξ

log L(λ, δ, ξ) .

Under suitable regularity conditions, see Beirlant et al. ([3]), for large n, the

deviance function is:

Dp(ξ) := 2
{

log L(λ̂, δ̂, ξ̂) − log Lp(ξ)
}

.
∼ χ2

(1) ,

where λ̂, δ̂ and ξ̂ are the maximum likelihood estimators of λ, δ and ξ, respectively.

This property is used to obtain the (1−α)×100% confidence interval for the

parameters of the underlying distribution. Particularly, for a singular compo-

nent, for example ξ, the (1−α)×100% confidence interval is
{
ξ : Dp(ξ)≤ q1−α

}
=
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{
ξ : log Lp(ξ) ≥ log L(λ̂, δ̂, ξ̂) − q1−α

2

}
, where q1−α is the (1−α) quantile of χ2

(1).

Therefore the profile log-likelihood ratio statistic

−2 log Λ = −2 log

{
Lp(ξ0)

Lp(ξ̂)

}
= 2

{
log Lp(ξ̂) − log Lp(ξ0)

}
,

to test H0 : ξ = ξ0 versus H1 : ξ 6= ξ0 has, under the hypothesis H0, asymptotic

distribution χ2
(1), when n → ∞. H0 is rejected at a level of significance α if

−2 log Λ > q1−α, see Coles ([13]) and Beirlant et al. ([3]) for more details.

The probability-weighted moments (PWM) (Greenwood et al., [38]) of a

random variable X, with d.f. F are defined as

Mp,r,s := E
{

Xp
[
F (X)

]r [
1−F (X)

]s}
, p, r, s ∈ R .

For the EV d.f., these moments were extensively studied by Hosking et al. ([44]).

Considering a random sample (X1, ..., Xm) from a EV population, the PWM

estimator, (λ̂, δ̂) , when ξ = 0, is the solution of the system of equations:

{
M̂1,0,0 = λ + δ Γ′(1)

2M̂1,1,0 − M̂1,0,0 = log 2δ
where M̂1,r,0 =

1

m

m∑

i=1

(
r∏

l=1

i− l

m− l

)
Xi:m ,

with X1:m ≤X2:m ≤ ··· ≤Xm:m the ascending order statistics associated with the

random sample (X1, X2, ..., Xm).

For 0 < ξ < 1, we can obtain the PWM estimator, (λ̂, δ̂, ξ̂) solving the equa-

tions system, 



M̂1,0,0 = λ −
δ

ξ

(
1 − ξ(1−ξ)

)

2M̂1,1,0 − M̂1,0,0 =
δ

ξ
ξ(1−ξ) (2ξ−1)

3M̂1,2,0 − M̂1,0,0

2M̂1,1,0 − M̂1,0,0

=
3ξ−1

2ξ−1

.

Also in this method the asymptotic normality for the PWM estimator

(λ, δ, ξ) holds provided that ξ < 0.5 and m → ∞ (see Beirlant et al., [3]).

3.2. Semi-parametric statistical framework and EVI estimation

In the late seventies estimation in EVT began to be performed in a semi-

parametric approach. Here it is not necessary to fit a specific parametric model,

dependent upon a location, scale and shape parameters, but only assume that the

underlying distribution function F belongs to DM(EVξ), for an appropriate value

of ξ in specific sub-domain of DM(EVξ), being ξ the primordial parameter to be
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estimated. Estimates are based on the k top order statistics in the sample, or on

the excesses over a high random threshold, u. For the consistence of the estimators

we need to work with an intermediate sequence k ≡ kn, i.e., k ≡ kn → ∞ and

k/n → 0 as n → ∞.

In this framework several EVI estimators have been proposed. We will refer

to the classical ones, such as, the Hill estimator ([43]), the Moment estimator,

Dekkers et al. ([17]), the Generalized Hill estimator, introduced in Beirlant et

al. ([4]) and studied later in Beirlant et al. ([2]), the Mixed Moment estimator,

Fraga Alves et al. ([26]) and also a recent estimator of reduced bias and minimum

variance, (MVRB), Caeiro et al. ([10]). A family of estimators based on the

logarithm of the mean of order p (MOP) of Xn−i−1:n/Xn−k:n, 1 ≤ i ≤ k < n,

has been very recently proposed by Brilhante et al. ([7]). See also other related

estimators such as the harmonic mean estimator introduced in Beran et al. ([5])

and a family of estimators introduced in Paulauskas and Vaiciulis ([51]).

Let X1:n ≤X2:n ≤ ··· ≤Xn:n the ascending order statistics associated with

the random sample (X1, X2, ..., Xn), and for r ≥ 1 let us define

(3.1) L
(r)
k,n :=

1

k

k∑

i=1

[
1−

Xn−k:n

Xn−i+1:n

]r

and M
(r)
k,n :=

1

k

k∑

i=1

[
ln

Xn−i+1:n

Xn−k:n

]r

.

Among the aforementioned estimators we will consider:

The Hill estimator (ξ > 0)

(3.2) ξ̂H
k,n := M

(1)
k,n , k = 1, 2, ..., n−1 ;

The Moments estimator (ξ ∈ R)

(3.3) ξ̂M
k,n := M

(1)
k,n + 1 −

1

2


1 −

(
M

(1)
k,n

)2

M
(2)
k,n



−1

, k = 1, 2, ..., n−1 ;

The Generalized Hill estimator (ξ ∈ R)

(3.4) ξ̂GH
k,n := M

(1)
k,n +

1

k

k∑

i=1


ln

M
(1)
i,n

M
(1)
k,n


 , k = 1, 2, ..., n−1 ;

The Mixed Moment estimator (ξ ∈ R)

ξ̂MM
k,n :=

ϕ̂k,n − 1

1 + 2 min(ϕ̂k,n−1, 0)
, k = 1, 2, ..., n−1 ,(3.5)

ϕ̂k,n :=
M

(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 .
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The MVRB estimators, Caeiro et al. ([10]) have revealed a better performance

than the classical estimators in the context of heavy tails (ξ > 0). This class of

estimators has the functional form

(3.6) ξ̂H
k,n(β̂, ρ̂) := ξ̂H

k,n

(
1 − β̂(n/k)bρ/(1− ρ̂)

)
,

with ξ̂H
k,n the Hill estimator and (β̂, ρ̂) consistent estimators of second order pa-

rameters (β, ρ) ∈ (R, R−). About reduced bias estimation, we may also refer to

Gomes et al. ([36]), Gomes et al. ([33]) and Caeiro et al. ([9]), among others.

For the estimation of ρ we consider a particular member of a class of estima-

tors introduced in Fraga Alves et al. ([24]). This class, parametrized in a control

parameter τ ∈ R, which here we will take as τ = 0, see Gomes et al. ([37]), is

defined as: ρ̂(k) ≡ ρ̂0(k) := min
(
0,

3(T (0)
n (k)−1)

T
(0)
n (k)−3

)
, being T

(0)
n (k) defined as

T (0)
n (k) :=

[
ln
(
M

(1)
k,n

)
−

1

2
ln
(
M

(2)
k,n/2

)]/[
1

2
ln
(
M

(2)
k,n/2

)
−

1

3
ln
(
M

(3)
k,n/6

)]
,

with M
(j)
k,n(k), j = 1, 2, 3, defined above.

For the estimation of the second order scale parameter, β, we will consider

β̂bρ(k) :=

(
k

n

)bρ [
dbρ(k)D0(k) − Dbρ(k)

]/[
dbρ(k)Dbρ(k) − D2bρ(k)

]
,

with ρ̂ = ρ̂0(k), dα(k) := 1
k

∑k
i=1

(
i
k

)−α
and Dα(k) := 1

k

∑k
i=1

(
i
k

)−α
Ui, for α ≤ 0,

with Ui := i
[
ln(Xn−i+1:n/Xn−i:n)

]
, 1 ≤ i ≤ k.

In order not to have an increase in the variance of the estimator ξ̂H
k,n, esti-

mators ρ̂0(k) and β̂bρ(k) must be calculated at k = k1, with k1 =
⌊
n1−ǫ

⌋
, ǫ = 0.001,

see Gomes and Martins ([35]), Gomes et al. ([33] ) and Caeiro et al. ([9]), for more

details. Alternative estimators for β can be seen in Caeiro and Gomes ([8]) and

Gomes et al. ([34]).

4. TESTING EXTREME VALUE CONDITIONS

In any of the aforementioned procedures it is assumed that the underlying

d.f. F belongs to DM(EVξ), for an appropriate value of ξ, or it is in a specific

sub-domain of DM(EVξ). This condition is called the extreme value condition

and is not always fulfilled. So, before performing an application, it is important

to check whether the extreme value condition is reasonable for a data set or not.

So, we must test the hypothesis:

H0 : F ∈ DM(EVξ) for some ξ ∈ R .
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Dietrich et al. ([18]) proposed the E, PE tests (if we assume ξ ≥ 0) and Drees et

al. ([19]) proposed the T test (assuming ξ > −1/2).

Let X1, X2, ..., Xn be independent random variables with d.f. F and suppose

that some additional second order conditions hold, then for η > 0 the correspond-

ing test statistics are:

En := k

∫ 1

0

(
log Xn−⌊kt⌋,n − log Xn−k,n

ξ̂+

−
t−

bξ
− −1

ξ̂−

(
1− ξ̂−

)
)2

tη dt ,(4.1)

PEn := k

∫ 1

0

(
log Xn−⌊kt⌋,n − log Xn−k,n

ξ̂+

+ log t

)2

tη dt ,(4.2)

Tn := k

∫ 1

0

(
n

k
Fn

(
ân/k

x−bξ −1

ξ̂
+ b̂n/k

)
− x

)2

xη−2 dx ,(4.3)

where the estimates for ξ+ and ξ− are obtained through the moment estimators in

Dekkers et al. ([17]), and k is again an intermediate sequence, k = kn→∞, k/n→ 0

and k1/2A(n/k) → 0 as n → ∞. A is related to the second order condition. Hüsler

and Li ([45]) present an algorithm for testing H0 using the test statistic En in

(4.1). They have carried out an extensive simulation study with guidelines for

obtaining the value of η and have provided tables of critical values. See also Neves

and Fraga Alves ([48]) for a description of those tests.

5. STATISTICAL CHOICE OF EXTREME DOMAINS OF AT-

TRACTION — SEMI-PARAMETRIC APPROACH

In a semi-parametric framework, ξ is the primordial parameter since deter-

mines the shape of the tail of the underlying distribution function F . A negative

value for ξ is associated to the Weibull domain of attraction in which all the

d.f.’s are short tailed with finite right endpoint. If ξ > 0 we have the Fréchet

domain of attraction to which the heavy tailed d.f.’s with polynomially decaying

tail belong. The case of ξ = 0 is particularly important, due to the simplicity

of inference, within the Gumbel domain which contains a great variety of d.f.’s

with an exponential tail having finite right end point or not. Whenever we intend

to perform a statistical inference in extreme values we should look for the most

adequate procedures according to the domain of attraction selected. Therefore,

it is of great benefit to test the Gumbel domain against the Fréchet or Weibull

domains. The hypothesis to test is:

(5.1) H0 : F ∈ DM(EV0) vs. H1 : F ∈ DM(EVξ)ξ 6=0 ;

or versus the one-sided alternatives F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0.
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Several tests have been proposed in the literature, among which we can

mention Galambos ([28]), Castilho et al. ([12]), Hasofer and Wang ([42]), Falk

([21]), Fraga Alves and Gomes ([23]) and Correia and Neves ([14]), that have pro-

posed a slight modification of the Hasofer and Wang statistic, Marohn ([46, 47]),

Fraga Alves ([25]) and Segers and Teugels ([56]). More recently Brilhante ([6])

derived a resistant and robust test for the exponential versus the generalized

Pareto, Neves and Fraga Alves ([48]) introduced three tests statistics based on

the reformulation of the Hasofer and Wang statistic. Those tests were later stud-

ied in Neves and Fraga Alves ([49]). Castillo et al. ([11]) provided a test based

on the properties of the coefficient of variation.

In this work the tests introduced in Neves and Fraga Alves ([48]) will be

considered. The statistics for testing (5.1) are based on the k excesses over the

(n−k)-th ascending intermediate order statistic Xn−k:n, Thus, under the null

hypothesis of Gumbel domain of attraction and further assuming: (i) second order

conditions on the upper tail of F and (ii) the intermediate sequence k ≡ kn, such

that k1/2A(n/k) → 0 as n → ∞ where A is related to the second order condition,

Neves and Fraga Alves ([48]) have defined the following tests:

The ratio-test

(5.2) R∗
n :=

Xn:n − Xn−k:n

1

k

k∑

i=1

(
Xn−i+1:n − Xn−k:n

)
− log k

d
−−−→
n→∞

Λ ;

The GT-test

Gn(k) :=

1

k

∑

i=1

(
Xn−i+1:n − Xn−k:n

)2

(
1

k

k∑

i=1

Xn−i+1:n − Xn−k:n

)2 ,

G∗
n(k) =

√
k/4

(
Gn(k) − 2

) d
−−−→
n→∞

N (0, 1) ;

(5.3)

The HW-test

Wn(k) :=
1

k

[
1 −

Gn(k) − 2

1 +
(
Gn(k) − 2

)
]

,

W ∗
n (k) =

√
k/4

(
k Wn(k) − 1

) d
−−−→
n→∞

N (0, 1) ,

(5.4)

where Λ is a Gumbel random variable.

The null hypothesis in (5.1) is rejected if T ∗
n < χα/2 or T ∗

n > χ1−α/2, where

T ∗ has to be replaced by R∗, G∗ or W ∗ and χp is the p probability quantile of

the corresponding distribution.



Extreme Value Analysis — A Brief Overview with an Application 205

If we are interested in the one-sided tests, and being χp the p probability

quantile of the corresponding distribution, the critical regions for:

Gumbel vs Weibull domain of attraction are:

(5.5) R∗
n(k) < χα , G∗

n(k) < χα , W ∗
n(k) > χ1−α ;

Gumbel vs Fréchet domain of attraction are:

(5.6) R∗
n(k) > χ1−α , G∗

n(k) > χ1−α , W ∗
n(k) < χα .

As an illustration of the methodologies reviewed in the previous sections and also

for showing some functions available in the R software, a real data set will be

studied in the next section.

6. A CASE STUDY: DAILY MEAN FLOW DISCHARGE RATE

Here we will focus our attention on the estimation of the EVI. Packages

and/or functions available in the R environment will be used and mentioned.

R software contains already a large number of packages with several functions for

modelling extreme data, such as evd, ismev, evir, POT, fExtremes, evdbayes,

copula, SpatialExtremes, among others. Gilleland et al. ([29]) give an excellent

software review for extreme value analysis. They describe and compare packages

available in R with other software.

6.1. A preliminary data analysis

Our data set consists of daily mean flow discharge rate in the hydrometric

station of Fragas da Torre in the river Paiva. The source of this river is in the

Serra de Leomil, in the north of Portugal, it is an effluent of the river Douro,

with a watershed area of approximately 700 Km. More precisely the data set

studied is the daily mean flow discharge rate values (m3/s) from 1 October 1946 to

30 September 2006, collected from the “SNIRH: Sistema Nacional de Informação

dos Recursos Hı́dricos” and the interest is to analyse the extreme values.

After some previous graphical analyses on the empirical tail behaviour of

the different months showing the occurrence of the maximum values, advices of

hydrologists and taking into account a previous work that considered a few initial

years of these data, Gomes ([32]), only the months from November until April

were used in each year. We had then a total of 10860 daily mean flow discharge

rate values. The results of a preliminary graphical and descriptive analysis are

shown in Figure 1 and Table 1.



206 Helena Penalva, Sandra Nunes and M. Manuela Neves
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Figure 1: Histogram (left); chronogram (center) and boxplot (right).

Table 1: Basic descriptive statistics for the data.

n Min 1st Quart. Median Mean 3rd Quart. Max St Dev. Skew. Kurt.

10860 0 9.20 17.30 34.83 38.00 920.00 50.92 4.15 27.31

The stationarity was also studied by the Augmented Dickey–Fuller Test

through the function adf.test(), available in the package tseries. The boxplot,

the histogram and the descriptives statistics, in particular the skewness = 4.15

and the kurtosis = 27.31 indicate a tail heavier than the normal one.

6.2. Testing extreme value conditions

Following the brief introduction given in section 4, we will use here the test E,

Dietrich et al. ([18]) and Hüsler and Li ([45]). The function MTestEVC1d() in the

package TestEVC1d gave the results shown in Figure 2. We observe that the values
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Figure 2: Sample path of E statistic.
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of the test statistic E are smaller than the corresponding asymptotic 0.95-quantile

for a large range of k-values. So, since the sample path of the test statistic is

almost always outside the rejection region, except for a small range of k, we find

no evidence to reject the null hypothesis.

6.3. Parametric framework

The BM methodology

In this framework, we have considered the years as blocks of observations

and have picked the maximum values up in each block. So, we will use the

maximum values of each of 60 years — these are all the years available in SNIRH:

“Sistema Nacional de Informação dos Recursos Hı́dricos” for the hydrometric

station of Fragas da Torre in river Paiva.

We have now obtained the skewness = 0.998 and the kurtosis = 2.265.

Graphical analyses are shown in Figure 3.
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Figure 3: Chronogram (top left); ACF (top right); boxplot (bottom left)
and histogram (bottom right).

The histogram, the boxplot and the skewness indicate a moderate positive

asymmetry. From the autocorrelation partial function (ACF), it seems reasonable

to assume that these data are not correlated. So an EVξ was fitted to the maxima

in each year.
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The ML fitting for the EV distribution for all the parameters can be obtained

through the package evd and the function fgev(), see Table 2. The parameter

estimates by the PWM method can be obtained using the package fExtreme and

running gevFit( ,type="pwm")1. See results in Table 2.

Table 2: Parameters estimates (standard errors in parenthesis) and
the profile Log-Likelihood (pLog-L) 95% confidence intervals.bλ bδ bξ

ML 210.08 (18.77) 129.81 (13.62) −0.03 (0.09)
PWM 213.65 137.37 −0.09

λ δ ξ

pLog-L (174.15; 248.23) (106.41; 160.79) (−0.16; 0.19)

Using the same package, Wald confidence intervals of level 1−α, can be ob-

tained through confint(fgvev(), level=1−α). Greater accuracy for the con-

fidence intervals is usual attained by the profile log-likelihood. Plots for the profile

log-likelihood for all parameters can be obtained by plot(profile(fgev()),ci

= c(0.95, 0.99)). The confidence interval limits can be obtained through

confint(profile(fgvev()),level=1− α) and are given in Table 2.

Notice that the confidence intervals for ξ include zero, so lead to not reject

the null hypothesis, ξ = 0.

The POT methodology

The POT method is based on fitting the statistical model in (2.4) to the

excesses over a given threshold u. A challenge here is the choice of u. Choosing a

value too high can lead to a very small number of observations in the tail resulting

in estimators with high variance, but a small threshold may lead to the violation

on the Pickands Theorem.

The most traditional methods for the choice of u are graphical procedures.

A graph widely used is the mean residual life (mrl) plot, based on the mean value

of the GP distribution, which is a linear function of u. If the GP model is valid for

the excesses above u0 then will also be valid for all u > u0. So, this graph should

show a linear behaviour above a suitable choice of the threshold u. Another

graphical method is based on the threshold choice (tc) plot, which represents the

estimated values of the GP model over a set of thresholds. The threshold u will

be a “good‘” choice if the parameter estimates appear approximately constant

1
gevFit() function can also determine the maximum likelihood estimates, setting type=“mle”.
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above u. The function mrlplot() in the package evd plots the mean excess plot,

and the function tcplot() plots two graphs for both parameters, see Figure 4.
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Figure 4: The mean residual life plot (left) and the tc plots (centre and right).

A threshold around 200 is suggested. We have chosen u = 180, correspond-

ing to a number of 254 exceedances. Figure 5 shows those exceedances, no cor-

relation of the exceedances and the asymmetry of the data. Using the function

gpd() in package evir, we got similar results to those by the BM method, see

Table 3.
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Figure 5: Chronogram (left) with u=180, partial autocorrelation
function (center) and boxplot (right).

Table 3: Parameters Estimates (standards errors in parenthesis) and
the profile Log-Likelihood (pLog-L) 95% Confidence Intervals.beδ bξ

ML 94.69 (7.83) −0.02 (0.05)
PWM 95.47(9.47) −0.03 (0.07)

δ ξ

pLog-L (80.01;110.80) (−0.10;0.11)

Note again that the results obtained indicate a value for ξ close to zero.
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6.4. Semi-parametric framework

In this approach ξ is the primordial parameter to be estimated. As we

referred to in section 3.2, estimates are based on the k top order statistics in the

sample, with k an intermediate sequence, assuming that the underlying distribu-

tion function F belongs to DM(EVξ), for an appropriate value of ξ. Since, there

are specific estimation procedures according to the signal of ξ, we should start

this framework by testing the Gumbel max-domain against Fréchet or Weibull

max-domains.

The choice of the tail

To test H0 : F ∈ DM(EV0) vs. H1 : F ∈ DM(EVξ)ξ 6=0 or against the one-

sided alternatives F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0 we will consider the

Ratio-test, the Gt-test and the HW-test, mentioned in section 5. Figure 6 presents

the sample paths of G∗, R∗ and W ∗ for several values of k. As we can see in

Figure 6, for a large range of k-values, the three tests statistics present values

that belong to the corresponding region of no rejection. So we find no evidence

to reject the null hypothesis, F ∈ DM (EV0).
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Figure 6: Sample paths of G∗, R∗ and W ∗ statistics.

Some semi-parametric estimates

As specified in Section 3.2, we will consider here the Hill estimator, the

Moment estimator, the Generalized Hill estimator, the Mixed Moment estimator

and the MVRB estimator. Although having been led above to the non rejection

of the Gumbel domain of attraction we present here the results of application of

all those estimators.
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Figure 7 shows the sample paths of the estimates obtained for each k.

It is worthwhile to mention that the Hill estimator and the MVRB estimator,

specifically built for ξ > 0 show results that are far from those previously obtained

(notice that the MVRB estimates show a very stable path, but around positive

values of ξ̂). The other estimators present sample paths near ξ = 0.
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Figure 7: Sample paths of ξ estimates.

7. A FEW OVERALL COMMENTS

Testing whether F ∈ DM(EVξ), for a certain ξ, is a crucial topic when an

application of extreme values procedures is needed to be considered. This subject

has been dealt in several articles mentioned along this paper. However, several

times a real problem in the area of EVT is studied without that previous analysis.

With the study of this application we intended to motivate the discussion

regarding the need of a previous analysis on the choice of the tail before applying

the well theoretically studied estimators. The influence of the estimate of the tail

index parameter in the estimation of high quantiles, parameters of major interest

for preventing catastrophes that can occur in this domain of application, is also

another important issue, however out of the scope of this study.
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