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Abstract:

• This paper studies the Michaelis–Menten model (MM), which plays an important role
in pharmacokinetics, from a theoretical as well as a computational point of view. An
analytical method for the nonlinear least squares estimation of the MM is introduced.
It is proved that the MM model has not a unique parameter estimation (through
the nonlinear least squares), and there is not a unique optimal experimental design
and might not have a unique D-optimal design. An iterative process, based on the
Sequential approach, is also introduced and tested on various data sets for the MM
model. A different approach is also discussed which provides an initial estimate that
increases the convergence rate of the Fully Sequential approach. Several examples
demonstrate the provided methods.
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1. INTRODUCTION

A general theory for enzyme kinetics was firstly developed by Michaelis

and Menten [17] in their pioneering work, where the metabolism of an agent

is described by a reaction rate. The basic toxicokinetic model of metabolism

is a Michaelis–Menten (MM) model. Briefly, when an enzyme E is combined

reversibly with a substrate S to form an enzyme-substrate complex ES, which

can be dissociate or proceed to the product P , the following enzyme-substrate

reaction scheme

(1.1) E + S
k2↼−−−−−−−−⇁
k1

ES
k3−−−−→ E + P ,

is assumed, with k1, k2 and k3 being the associated rate constants. We let

KM := (k2 + k3)/k1, known as the MM constant, and Vmax := k3CT, where CT is

the total enzyme concentration. Then, a plot of the initial velocity of reaction V

against the concentration of substrate CS, will provide the MM rectangular hy-

perbola of the form

(1.2) V = V (CS) = V (CS; θ) :=
Vmax CS

KM + CS
,

where the parameters’ vector θ := (Vmax, KM) ∈ Θ ⊆ R
2, and Θ being the pa-

rameter space which is assumed compact when sequential approaches are applied.

It is understood that the appropriate estimate of θ is very essential to eliminate

the Risk on the enzyme-substrate reaction scheme as in (1.1). The hidden Risk is

strongly related to the appropriate real estimate, as it is proved bellow, a number

of estimates might exist, even not real. Therefore the estimate θ clarifies the

Risk Analysis for the toxicokinetic model of metabolism under investigation, so

essential in pharmacokinetics.

In practice, we have n readings for the reaction’s initial velocity Vi :=

V (CS,i; θ) corresponding to n substrate concentration values CS,i, i = 1, 2, ..., n.

That is, only the stochastic model of the form yi := Vi + ei, i = 1, 2, ..., n is ob-

tained, as the readings Vi are associated with noise; see Kitsos [14, 13]. In prin-

ciple, CS > 0 and hence KM > 0, while usually the reaction velocity V (CS) > 0.

Different linear transformations have been suggested, [4, 1], to estimate

(with a linear regression fit) the involved parameters, Vmax and KM, as the in-

put variable CS and the response V are curvilinearly related. The usual lin-

ear transformations are: the Eadie–Hofstee (EH), the Hanes–Wolf (HW), the

Lineweaver–Burk or “double reciprocal” (LB), and the “inverse” Eadie–Hofstee

(iEH) linearizations, which are formulated by

V = Vmax − KM
V

CS
, (EH)(1.3a)

CS

V
=

KM

Vmax
+

1

Vmax
CS , (HW)(1.3b)
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1

V
=

1

Vmax
+

KM

Vmax

1

CS
, (LB)(1.3c)

CS = −KM + Vmax
CS

V
, (iEH)(1.3d)

respectively, with the double reciprocal being the most popular. The Hanes–Wolf

linearization has been shown in a very early work by Dowd and Riggs [4], as the

most efficient. Endvenyi and Chan [6] and Currie [3] discussed the heteroscedas-

ticity in the MM model. Endvenyi and Chan [6] assumed that the error variance is

proportional to the mean. To avoid heteroscedasticity problems in the“linearized”

models (1.3a)–(1.3d) we should suggest to solve the model’s Normal Equations

and get the least square estimators when n readings of V and CS are given, i.e.

to solve

(1.4)
n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

∇θV (CS,i; θ) = 0 ,

with V as in (1.2), while

(1.5) ∇θV =

(

∂V

∂Vmax
,

∂V

∂KM

)T

=

(

CS

KM + CS
, −

VmaxKMCS

(KM + CS)2

)T

.

Hence,

∂S

∂Vmax
=

n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

CS,i

KM + CS,i

= 0 ,(1.6)

∂S

∂KM
=

n
∑

i=1

(

Vi −
VmaxCS,i

KM + CS,i

)

VmaxCS,i

(KM + CS,i)2
= 0 .(1.7)

Then, the two Normal Equations can be easily obtained and solved numerically

so that the estimates θ̂ = (V̂max, K̂M) are obtained. For a single observation

the Fisher’s information matrix is (∇V )T(∇V ). Therefore, the average-per-

observation information matrix M(θ, ξ) is evaluated as

(1.8) σ−2 nM(θ, ξ) =

n
∑

i=1

(

C2
S,i τ

2
i −VmaxC2

S,i τ
3
i

−VmaxC2
S,i τ

3
i VmaxC2

S,i τ
4
i

)

,

with τi = 1/(KM +CS,i), i = 1, 2, ..., n. Thus, the 2×2 variance-covariance matrix

is approximately equal to

(1.9) C = C(θ̂, ξ) =
(

nM(θ̂, ξ)
)−1

.

Hence, we can derive asymptotic approximate confidence intervals for the involved

parameters, and we can work for optimally criteria, with the D-optimal design

being the most applicable; see [13] for details. Notice that, due to the fact that

the MM model is partially nonlinear,[9], the D-optimal design depends only on

the KM parameter; see [14] for details.



Estimation Aspects of the Michaelis–Menten Model 105

2. NONLINEAR LEAST SQUARES FOR THE MM MODEL

In this Section an analytical method for the Nonlinear Least Square (NLLS)

estimation of the MM model is introduced and discussed. In particular, the

following Theorem provides a compact analytic methodology for the “actual”

NLLS estimation of the MM model’s parameters.

Recall that the Sum of Squares of Errors sse is given by sse = sse(θ) :=
∑n

i=1[Vi − V (CS,i; θ)]2, n > 2, where θ is a vector of the MM model parameters

(Vmax, KM), while (CS,i), (Vi) ∈ R
n are the data vectors for the substrate con-

centration and the reaction’s velocity respectively. The estimated parameters

θ̂1 = V̂max and θ̂2 = K̂M, from the estimated vector θ̂ = (θ̂1, θ̂2), are obtained

when sse(θ̂) = min
{

sse(θ)
}

θ∈Θ
, Θ ∈ R

2 compact, i.e. when ∇S = 0, or equiva-

lently, when the normal equations (1.4) are satisfied. Recall also that the mean

absolute relative error mare = mare(θ̂) := E
(∣

∣{Vi − V (CS,i; θ̂)}/Vi

∣

∣

)

, is also eval-

uated, see Example 2.1 below, while, due to [10], there is always a solution of the

normal equations.

The following Theorem as it is stated and proved, provides evidence that

the MM model has not unique Least Square Estimates. As we already mentioned

in the introduction this creates a further investigation for the Risk Analysis un-

der study, as the appropriate, among a number of estimates, has to be chosen.

We discuss the proposed strategy in the sequence of this paper.

Theorem 2.1. The NLLS estimators V̂max and K̂M of the MM model are

the ones among the K ≤ 4n − 5 possible estimates’ vectors θ̂k = (V̂max;k, K̂M;k),

k = 1, 2, ..., K, with sse(V̂max, K̂M) := min
{

sse(V̂max;k, KM;k)
}

k=1,2,...,K
, where

(2.1) V̂max;k =

(

n
∑

i=1

ViCS,i

K̂M;k +CS,i

)





n
∑

i=1

(

CS,i

K̂M;k +CS,i

)2




−1

, k = 1, 2, ..., K ,

while the estimated K̂M;k values are the K ≤ 4n − 5 real roots of the following

(4n − 5)-degree polynomial of ϑ2:

(2.2) P (ϑ2) :=
n
∑

i,j=1
(i6=j)

ViCS,iCS,j(CS,j −CS,i)(ϑ2 +CS,i)
2(ϑ2 +CS,j)

n
∏

(i,j 6=)k=1

(ϑ2 +CS,k)
4 .

Proof: Solving the first normal equation (1.6) with respect to Vmax and

substituting to the second one (1.6) we obtain
(

n
∑

i=1

Vixi

(KM + xi)2

)

n
∑

i=1

(

xi

KM + xi

)2

=

(

n
∑

i=1

Vixi

KM + xi

)(

n
∑

i=1

x2
i

(KM + xi)3

)

,
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where xi := CS,i, i = 1, 2, ..., n. Thus,
[

n
∑

i=1

uixiQi(2)

][

n
∑

j=1

x2
j Qj(2)

]

=

[

n
∑

i=1

uixiQi(1)

][

n
∑

j=1

x2
j Qj(3)

]

,

where Qi(d) :=
∏n

(i6=)m=1(KM + CS,m)d, i = 1, 2, ..., n, d = 1, 2, 3. With some al-

gebra, the above relation can be written as

(2.3)
n
∑

i,j=1
(i6=j)

uixix
2
j







s2
i s2

j





n
∏

(i,j 6=)m=1

s4
m



− s3
i sj





n
∏

(i,j 6=)m=1

s4
m











= 0 ,

where sm := KM + CS,m, m = 1, 2, ..., n. Finally, the solution with respect to KM

of the above equation corresponds to the roots of the polynomial P of ϑ2 := KM,

as in (2.2), as then the requested KM (= ϑ2) values would satisfy the normal

equations (1.6) and (1.7). For each of the K ≤ 4n − 5 real-valued root of (2.2),

i.e. for each possible estimate K̂M;k, the corresponding V̂max;k, k = 1, 2, ..., K,

estimate is then obtained through (2.1), which is the solution of the (1.6) with

respect to Vmax.

The solutions of the normal equations (1.6) and (1.7), through the roots of

the polynomial (2.2), provide 4n−5 possible estimates of θ. As this number is odd

there is always at least one real root of (2.2). Therefore, at least one real critical

point of the least square objective function S exists, which may yield at least one

estimate θ̂ = (ϑ̂1, ϑ̂2) := (V̂max, K̂M) for the MM model. For a working example

see [18]. However, when all data points are collinear, the nonlinear least squares

estimate cannot exist, see [11] or [8]. Therefore, various different NLLS estimates

may exist (among the K real-valued θ̂k = (V̂max;k, K̂M;k), k = 1, 2, ..., K) which

(locally) minimizes the sum of squares S = sse(θ̂). The problem the experimenter

has then to face is which of the real roots ϑ (= K̂M) of P = P (ϑ), as in (2.2), can

be chosen as the MM model’s NLLS estimate K̂M. Among the K real-valued (of

the total 4n− 5) candidate estimates, the experimenter can always choose the

one which provides the minimum sum of squares, i.e.

(2.4) sse(θ̂NLLS) := sse(V̂max, K̂M) = min
{

sse(θ̂k)
}

k=1,2,...,K
,

as the NLLS estimates’ vector θ̂NLLS would then be a global minimum for the

MM model’s sum of squares.

As the degree (4n−5) of the polynomial P (ϑ2) in Theorem 2.1 is odd, there

is always at least one (real-valued) estimates’ vector θ̂ for the MM model. Thus,

as more than one estimates’s vectors can exist, then more than one corresponding

average-per-observation information matrices are possible. Therefore, the design

might not be considered as unique, as Biebler in [2] has been noticed. See also

[16]. The criterion we suggest (the minimum sse) actually offers the design with

the minimum variance, i.e. it corresponds to the D-optimal one.
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The following Example provides a comparative presentation of the linear

and the “actual” nonlinear estimation for the MM model.

Example 2.1. The treated case of the Puromicin data set was adopted,

as in Bates and Watts [1, Table A1.3], for the comparison of the Linear Least

Squares (LLS) estimations, through the linearizations as in (1.3a)–(1.3d), and

the analytic NLLS estimation of Theorem 2.1. Table 1 provides the evaluated

LLS estimates V̂max and K̂M (obtained by linear regression), which correspond

to the Eadie–Hofstee (EH), Hanes–Wolf (HW), Lineweaver–Burk (LB), and the

“inverse” Eadie–Hofstee (iEH) linearization methods, together with the NLLS

estimates that provide the minimum sum of squares (among all the possible pairs

of NLLS estimates obtained through Theorem 2.1). Their R2 coefficient as well as

their corresponding sse and mare (%) errors are also presented. All the involved

calculations in Table 1 as well as the corresponding Figure 1 were done by using

MATLAB as a programming tool.

Table 1: Comparison between the LLS and the analytic NLLS estimation.

Est. Method V̂max K̂M R2
sse mare (%)

LLS (EH) 193.867711 0.043524 0.9282 184.69 10.74
LLS (HW) 216.216899 0.067915 0.9603 102.05 6.94
LLS (LB) 195.802709 0.048407 0.9378 160.05 9.19
LLS (iEH) 215.773203 0.067068 0.9606 101.45 6.99

NLLS 212.683743 0.064121 0.9613 99.62 6.99

Figure 1: Visual comparison between the predicted NLLS model V̂NLLS

against the four predicted LLS models.

It is clear that the NLLS estimation provides a “better” estimate than the LLS

ones, in terms of the corresponding R2 coefficients, the sum of squared errors
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sse and the mean absolute relative errors mare. Notice that, the estimation

through the iEH linearization approximates better the analytic NLLS estimation,

as adopts the least sum of squared error sse, and almost identical mare error

among the other three LLS estimation.

Figure 1 provides a graphic comparison between the linear and the nonlinear least

squares estimation for the MM model (using the Puromicin data set), by depicting

the estimated NLLS model V̂NLLS := V (CS; θ̂NLLS) against with the four LSS

estimated models V̂EH := V (CS; θ̂EH), V̂HW := V (CS; θ̂HW), V̂LB := V (CS; θ̂LB)

and V̂iEH := V (CS; θ̂iEH). The estimates’ vectors θ̂NLLS, θ̂EH, θ̂HW, θ̂LB and

θ̂iEH are provided by the corresponding vectors (V̂max, K̂M) of Table 1. Note

that the iEH and the HW linearizations provide almost similar LLS models (the

dotted V̂HW curve is very close to the thin solid V̂iEH curve), both very close to

the ‘actual’ NLLS model.

3. SEQUENTIAL GAUSS–NEWTON ESTIMATION

The Fully Sequential (FS) method has been discussed by Ford et al. in [7]

and Kitsos in [15, 12] for the nonlinear experimental design problem. Expanding

the FS method, in this Section we introduce and investigate the general case of

the Batch Sequential (BS) iterative scheme, for the MM model estimation.

For the estimation of the parameter θ ∈ Θ, Θ ⊆ R
q compact, of any model

η = η(x; θ) in general, recall the known definition of sum of squares sse = sse(θ),

(3.1) sse(θ) = sse(θ;x) :=
∥

∥η − η(x; θ)
∥

∥

2
=

n
∑

i=1

[

ηi − η(xi; θ)
]2

,

where x := (xi)∈R
n, η := (ηi)∈R

n, and ‖·‖ denotes the usual L 2-norm. The es-

timated parameters’ vector θ̂ = (ϑ̂1, ϑ̂2) is obtained when sse(θ̂) = min{sse(θ)}θ∈Θ,

i.e. when ∇S = 0.

Recall also the iterative GN method, for the parameter estimation of the

general nonlinear model described by η = η(x; θ); see also [5]. In the GN iterative

procedure a series of estimates θ̂N ∈ Θ is produced where the next estimates’

vector θ̂N+1 is derived from the previous one θ̂N . When the sequence converges

to a vector, then this vector is a possible NLLS estimates’ vector, say θ̂NLLS ∈ Θ,

of the model η, i.e. ∇sse(θ̂NLLS) = 0. The GN iterative scheme is described in a

compact form, by

(3.2) θ̂N+1 = θ̂N − H−1
S (θ̂N )∇sse(θ̂N ) , N ∈ N

∗ :=N\{0} ,

for a given initial estimates’ vector θ̂0 = (ϑ̂0
1, ϑ̂

0
2) ∈ Θ, where H−1

S (θ̂N ) is the in-

verse of the Hessian matrix of the sum of squares function sse(θ̂N ) as in (3.1).
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The k-Batch Sequential approach (k-BS), k ∈ N
∗, presented here, is based

on the GN method, and it consists of Nk steps in total. On the N -th step of

the k-BS method, a number of GN iterations are performed on the chunk of Nk

observations (from the total n), which always starts form the first and ends to

the Nk-th observation. In particular, the total number of iterations Nk is given

by

(3.3) Nk :=











n/k , when n/k ∈ N
∗, and k 6= 1 ,

[n/k] + 1 , when n/k /∈ N
∗, and k 6= 1 ,

n − 1 , when k = 1 ,

where [ · ] denotes the integer part of a real number and n is the number of

observations. Note that, for the application of the BS iterative process, the data

pairs {(xi, ηi)}i=1,2,...,n are “entered” sequentially into the BS process. Therefore,

instead of the usual sum of squares S, as in (3.1), the k-BS approach utilizes a

partial sum of squares (p.s.s.) SN (used for the corresponding GN iterations on

every step N of the k-BS method), which is the sum of squares calculated only

for the specific chunk of Nk observations on the N -th step of the method. Thus,

the SN is defined as

(3.4) SN (θ̂) :=
kN
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

, N = 1, 2, ..., Nk = n/k ,

provided that n/k ∈ N, with k 6= 1. For the case of n/k /∈ N
∗ (and k 6= 1), the

p.s.s. SN is defined as in (3.4) for N = 1, 2, ..., [n/k], while for the last step Nk =

[n/k] + 1, the SN=Nk
is defined by

(3.5) SN (θ̂) :=
n
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

.

For the special case of the 1-BS method, the p.s.s. SN is defined by

(3.6) SN (θ̂) :=
N+1
∑

i=1

[

Vi − V (CS,i; θ̂)
]2

, N = 1, 2, ..., N1 = n−1 .

Finally, the GN iterative procedures at each step N (of the total Nk steps) of the

k-BS method, either converge or can be stopped (after a given maximum number

of GN iterations) to some estimated parameters’ vector, say θ̂N . This θ̂N is then

considered as the initial vector for the GN iterations of the next step N +1 of the

k-BS method. Hence, an initial parameters’ vector θ̂0 is then needed in order to

begin the GN iterations of first step N = 1 of the k-BS method.

Notice that, for a set of n = mk, m∈N
∗, observations, the p.s.s. SN (for

the GN iterations on the N -th step of the k-BS scheme, k 6= 1) is calculated

through the summation of successively k, 2k, 3k, ..., mk = n terms. For a set

of odd number of observations, say n = mk + q with N
∗ ∋ q < m, the p.s.s. SN
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is calculated through the summation of successively k, 2k, 3k, ..., mk, n terms.

For the 1-BS case, the corresponding p.s.s. SN summation is performed with

successively 2, 3, ..., n terms. Notice also that the 2-BS scheme coincides with the

FS scheme, as the p.s.s. SN summation uses 2, 4, 6, ..., n terms.

The above description of the k-BS iterative method can be formulated into

the following algorithm.

Algorithm 3.1. Consider an initial vector θ̂0 for the estimation of the

model η = η(x; θ) = η(x; ϑ1, ϑ2). On every step N = 1, 2, ..., Nk of the k-BS

method, a GN iterative process is applied, using the p.s.s. SN for a given max-

imum number of iterations, say J . Then, a series of vectors is produced, say

θ̂N,1, θ̂N,2, ..., θ̂N,J . The next estimate θ̂N+1 is then considered to be the last

current estimate

θ̂N+1 = θ̂N,J , N = 0, 1, 2, ..., Nk ,

where the vectors θ̂N,j , j = 1, 2, ..., J , are described by the GN iterative scheme

(3.7) θ̂N,j+1 = θ̂N,j −H−1
SN

(θ̂N,j)∇SN (θ̂N,j) , j=0,1, ..., JN ≤J , with θ̂0,0 := θ̂0 .

For every step N , the index JN ≤ J is the one for which the GN process converges

(when it does), i.e. when the convergence error, say eN , of the estimate θ̂N,JN
=

(ϑ̂1
N,JN

, ϑ̂2
N,JN

) is smaller or equal than a given threshold error e, i.e.

(3.8) eN := max
{

∣

∣ϑ̂1
N,JN

− ϑ̂1
N,JN−1

∣

∣,
∣

∣ϑ̂2
N,JN

− ϑ̂2
N,JN−1

∣

∣

}

≤ e , N =1,2, ...,Nk .

Otherwise, when the convergence fails, the GN process stops at the J-th GN

iteration (i.e. when j = J). For the next N +1 step, as an initial vector θ̂N+1,0 for

the new GN iteration, we consider the last estimate of the previous GN process,

i.e. θ̂N+1,0 = θ̂N,JN
, N = 1, 2, ..., Nk.

The following Example applies the FS iterative scheme, i.e. the 2-BS iter-

ative scheme as in Algorithm 3.1.

Example 3.1. The Puromycin-treated data set, as in Example 2.1, con-

sists of n = 12 observations where the CS,i, i = 1, 2, ..., 6, readings are repeated.

For this Example we consider the subset of the n = 6 non-replicated observations

of the Puromycin data set. Let e = 10−4 be the convergence error threshold of

the 2-BS method, while as initial estimates’ vector guess we adopt θ̂0 = (100, 0).

The first sub-Table of the Table 2 provides the last JN -th GN convergent esti-

mates’ vector θ̂N,JN
, for each of the (total three) steps N = 1, 2, 3 of the 2-BS

method. Recall that the total number of steps of the 2-BS algorithm for this

data set is Nk=2 := n/k = 6/2 = 3. Notice that 0 + 7 + 7 + 5 = 19 GN iteration

are needed, in total, to obtain θ̂NLLS with accuracy <10−5. Moreover, the GN

processes, for every step N of the 2-BS scheme, do not have to converge at a
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given error convergence e. For example, reducing the maximum number of the

GN iterations to be, say J = 5, we obtain also θ̂NLLS with the same accuracy

<10−5, but this time 0 + 5 + 5 + 5 = 15 GN iteration are needed in total, see the

middle sub-Table of Table 2.

Table 2: Convergence of various 2-BS processes, for the MM model estimation.

N JN V̂max K̂M eN εN R2
mare (%)

• Maximum # of GN iterations: J = 10

0 0 100. 0. — 2.5e+5 −1.6531 17.34
1 7 112.549618 0.009618 3.89e−8 0. 1. 0.
2 7 172.241997 0.034754 5.36e−10 7.64e−11 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

• Maximum # of GN iterations: J = 5

0 0 100. 0. — 2.5e+5 −1.6531 17.34
1 5 112.548698 0.009618 0.143 2.18 1. 0.00043
2 5 172.241882 0.034754 0.0539 0.218 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

• θ̂0 = (Vmax, KM), J = 10

0 0 112.549618 0.009618 — 0. 1. 0.
1 1 112.549618 0.009618 0. 0. 1. 0.
2 7 172.241997 0.034754 5.36e−10 7.64e−11 0.8739 10.63
3 5 210.857219 0.062575 7.03e−6 1.01e−8 0.9360 9.341

The initial estimate guess the experimenter provides, plays a crucial role for the

convergence of the general BS methodology. In order to address this issue, the

2-BS scheme can be applied adopting as initial parameters’ vector θ̂0 the solution

vector (Vmax, KM) of the two MM model relations Vi = V (CS,i;Vmax,KM), i=1,2.

These relations can be solved analytically in the form of (Vmax, KM) = (V1 + dV1,

dCS,2), d := CS,2(V2 − V1)/(V1CS,2 − V2CS,1). As a result, the first GN process

(for the step N = 1 of the 2-BS approach) will always converge at its first GN

iteration j = 1 = J1. This is due to the fact that the initial GN iteration process

(where only the first two observations are involved) will surely converges to the

only solution (Vmax, KM), as above, which is now provided by the suggested initial

vector θ̂0. This suggested θ̂0 it turns to be the convergent estimate θ̂1,J1
of the

first (and only) GN iteration for first step N = 1, of the 2-BS process. Therefore,

with the above proposed θ̂0 there is no need for guessing an initial vector, to feed

the 2-BS process, that might not converge. This is true at least at the first step

of the 2-BS approach. The last sub-Table of Table 2 provides the last JN -th GN

convergent estimates θ̂N,JN
for every step N =1,2,3 of the 2-BS process, adopting

as θ̂0 the proposed solution (Vmax, KM) as discussed above. Table 2 also presents

the convergence error eN , the solution error distance εN := ‖∇sse(θ̂N )‖ as well

as the R2 coefficient for each estimated model V̂N := V (CS; θ̂N,JN
). The digits in

bold represents the accurate digits of the NLLS estimates.
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From our experience, due to the sequential nature of the BS methodol-

ogy, the behaviour of the BS approach it might depend on the order in which

the data entered into the sequential process. As the MM model is a strictly

monotonous function, it is generally preferred that the CS,i readings of the data

set {(CS,i, Vi)}i=1,2,...,n are maintain this strictly monotonic pattern as they en-

tered sequentially into the BS algorithm. However, the problem might arises

when the BS process is applied on a “replicated” data set, i.e. a data set showing

multiple values (two or more) of Vi for each CS,i value. Such data set is the

Puromycin-treated data set which consisted of two Vi’s readings for every (out

of six) CS,i value. In particular, the problem is occurred when we adopt the MM

solution vector (Vmax, KM) to play the role of the initial estimates’ vector θ̂0, as

we suggested earlier. Unfortunately, the solution vector (Vmax, KM) of the two

MM relations Vi = V (CS,i; Vmax, KM), i = 1, 2, does not exist (as CS,1 = CS,2 in

this data set). To avoid this problem we can apply a “higher order” BS process,

as the 4-BS.

The following Example demonstrates the above discussion.

Example 3.2. The 4-BS iterative process is applied for the Puromycin

data set as well as for the Enzyme Velocity (EV) data set in [11, pg. 242], which are

both having replicated (double) values of CS readings. Let e = 10−4 be the thresh-

old for the convergence error. For an initial guess θ̂0 we obtain firstly all the so-

lutions (Vmax, KM) between the two MM model relations Vi = V (CS,i; Vmax, KM)

and Vj = V (CS,j ; Vmax, KM), for all i 6= j, i, j = 1, 2, ..., n. Then we adopt as θ̂0

that specific solution vector (Vmax, KM) which provides the minimum sum of

squares for the corresponding MM model, i.e.

sse(θ̂0) = min
{

sse(θ) : θ is the solution of Vk =V (CS,k; θ), k∈{i,j}
}

i,j∈{1,2,3,4}
,

or equivalently

(3.9) sse(θ̂0) = min
{

sse(ϑ1,ϑ2) : ϑ1 =Vi(1+ dij), ϑ2 =CS,idij

}

i,j∈{1,2,3,4}
,

where dij := CS,j(Vj −Vi)/(ViCS,j −VjCS,i), i, j = 1, 2, 3, 4. As the initial estimate

θ̂0 is used for the application of the 4-BS process, it should to be obtained by

using the first 4 observations (recall that the GN process at the first step of the

4-BS method is performed using the first four observations), and thus θ̂0 should

satisfy (3.9) where n := 4.

Table 3 presents the results of the 4-BS approach for the Puromycin and the

EV data sets, where the presented estimates θ̂N,JN
= (V̂max, K̂M) are calculated

with only J = 5 maximum number of GN iterations on every step N = 1, 2, 3 (of

the 4-BS algorithm). Notice the remarkable accuracies, of less than 10−7 < e

(achieved in total 0 + 5 + 5 + 5 = 15 GN iterations) for the requested θ̂NLLS, for
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the Puromycin data set, and of less than 10−5 < e for the EV data set (achieved

in total 0 + 8 + 8 + 5 = 21 GN iterations). The digits in bold represents the

accurate digits of the NLLS estimates.

Table 3: Convergence of the 4-BS processes, for the MM model estimation.

N JN V̂max K̂M eN εN R2
mare (%)

• Puromycin-treated data set, J = 5

0 0 134.413223 0.015372 — 1.53e+5 0.5542 18.
1 5 152.072336 0.029454 0.114 0.343 0.7771 14.94
2 5 184.624253 0.044340 8.13e−6 6.97e−9 0.9330 9.198
3 5 212.683743 0.064121 3.09e−8 5.09e−11 0.9613 7.

• EV data set, J = 8

0 0 0.001957 −0.169663 — 0.0176 −0.8679 24.79
1 8 0.028507 0.301639 0.144 3.01e−5 0.0422 29.16
2 8 0.085433 1.314163 0.00445 3.76e−9 0.4085 27.51
3 5 0.105643 1.702690 1.05e−6 6.08e−15 0.9379 21.71

If the 2-BS (or in general the k-BS) process fails to converge for data sets

with replicated observations we then propose a practical way, which is demon-

strated in the following, for the computational improvement of the 2-BS process

when it is applied on such data sets.

Any data set showing replications can be re-arranged in order to help the

k-BS method to converge. With this re-arrangement of the Puromycin data set

(which contains two Vi readings for each CS,i value), the 2-BS (or the 1-BS)

process can now be applied adopting as initial vector θ̂0 the MM solution vector

(using the first two observations) as we did in Example 3.1. Recall that this θ̂0

cannot be calculated in the case of the original (non-modified) Puromycin data

set. The suggestion for helping the performance of the calculations is that we first

split the Puromycin data set (and any data set that contains two readings for the

depending variable for each value of the independent variable), say P , into two

subsets, say P1 and P2. Each set contains the two “non-replicated” parts of the

original data set and sorted in an increasing order of the CS values, i.e.

(3.10) P1 :=
{

(CS,i, Vi)
}

i=1,3,5,...,11
and P2 :=

{

(CS,i, Vi)
}

i=2,4,6,...,12
.

Note that CS,i+2 > CS,i for i = 1, 3, ..., 9 and i = 2, 4, ..., 10. In order to re-join

them back into a single data set (of 12 observations), with a “smooth” transition

from the (increasing) CS,i values of P1 data set to the (also increasing) CS,i values

of P2, we adopt the P1 data set as is, and then the observations of P2 are put

in the reversed (decreasing) order, i.e.

(3.11) P =
{

(CS,i, Vi)
}

i=1,3,5,...,11,12,10,8,...,2
.
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The 2-BS process can then be applied, with convergence error threshold e = 10−4,

while we adopt the MM solution (Vmax, KM), as in Example 3.1, as the initial

estimates’ vector θ̂0. The first sub-Table of Table 4 provides the GN convergent

JN -th estimates θ̂N,JN
, that calculated with maximum number of GN iterations

being only J = 3 (at every step N = 1, 2, ..., 6 of the 2-BS process). The resulted

accuracy of the obtained NLLS estimate (V̂max, K̂M) is less than 10−5 < e. Sim-

ilarly, for the “replicated” EV data set, the accuracy for the NLLS estimates is

less than 10−6 < e; see the corresponding calculation on the second sub-Table of

Table 4. The digits in bold represents again the accurate digits of the NLLS

estimates.

Table 4: Convergence of the 2-BS processes for the MM model
estimation of the re-arranged P and EV data sets.

N JN V̂max K̂M eN εN R2
mare (%)

• Puromycin-treated data set, J = 3

0 0 112.549618 0.009618 — 0. 1. 0.
1 1 112.549618 0.009618 0. 0. 1. 0.
2 3 170.999898 0.033674 5.76 2.07e+3 0.8736 10.56
3 3 210.839180 0.062539 0.7 75.7 0.9360 9.345
4 3 214.144962 0.064599 1.46e−5 4.73e−8 0.9480 7.739
5 3 212.825859 0.064726 7.6e−6 1.64e−8 0.9389 7.22
6 3 212.683743 0.064121 1.28e−6 7.47e−10 0.9613 7.

• EV data set, J = 3

0 0 0.005853 −0.065438 — 2.33e−17 1. 0.
1 1 0.005853 −0.065438 2.6e−18 1.3e−18 1. 4.e−14
2 3 0.017440 0.158092 0.102 0.000647 0.6203 14.26
3 3 0.078120 1.285978 0.458 0.00152 0.9553 19.51
4 3 0.126137 2.411911 0.325 9.89e−6 0.9655 14.05
5 3 0.104970 1.694986 0.272 0.000761 0.9419 21.76
6 3 0.105643 1.702690 2.93e−7 2.52e−16 0.9379 21.71

The re-arrangement, as in (3.11), of the data set (which affects the order

in which the observations are sequentially inserted into the BS process) can also

improve the performance of the BS process even for initial guesses θ̂0 for which

the 2-BS, or even the 1-BS, process normally could not converge. The following

Example demonstrates this improvement.

Example 3.3. Considering the initial estimates’ guess θ̂0 = (80, 0) and

letting e = 10−4 to be the convergence error threshold, the 2-BS (as well as the

1-BS process) fails to converge, when it is applied on the original Puromycin

data set. However, the 2-BS process converges, to the requested NLLS estimate,

when the data set is re-arranged, as described in (3.11), even with few (J = 3)

allowed GN iterations at every step of 2-BS, or 1-BS, process. Table 5 presents the

performance of the 2-BS approach (first sub-Table) as well as of the 1-BS approach
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(second sub-Table). The accuracy of the obtained NLLS estimates derived from

the 2-BS process is less than 10−5 < e, while the 1-BS process results an accuracy

less than 10−4 < e. The digits in bold represents also here the accurate digits of

the NLLS estimates.

Table 5: Convergence of the 1-BS and the 2-BS processes,
applied on the re-arranged Puromycin data set.

N JN V̂max K̂M eN εN R2
mare (%)

• 2-BS process, J = 3

0 0 80. 0. — 1.33e+4 −0.3832 11.39
1 3 112.410518 0.009554 2.04 275. 1. 0.062
2 3 170.980951 0.033657 5.8 2.1e+3 0.8736 10.56
3 3 210.839081 0.062538 0.702 76.2 0.9360 9.345
4 3 214.144962 0.064599 1.46e−5 4.74e−8 0.9480 7.739
5 3 212.825859 0.064726 7.6e−6 1.64e−8 0.9389 7.22
6 3 212.683743 0.064121 1.28e−6 7.47e−10 0.9613 7.

• 1-BS process, J = 3

0 0 80. 0. — 1.33e+4 −0.3832 11.39
1 3 112.410518 0.009554 2.04 275. 1. 0.062
2 3 136.051800 0.017418 0.563 25.3 0.8983 5.843
3 3 172.114585 0.034640 1.93 221. 0.8739 10.62
4 3 199.818136 0.053452 0.398 13.1 0.9129 10.46
5 3 210.857217 0.062575 0.00718 0.0089 0.9360 9.341
6 3 211.078437 0.062765 9.91e−10 8.75e−12 0.9471 8.015
7 3 214.144962 0.064599 9.91e−06 2.13e−8 0.9480 7.739
8 3 213.560104 0.067269 0.00066 0.000118 0.9397 7.37
9 3 212.825859 0.064726 0.000225 1.56e−5 0.9389 7.22
10 3 212.086616 0.062938 5.28e−5 1.07e−6 0.9440 6.93
11 3 212.683743 0.064121 1.02e−5 4.46e−8 0.9613 7.

4. DISCUSSION

Certain aspects of the MM model, so essential in Risk Analysis as far as to

form an enzyme-substrate complex especially to pharmacokinetics studies, were

discussed in this paper, either theoretical (see Theorem 2.1) or computational (see

the provided examples in Section 3). As far as the optimal design is concerned,

recall Kitsos [14] and (1.8), the design depends on the nonlinear term KM. When

the D-optimal design problem was viewed from the MM model perspective it can

be formed into the following compact form:

If CS ∈ (0, CU] the locally D-optimal design at KM = K0 which allocates

the half of the observations V with optimum concentration

(4.1) Copt
S =

K0CU

2K0 + U
,
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with CU being the maximum allowable substrate concentration. If CU ≫K0 the

locally D-optimal design ξ is

(4.2) ξ∗ =

(

CU K0

0.5 0.5

)

.

The corresponding value of the determinant of the D-optimal design is

(4.3) d =
V 2

maxC
6
U

16K2
0 (K0 + CU)6

.

See also Endrenyi and Chan [6]. If CS ∈ [CL, CU] then the optimum CS, through

(4.1), is given by

(4.4) Copt
S =

K0CU

2K0 + (CU −CL)
, K0 > 0, 0 < CL < CU .

From the above relations and the average-per-observation information matrix

as in (1.8) it is clear, due to Theorem 2.1, that there might be more than one

NLLS estimates. This is a new point of view of the design and actually a crucial

one. One could choose as “best” among the D-optimal designs the one which

provides minimum value of the corresponding (4.3) evaluation, which is a common

situation. Therefore, there might be (locally) D-optimal designs corresponding to

the analytical real-valued NLLS estimates. The final adopted D-optimal design

can be chosen in principle, as noted also above, to be the one that provides

minimum det
(

M(θ̂, ξ)
)

. It is clear from relations (4.3) and (4.4) that the right

choice of the existent different values for the parameter θ is essential for the Risk

Analysis study under investigation. It is why we provide static or sequential

design approach to reach the appropriate selected real value for θ. It is therefore

crucial what we prove: there is always one real value, and thus the Risk Analysis

can always proceeded. How we proceed on Risk Analysis were more than one

real value for θ exists, has been extensively discussed, see Theorem 2.1 and the

Examples.

An analytic methodology for the nonlinear least squares estimation (NLLS)

was also introduced and compared against the four known linearization technics.

The analytic formulation of this method indicated that the NLLS estimation of

the MM model was, in general, not unique. Moreover, an iterative scheme for the

NLLS estimation was also introduced, called the Batch Sequential (BS) process,

and tested in various cases of data sets which showing readings replication or not.

Despite that the BS is an iterative process, meaning that an initial estimates’

guess is needed, a different approach was discussed and tested which provides an

initial estimate that increases the convergence performance of the BS algorithm.

Finally, certain examples demonstrate all the proposed methods.
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