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Abstract:

• This paper considers three different techniques applicable in the context of credit
scoring when the event under study is rare and therefore we have to cope with unbal-
anced data. Logistic regression for matched case-control studies, logistic regression
for a random balanced data sample and logistic regression for a sample balanced by
ROSE (Random OverSampling Examples, Lunardon, Menardi and Torelli, 2014) are
tested. We applied the methods to real data: balance sheets indicators of small and
medium-sized enterprises and their legal status are considered. The event of interest
is the opening of insolvency proceedings of bankruptcy.
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1. INTRODUCTION

In recent years, mainly because of the economic crisis that involves several

European countries, the measurement of credit risk plays an important role; it

simply concerns classifying out-of-sample units into two categories, bad and good,

but it is crucial for its implications. The different classes of risk such as Probabil-

ity of Default, Loss Given Default, Exposure at Default, Expected or Unexpected

Loss are subjects of special attention from financial institutions which are making

more and more frequently use of quantitative tools in decision-making. Credit

quality is in fact crucial to the profitability and stability of banking systems.

An approach to estimate the probability of default is represented by statis-

tical models, known as credit scoring techniques, and logistic regression is widely

used in this context (Stanghellini, 2009). Frequently we have data where one of

the two events is rare, so even in the case of all categorical explanatory variables,

contingency tables will have very low or zero frequencies in the cells related to

this event. Things get more extreme when there is at least one continuous vari-

able in the set of the explanatory variables. In this situation, estimation of the

logistic regression model may lead to high classification errors of rare units (King

and Zeng, 2001). The aim of this paper is to compare different techniques which

allow accurate estimation under these conditions.

The study is carried out on data selected from the AIDA database, concern-

ing balance sheet indicators of companies in the Tuscany region of Italy which

contains a large number of small and medium-sized enterprises. The event of

interest is the opening of insolvency proceedings for bankruptcy which, luckily

from an economic point of view, can be considered rare.

In order to face this problem we applied logistic regression to a retrospec-

tive data collection, using different sampling techniques: case-control sampling,

balanced random sampling and random oversampling (ROSE method). From

the full dataset we built a training and a hold-out sample: the first one forms

the basis of data for the implementation of the different methodologies, and the

second is used to compare the three classification methods on the basis of the Re-

ceiver Operating Characteristic (ROC) Curve (Fawcett, 2006). The theoretical

illustration of the three methodologies (Section 2, 3 and 4) is followed by a brief

description of the data (Section 5) and their application. The three models are

then compared, based on the area underlying the ROC Curve.
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2. THE LOGISTIC MODEL WITH BALANCED DATA

A prospective study often involves a long follow-up period and a large

sample and therefore many investigations relay on a retrospective technique.

The default status is regarded as a fixed variable, while variables specifying risk

factors are viewed as random conditional on the default status. A retrospective

study draws separate samples of cases (the bankruptcy event occurred) and con-

trols (good firms) and therefore a smaller total sample size is usually required

in comparison to a prospective study. Mantel and Haenszel (1959) and Man-

tel (1973) provide discussions of retrospective studies and their relationship with

prospective ones. The logistic model is widely used in the analysis of retrospec-

tive studies, but it is necessary to ensure that the retrospective sample includes

a representative sample of cases and controls from the population.

Let Y be the Bernoulli random variable taking value 1 when the event

occurs (bankruptcy) and 0 otherwise (good firm). Let x′ = (x1, x2, ..., xp) be a

covariate vector representing risk factors thought to be related to event under

study. Assume the suitability of the retrospective sample and that P (y |x) is

represented by the logistic model

(2.1) P
(

Y=1 |x
)

=
eα+β′

x

1 + eα+β′
x

,

where α is an unknown scalar parameter and β′ = (β1, β2, ..., βp) is an unknown

vector of coefficients. Now consider the hypothetical population to which (2.1)

refers and let the marginal distribution of the covariates be denoted by P (x).

We draw a random retrospective sample of size n, with n1 cases (Y = 1) and

n0 controls (Y = 0), in such a way that the marginal distribution of Y in the

retrospective sample has M good cases for each bad one.

Let Z be a binary variable which takes the value 1 if a unit is included in the

sample and 0 otherwise; moreover define K1 = P (Z =1 |Y = 1) the probability to

extract a default unit and K0 = P (Z =1 |Y = 0) the complementary probability,

both independent of the p dimensional vector of x covariates.

Let P (· |x, Z =1) = P ∗(· |x) represent the distribution which is conditional

on being observed in the retrospective sample. The probability distribution of Y

given x, conditional on being observed, is the following:

(2.2) P ∗
(

Y =1 |x
)

=
K1P

(

Y =1 |x
)

K1P
(

Y =1 |x
)

+ K0P
(

Y = 0 |x
) ,

log
P ∗

(

Y =1 |x
)

P ∗

(

Y = 0 |x
) = log

K1

K0
+ log

P
(

Y =1 |x
)

P
(

Y = 0 |x
) ,
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and substituting in the second term the logistic model expression, we have:

(2.3) log
P ∗

(

Y =1 |x
)

P ∗

(

Y = 0 |x
) = log

K1

K0
+ α + β1x1 + ··· + βp xp ,

where α and βj , j = 1, 2, 3, ..., p, are the unknown parameters. It then follows

that the logistic model for the retrospective balanced data has different intercepts

but equal slopes and inference about α would require knowledge of K1

K0
.

If α⋆ denotes the intercept in the logistic model in the population with

Z = 1, it follows that:

α = α⋆ − log
K1

K0
.

We indicate with the distribution P (x |y) the conditional distribution of the

covariates given the response and with P ∗(x |y) the same distribution conditional

on being in the sample. As the sampling is independent of the covariates, the two

distributions should be the same. The likelihood function for the retrospective

sample can then be written:

(2.4)
n

∏

i=1

P
(

xi |yi

)

.

Let P ∗(yi |xi) be the conditional distribution of the response given that the co-

variates in a unit i are observed in the sample. Furthermore, let P ∗(y) denote

the distribution of y and P ∗(x) represents the distribution of x conditional on

being in the sample. Then from Bayes’s rule (2.4) can be written as:

(2.5)
n

∏

i=1

P ∗
(

yi |xi

)

P ∗(xi)

P ∗(yi)
.

By the sampling scheme we know P ∗(Y =1) and P ∗(Y = 0) are respectively equal

to n1

n
and n0

n
. For maximum likelihood inference (V.T. Farewell, 1979) we maxi-

mize (2.5) subject to the constraint

(2.6)
∑

x

P ∗
(

Y =1 |x
)

P ∗(x) =
n1

n
,

where we have assumed that x is discrete. Anderson (1972) shows that the con-

strained maximum likelihood estimates of α∗ and β are algebraically equivalent

to the unconstrained estimates which maximize

(2.7)
n

∏

i=1

P ∗
(

yi |xi

)

,

while R.L. Prentice and R. Pyke (1979) show that the constrained estimation of

(2.5) is a reparametrization of a likelihood based on the population model, where

the constraints are defined in terms of the population value of P (Y =1) .
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3. THE LOGISTIC MODEL FOR MATCHED CASE-CONTROL

STUDIES

The logistic regression model for matched case-control studies, developed

and widely used in epidemiology, may be considered as a refinement of the logistic

modelling for balanced data. This method stratifies subjects on the basis of

variables believed to be associated with the outcome. Again, we assume that the

population model is logistic, as in (2.1). Within each stratum, samples of cases

(Y =1) and controls (Y = 0) are chosen, according to a 1−1 design or 1−M design,

where M is usually no more than five (Hosmer, Lemenshow and Sturdivant, 2013,

p. 243). Let K be the number of strata, n1k and n0k respectively the cases and

the controls within the k-th stratum, where k = 1, 2, ..., K. The stratum-specific

logistic regression model for a unit in the sample, is

(3.1) P
(

Y =1 |x, K = k) = πk(x) =
eαk+β′

x

1 + eαk+β′
x

,

where αk represents the contribution of all constant terms within the k stra-

tum (i.e. stratification variable or variables) and β the vector of the p coefficients

β′ = (β1, β2, ..., βp). From (2.3), it follows that the relationship between α and the

stratum-specific parameters αk varies among strata. Therefore, αk are nuisance

terms and should be eliminated from the set of parameters on which we want to

make inference. The conditional likelihood method gives consistent and asymp-

totically normally distributed estimates of the βj slope coefficients (Prentice and

Pyke, 1979). The conditional likelihood for the k-th stratum is the probability

that the observed case and control configuration is verified, conditioned on the

stratum total and total number of observed case. Denoting nk = n1k+n0k as the

number of subjects, the conditional likelihood for each stratum gives the proba-

bility to observe the data, conditioned on all possible assignment of cases n1k and

controls n0k. The number of possible assignments of case status to n1k among

the nk subjects is given by:

ck =

(

nk

n1k

)

=
nk!

n1k! (nk −n1k)!
.

Let the subscript j denote any one of these ck assignments; moreover let subjects

from 1 to n1k correspond to the cases and subjects n1k + 1 to nk to the controls.

Any assignment is indexed by i for the observed data and by ij for the j th possible

assignment. The conditional likelihood for the k-stratum is

(3.2) lk(β) =

n1k
∏

i=1

P
(

xi |Yi =1
)

nk
∏

i=n1k+1

P
(

xi |Yi = 0
)

ck
∑

j=1







n1k
∏

ij=1

P
(

xjij
|Yij =1

)

nk
∏

ij=n1k+1

P
(

xjij
|Yij = 0

)
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and the full conditional likelihood over the K strata would be given by the prod-

uct:

(3.3) L(β) =
K
∏

k=1

lk(β) .

Assuming (3.1) is true and applying Bayes’s rule to each P (x |y) term, we can

write equation (3.2) as follows:

(3.4)

lk(β) =

n1k
∏

i=1

[

P
(

Yi =1 |xi

)

P (xi)

P
(

Yi =1
)

]

nk
∏

i=n1k+1

[

P
(

Yi = 0 |xi

)

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1







n1k
∏

ij=1

[

P
(

Yij =1 |xjij

)

P (xjij
)

P
(

Yij =1
)

]

nk
∏

ij=n1k+1

[

P
(

Yij = 0 |xjij

)

P (xjij
)

P
(

Yij = 0
)

]







.

Remembering that P (Yi =1 |xi) = π(xi) and P (Yi = 0 |xi) = 1− π(xi) we can

write:

lk(β) =

n1k
∏

i=1

[

π(xi)P (xi)

P
(

Yi =1
)

]

nk
∏

i=n1k+1

[

[

1−π(xi)
]

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1







n1k
∏

ij=1

[

π(xjij
)P (xjij

)

P
(

Yij =1
)

]

nk
∏

ij=n1k+1

[
[

1−π(xjij )
]

P (xjij
)

P
(

Yij = 0
)

]







and also

(3.5)

lk(β) =

n1k
∏

i=1





eαk+β′
xi

1+eαk+β′
xi

P (xi)

P
(

Yi =1
)





nk
∏

i=n1k+1

[ 1

1+eαk+β′
xi

P (xi)

P
(

Yi = 0
)

]

ck
∑

j=1















n1k
∏

ij=1









e
αk+β′

xjij

1+e
αk+β′

xjij
P (xjij

)

P
(

Yij =1
)









nk
∏

ij=n1k+1





1

1+e
αk+β′

xjij
P (xjij

)

P
(

Yij = 0
)



















.

Moreover, collecting common terms of the form

1

1 + eαk+β′
x

we can write (3.5) as:

(3.6) lk(β) =

n1k
∏

i=1

[

eαk+β′
xi

]

n
∏

i=1

[

1

1 + eαk+β′
xi

] nk
∏

i=1

[

P (xi)

P (Yi)

]

ck
∑

j=1







n1k
∏

ij=1

[

eak+β′
xjij

]

n
∏

ij=1

[

1

1 + eαk+β′
xjij

] nk
∏

ij=1

[

P (xjij
)

P (Yij )

]







.
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Further algebraic simplification leads to the following:

(3.7) lk(β) =

n1k
∏

i=1

eβ′
xi

ck
∑

j=1

n1k
∏

ij=1

eβ′
xjij

,

where β is the only unknown parameter.

In a 1−1 matched design each case is matched to a single control. Let x1k

and x0k respectively denote the data vector for the case and the control in the

k-th stratum, the conditional likelihood for the k-th stratum is

(3.8) lk(β) =
eβ′

x1k

eβ′
x1k + eβ′

x0k

given specific value for β, x1k and x0k, equation (3.8) is the probability that

the unit identified as the case is in fact the case. If data for case and control

are identical, x1k= x0k, it follows from equation (3.8) that lk(β) = 0.5 for every

value of β and the stratum will be considered as uninformative meaning that the

covariates do not discriminate cases from controls.

In a 1−1 matched data design with a binary explanatory variable X, the

conditional maximum likelihood estimator is the log of the ratio of discordant

pairs (see Breslow and Day, 1980). It follows that it is advisable to classify

(in a 2×2 table) cases versus controls for each dichotomous variable to verify the

presence of discordant pairs: the absence of both types of pairs (x1k = 1, x0k = 0)

and (x1k = 0, x0k = 1) gives rise to an undefined estimator.

In a 1−M matched design each case is matched to M controls, so there

are M + 1 units in each stratum. Letting M = 4 and denoting by xk1 the case

and by xk2, xk3, x4k, x5k the controls in the kth stratum, the contribution to the

likelihood for this stratum of matched subjects from equation (3.7) is

(3.9) lk(β) =
eβ′

xk1

eβ′
xk1 + eβ′

xk2 + eβ′
xk3 + eβ′

xk4 + eβ′
xk5

.

Given the coefficients’ values (3.9) gives the probability that the unit with the

observed data xk1 is the case relative to four controls with data xk2, xk3, xk4,

and xk5. If the four covariates have the same value, then lk(β) = 0.20 for each β

value. Hence, for each covariate at least one control should have a value different

from the case, otherwise the stratum would be considered uninformative.
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4. THE LOGISTIC MODEL FOR “ROSE” DATA

Random OverSampling Examples (Lunardon, Menardi and Torelli, 2014)

is a new procedure developed in the R language (R Development Core Team,

2015), based on the generation of new artificial data according to a smoothed

bootstrap approach (Efron and Tibshirani, 1993). Let P (x) = f(x) be the prob-

ability density function on X. Let nj < n be the size of Yj , j = 0, 1. A new

sample is generated by the following three steps:

1. select y = Yj , j ∈ {0, 1}, with probability 1
2 ;

2. select (xi, yi) in the sample such that yi = y with probability pi = 1
nj

;

3. sample the vector of covariates x from the kernel probability distribu-

tion KHj
( · ,xi), centered on xi and depending on the matrix of smooth-

ing parameters Hj .

According to the ROSE method, in the training sample you extract a unit be-

longing to one of the two classes with the same probability. Then a new sample

is generated in its neighborhood of width determined by Hj . Generally KHj
, is

chosen as symmetric and unimodal. Therefore the generation of new samples for

the class Yi according to ROSE corresponds to the generation of data from the

kernel density estimate of f(x, Yj), with matrix of smoothing parameters Hj :

(4.1) f̂
(

x |y =Yj

)

=

nj
∑

i=1

pi P
(

x |xi

)

=

nj
∑

i=1

1

nj

P
(

x |xi

)

=

nj
∑

i=1

1

nj

KHj
(x− xi) ,

see Menardi and Torelli (2014).

5. DATA ANALYSIS

Data are drawn from the AIDA database 1, one of the most important

Italian databases containing historical balance sheets as well as financial, com-

mercial and demographic information on more than one million Italian firms.

We selected all the firms in the Tuscany region having positive revenues of sales

in the year 2006 and for these we extracted revenues, profits, fixed assets, financial

indicators, indexes of resultant profits and current management. On May 2010,

we verified their legal status: the database provides the legal status of each firm,

which is periodically updated without indicating the reference date; therefore, we

do not know the exact time at which a firm was declared bankrupt. The selected

time interval of four years is due to the delay between the bankruptcy event and

the availability of the company balance sheet. The distribution according to the

legal status is shown in Table 1.

1The database is distributed by Bureau Van Dijk s.p.a.; https://aida.bvdinfo.com/
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Table 1: Companies’ distribution by state law in May 2010.

Legal status Frequency Percentage

Active 33798 89.23

Bankruptcy 537 1.42

Liquidation 2800 7.39

Not active 744 1.96

Due to the lack of information on the causes of inactivity and liquidation,

we included in the analysis only the firms that are active (33798) and bankrupt

(537). Data clearly shows the rareness of the default event (1.56%) and there-

fore the inadequacy of a logistic regression model due to the unbalanced data.

We built a training sample, to implement the methods, and a randomly selected

hold-out sample consisting of 10% of the whole sample. Since the aim of the

study is to compare three different methodologies, from among the balance sheet

indicators we selected those that were found to be most informative in a previous

case-control study (Pierri, 2013) on the same data.

Logistic regression is estimated on three different data sets: a balanced

sample with 2505 observations where the frequencies of Y0 and Y1 are respectively

501 and 2004; a stratified sample (2440 observations) with strata formed on Legal

Form and the first two numbers of the ATECO code (industry sector) jointly

considered, where the frequencies of Y0 and Y1 are 488 and 1952, respectively;

and a ROSE data set of 68000 observations where the frequencies of Y0 and

Y1 are respectively 33671 and 34329. We used the ROSE routine included in

R software to generate data based on the ROSE method.

In the multivariable logistic model we considered as explanatory variables

Net Profit (NP), Asset Coverage Index (AC), Liabilities index (L), Quick Ratio

(QR), Debt Ratio (DR), Asset Turnover (AT) and EBITDA value. The linearity

in the odds of these variables was checked following the methodology proposed by

Hosmer, Lemenshow and Sturdivant (2013, Ch. 4): transformation of variables,

applied where necessary, led to a final model including two quadratic forms.

For a detailed implementation, see also Pierri, Burchi and Stanghellini (2013).

We refer to Table 2 for a summary of our main results. The logistic model on

the balanced sample indicates that for Asset Turnover the quadratic form is not

statistically significant. The same holds for the ROSE sample where Net Profit

is also not significant. The same table also displays the estimated coefficients

for the models considering only the significant (p < 0.05) covariates (Balanced2

and ROSE2). Balanced and case-control methods produce close estimates, while

ROSE method gives smaller values. This may due to the use of artificial data.

The economic interpretation of the model is also consistent with the expected

results: Tuscany region is characterized by small and medium-sized enterprises

as the 98% of the Italian firms. In this context the financial structure plays an
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important role, because they are often under-capitalized. From data in Table 2 we

can notice that the forms of debt that a company chooses is of great importance

in determining the probability of default: the negative value of the Debt Ratio

combined with a positive Asset Coverage Index, show that the probability of

having a healthy company increases if you prefer forms of internal financing.

Moreover companies with a positive Quick Ratio and a negative Liabilities Index

are less exposed to the risk of default as more able to obtain long-term funding,

while short-term debt may compromise the health of a company.

Table 2: Estimates of the coefficients applying the three different methods.

Explanatory
Balanced Balanced2 ROSE ROSE2

Case

Variables Control

NP 0.00063 0.00064 2.22e−07* — 0.00241

AC 0.12323 0.12541 0.05821 0.05813 0.10371

AC2
−0.01069 −0.01082 −0.00636 −0.00636 −0.01176

L −1.05589 −0.98879 −0.61510 −0.61631 −0.88630

QR 0.59219 0.60493 0.44750 0.44740 0.72559

DR −0.00583 −0.00590 −0.00174 −0.00174 −0.00472

AT 0.47878 0.3058 0.26130 0.26927 1.02132

AT2
−0.05038* — −0.00289* — −0.17471

EBITDAV 0.01522 0.01520 0.00747 0.00747 0.00574

(* p-value > 0.1)

We compared the predictive and discriminatory ability of the three methods

looking at the ROC curves built with the hold-out sample. In Figure 1 we notice

that the logistic model on balanced data (AUC=0.7955) has the greatest capa-

bility to discriminate between good and bad firms while ROSE (AUC=0.7645)

Figure 1: Estimated ROC curve in the three models using hold-out
sample: Balanced (AUC =0.7955); ROSE (AUC =0.7645);
Case Control (AUC =0.7686).
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and Case-Control (AUC=0.7686) methods exhibit very similar results to each

other. Testing the difference between their AUC, we find a significant difference

(p-value < 0.05) only between Balanced and both Case Control and ROSE areas.

We achieve similar results if we consider ROC curves built for Balance2 (AUC=

0.7911) and ROSE2 (AUC=0.7685) models.

6. DISCUSSION

Three different methodologies have been compared. On the basis of the

data and the model applied, the oversampling (ROSE) and case-control studies

methods seem to give very similar results, on the other hand logistic regression

on balanced data show the best predictive capabilities. We underline some par-

ticularities: ROSE allows only for continuous covariates; in case-control studies,

confidence intervals are generally narrower than in standard logistic regression,

but does not produce the predicted probability of bankruptcy; standard logistic

regression, applied over a random balanced sample, is very easy and quick to

implement. Future developments of this study will test whether stepwise model

selection procedures applied to the different datasets will lead to different models.
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