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1. INTRODUCTION AND MOTIVATION

One of the common problems in applications is to check whether the

mean value of an investigated phenomena equals a given number, i.e. testing the

hypothesis H0 : µ = µ0. For example, for econometrical applications see [5], for

biological applications [8], for engineering [11], for medical applications [7].

See also [1], [2], [4], [6].

To test the hypothesis H0, the classical t test is used. However, this test

requires the assumption of normality of the phenomena, so it is advised (see

statistical packages such as SAS, Statistica, Statgraphics) to check normality

first, for example with the Shapiro–Wilk W test. If normality is rejected, tests

other than t are recommended (e.g. the sign test). So, the procedure of testing

the hypothesis H0 : µ = µ0 becomes a little complicated, and should be conducted

in two steps:

1. check normality with the W test,

2. if normality is not rejected then use the t test else use the sign test.

In this paper we propose a modification of the Shapiro–Wilk W test, dedi-

cated to checking normality with known mean value µ0, i.e. to testing the hypoth-

esis H0 : X ∼ N
(

µ0, σ
2
)

, where X is the random variable of interest. This test

could have very wide applications. For example, when we apply the paired t-test,

the differences are assumed to be normally distributed with a given mean value

µ0 = µ1 − µ2. The other application can be measurement errors which should

be distributed as N(0, σ2), i.e. a measurement should be unbiased and normally

distributed. Also, dimensions or weight of manufactured products should be nor-

mally distributed with given mean value. Another application is in the analysis

of linear models, where one has to verify that residuals are normally distributed

with null mean.

The modification of the W test and its properties are described in Section 2.

The simulation results on its power are given in Section 3. Some concluding

remarks are given in Section 4.

2. DERIVATION OF THE W0 STATISTIC AND ITS PROPERTIES

Suppose that a random variable X is observed and we are interested in

testing the hypothesis

H0 : X ∼ N(µ, σ2) .



92 Zofia Hanusz, Joanna Tarasinska and Wojciech Zielinski

Shapiro and Wilk ([12]) proposed the W test based on the statistic

(2.1) W =

(

n
∑

i=1
aiX(i)

)2

n
∑

i=1

(

Xi − X̄
)2

,

where X(1) ≤ X(2) ≤ ··· ≤ X(n) are the ordered values of a sample X1, X2, ..., Xn,

and ai are tabulated coefficients. A lower tail of W indicates nonnormality.

Now, let us assume that the expected value µ, say µ0, is known. Thus it is

of interest to test the null hypothesis

(2.2) H0 : X ∼ N(µ0, σ
2) .

Application of Shapiro and Wilk’s technique to the problem of testing (2.2) gives

the statistic

W0 =

(

n
∑

i=1
aiX(i)

)2

n
∑

i=1
(Xi − µ0)

2
.

The null hypothesis (2.2) is rejected when W0 < W0(α, n), where W0(α, n) is the

critical value at significance level α.

The statistic W0 has properties similar to the W statistic, namely, W0 is

scale invariant and the maximum value of W0 is one. As it is known, the minimum

value of W is ε =
n a2

1

n − 1
([12]).

Lemma 2.1. The minimum value of W0 is zero.

Proof: Since W0 is scale invariant it suffices to consider the maximization

of
n
∑

i=1
(Xi − µ0)

2 subject to
n
∑

i=1
aiX(i) = 1. The lemma follows from the fact that

n
∑

i=1
(Xi − µ0)

2 may be arbitrarily large.

Shapiro and Wilk ([12]) gave an analytic form of the probability density

function for the W statistic in the case of sample size n = 3. It is

(2.3) g(w) =
3

π
(1 − w)−

1
2 w− 1

2 for
3

4
≤ w ≤ 1 .

They also establish that W is statistically independent of X̄ and of
n
∑

i=1

(

Xi − X̄
)2

for samples from a normal distribution.
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Thus, it is easy to obtain the probability density function of W0 for samples

of size n = 3. Let us notice that W0 = W ·C, where

C =

n
∑

i=1

(

Xi − X̄
)2

n
∑

i=1
(Xi − µ0)

2
=

n
∑

i=1

(

Xi − X̄
)2

n
∑

i=1

(

Xi − X̄
)2

+ n
(

X̄ − µ0

)2

is a random variable distributed as Beta
(

n−1
2 , 1

2

)

, independent of W . Thus in the

case of n = 3, under H0, we have the probability density function of C, namely,

f(c) =
1

2
(1 − c)−

1
2 for 0 ≤ c ≤ 1 .

Taking the new variable W0 = W ·C in the joint probability density function

g(w) f(c) and integrating this function over c, we get the probability density

function for W0 in the following form

ϕ(w0) =



































3

2π
· w

− 1
2

0 ·

4
3
w0
∫

w0

(1 − c)−
1
2 (c − w0)

− 1
2 dc for 0 ≤ w0 ≤ 3

4 ,

3

2π
· w

− 1
2

0 ·

1
∫

w0

(1 − c)−
1
2 (c − w0)

− 1
2 dc for 3

4 ≤ w0 ≤ 1 .

Finally, after integrating, we get

ϕ (w0) =















3

2π
· w

− 1
2

0 ·

(

arcsin
5w0 − 3

3 (1 − w0)
+

π

2

)

for 0 ≤ w0 ≤ 3
4 ,

3

2
· w

− 1
2

0 for 3
4 ≤ w0 ≤ 1 .

The plot of ϕ (w0) is shown in Figure 1.

Figure 1: Plot of probability density function of W0 for n = 3.
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For sample size n > 3 the analytical form of the null distribution of W0 is

not available. Hence, to obtain any information about the distribution, Monte

Carlo simulations were performed. In simulations, for each n = 3, 4, ..., 50, N =

1,000,000 samples from the distribution N(0, 1) were drawn and for each sample

the value of W0 was calculated, thus the sample w1, w2, ..., wN of values of the W0

statistic was obtained. The critical value W0(α, n) was taken as the α-th quantile

of w1, w2, ..., wN . All calculations were done in the R program ([9]) using the

procedure shapiro.test in which Royston’s procedure is used ([10]). The same

calculations were also done independently in Mathematica. The results are given

in Table 1.

Table 1: Critical values of W0 statistic for sample sizes n and significance level α.

n α = 0.01 α = 0.05 α = 0.1 n α = 0.01 α = 0.05 α = 0.1

3 0.0184 0.0881 0.1714 27 0.7379 0.8232 0.8601

4 0.0721 0.2037 0.3127 28 0.7463 0.8287 0.8645

5 0.1419 0.3086 0.4190 29 0.7539 0.8340 0.8688

6 0.2090 0.3867 0.4952 30 0.7611 0.8394 0.8730

7 0.2742 0.4525 0.5543 31 0.7677 0.8437 0.8765

8 0.3299 0.5051 0.5998 32 0.7746 0.8482 0.8800

9 0.3785 0.5493 0.6374 33 0.7804 0.8524 0.8834

10 0.4233 0.5852 0.6682 34 0.7871 0.8565 0.8863

11 0.4606 0.6165 0.6935 35 0.7917 0.8602 0.8894

12 0.4940 0.6431 0.7154 36 0.7969 0.8634 0.8921

13 0.5246 0.6661 0.7346 37 0.8008 0.8670 0.8947

14 0.5494 0.6862 0.7504 38 0.8063 0.8701 0.8972

15 0.5739 0.7038 0.7651 39 0.8109 0.8731 0.8996

16 0.5954 0.7196 0.7778 40 0.8145 0.8760 0.9018

17 0.6126 0.7337 0.7890 41 0.8194 0.8787 0.9040

18 0.6319 0.7476 0.7998 42 0.8227 0.8816 0.9061

19 0.6478 0.7590 0.8088 43 0.8271 0.8839 0.9081

20 0.6626 0.7696 0.8176 44 0.8301 0.8862 0.9100

21 0.6761 0.7792 0.8250 45 0.8343 0.8887 0.9120

22 0.6876 0.7875 0.8319 46 0.8374 0.8911 0.9138

23 0.7008 0.7965 0.8390 47 0.8403 0.8931 0.9154

24 0.7104 0.8034 0.8446 48 0.8433 0.8951 0.9169

25 0.7205 0.8103 0.8501 49 0.8470 0.8974 0.9187

26 0.7296 0.8170 0.8553 50 0.8491 0.8989 0.9200

Shapiro and Wilk ([13]) approximated the distribution of the W statistic

by a Johnson curve. For each n they made the least squares regression of the

empirical sampling value of

u(p) = ln
W (p) − ε

1 − W (p)
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on the p-th quantile of the standard normal distribution zp, where ε was the

minimum value of the W statistic and W (p) was the p-th empirical sampling

quantile. They took the following values of p :

p = 0.01, 0.02, 0.05 (0.05) 0.25, 0.5, 0.75 (0.05) 0.95, 0.98, 0.99 ,

and gave the tables for ε, γ and δ such that z = γ + δ ln
W − ε

1−W
has approximately

standard normal distribution.

In our study, a similar approach was applied for the W0 statistic for sample

sizes n = 3, 4, ..., 50. As ε = 0 (see Lemma 2.1), the least squares regression of

ln
W0(p)

1−W0(p)
on zp was based on 1,000,000 pseudorandom samples from N(0, 1).

The values of δ and γ, such that Z = γ + δ ln
W0

1−W0
has approximately stan-

dard normal distribution are listed in Table 2. The lower tail of Z’s indicates

nonnormality.

Table 2: The normalizing constants for W0 for sample sizes n.

n γ δ n γ δ n γ δ

3 −0.3137 0.5551 19 −3.2563 1.3698 35 −4.4593 1.5241

4 −0.6479 0.7282 20 −3.3584 1.3847 36 −4.5088 1.5272

5 −0.9586 0.8510 21 −3.4511 1.3983 37 −4.5621 1.5336

6 −1.2299 0.9384 22 −3.5365 1.4095 38 −4.6152 1.5382

7 −1.4778 1.0092 23 −3.6320 1.4236 39 −4.6749 1.5467

8 −1.6950 1.0671 24 −3.7067 1.4319 40 −4.7186 1.5495

9 −1.8960 1.1157 25 −3.7869 1.4431 41 −4.7771 1.5574

10 −2.0790 1.1573 26 −3.8624 1.4520 42 −4.8195 1.5597

11 −2.2470 1.1929 27 −3.9346 1.4606 43 −4.8711 1.5659

12 −2.4039 1.2238 28 −4.0077 1.4703 44 −4.9137 1.5693

13 −2.5513 1.2517 29 −4.0770 1.4783 45 −4.9706 1.5769

14 −2.6821 1.2755 30 −4.1538 1.4891 46 −5.0118 1.5797

15 −2.8104 1.2979 31 −4.2084 1.4935 47 −5.0512 1.5826

16 −2.9320 1.3181 32 −4.2782 1.5030 48 −5.0908 1.5858

17 −3.0400 1.3350 33 −4.3354 1.5086 49 −5.1470 1.5935

18 −3.1553 1.3542 34 −4.4017 1.5172 50 −5.1795 1.5954

To check the goodness of approximation, another N = 1,000,000 pseudo-

random samples from N(0, 1) were generated. For each of them W0i and Zi =

γ +δ ln
W0i

1−W0i
were calculated (i = 1, 2, ..., N). The ratios

# {Zi : Zi ≤ zp}

N
with

p = 0.01, 0.02, 0.05, 0.1, 0.5, 0.9, 0.95, 0.98, 0.99 are given in Table 3.
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Table 3: The simulated probabilities P

(

γ + δ ln
W0

1−W0

≤ zp

)

for sample sizes n.

Probability
n

0.01 0.02 0.05 0.10 0.5 0.90 0.95 0.98 0.99

3 0.015 0.023 0.047 0.06 0.458 0.919 0.957 0.979 0.987

4 0.014 0.024 0.049 0.091 0.453 0.912 0.957 0.981 0.989

5 0.014 0.024 0.051 0.094 0.453 0.908 0.955 0.982 0.990

6 0.013 0.024 0.051 0.095 0.454 0.906 0.956 0.983 0.991

7 0.013 0.024 0.052 0.096 0.456 0.905 0.956 0.983 0.991

8 0.013 0.024 0.053 0.097 0.457 0.903 0.955 0.983 0.992

9 0.013 0.024 0.052 0.097 0.457 0.902 0.955 0.983 0.992

10 0.013 0.024 0.053 0.098 0.457 0.90 0.955 0.983 0.992

11 0.013 0.024 0.054 0.099 0.456 0.900 0.954 0.983 0.992

12 0.013 0.024 0.054 0.099 0.458 0.900 0.954 0.984 0.992

13 0.013 0.024 0.054 0.100 0.459 0.900 0.954 0.984 0.993

14 0.013 0.024 0.054 0.099 0.458 0.899 0.954 0.984 0.992

15 0.013 0.024 0.053 0.099 0.456 0.898 0.954 0.984 0.993

16 0.013 0.024 0.054 0.100 0.458 0.899 0.954 0.984 0.993

17 0.013 0.024 0.054 0.099 0.457 0.898 0.954 0.984 0.993

18 0.013 0.024 0.054 0.099 0.457 0.897 0.953 0.984 0.993

19 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993

20 0.013 0.024 0.054 0.100 0.458 0.897 0.953 0.984 0.993

21 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993

22 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993

23 0.013 0.024 0.055 0.100 0.458 0.897 0.953 0.984 0.993

24 0.013 0.024 0.054 0.101 0.459 0.897 0.954 0.984 0.993

25 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.984 0.993

26 0.013 0.024 0.054 0.100 0.459 0.898 0.953 0.984 0.993

27 0.013 0.024 0.055 0.100 0.458 0.897 0.954 0.985 0.993

28 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993

29 0.013 0.024 0.054 0.100 0.458 0.898 0.954 0.984 0.993

30 0.013 0.024 0.055 0.101 0.458 0.897 0.953 0.984 0.993

31 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.985 0.993

32 0.013 0.024 0.055 0.101 0.459 0.900 0.953 0.984 0.993

33 0.013 0.024 0.054 0.100 0.457 0.897 0.953 0.984 0.993

34 0.013 0.024 0.055 0.101 0.459 0.897 0.954 0.984 0.993

35 0.013 0.024 0.054 0.101 0.458 0.896 0.953 0.984 0.993

36 0.013 0.024 0.054 0.100 0.458 0.897 0.954 0.985 0.993

37 0.013 0.024 0.054 0.100 0.457 0.896 0.953 0.984 0.993

38 0.013 0.024 0.054 0.101 0.458 0.897 0.953 0.985 0.993

39 0.013 0.024 0.054 0.100 0.456 0.896 0.953 0.984 0.993

40 0.013 0.024 0.055 0.100 0.457 0.897 0.954 0.985 0.993

41 0.013 0.024 0.054 0.100 0.456 0.896 0.953 0.984 0.993

42 0.013 0.024 0.055 0.101 0.458 0.897 0.954 0.985 0.993

43 0.013 0.024 0.054 0.100 0.457 0.896 0.954 0.985 0.993

44 0.013 0.024 0.054 0.099 0.456 0.896 0.953 0.984 0.993

45 0.013 0.024 0.055 0.100 0.457 0.896 0.953 0.984 0.993

46 0.013 0.024 0.055 0.100 0.458 0.897 0.954 0.984 0.993

47 0.013 0.024 0.055 0.101 0.458 0.897 0.954 0.985 0.994

48 0.013 0.024 0.054 0.100 0.457 0.897 0.954 0.985 0.994

49 0.013 0.025 0.055 0.101 0.458 0.896 0.954 0.985 0.994

50 0.013 0.024 0.054 0.100 0.457 0.896 0.953 0.984 0.993
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3. POWER COMPARISONS

Suppose that the hypothesis H0 : X∼N(µ0, σ
2) is verified using the W0 test.

Three kinds of alternative hypothesis are considered:

a) X ∼ N
(

µ, σ2
)

with µ 6= µ0;

b) X is not normal with µ = µ0;

c) X is not normal with µ 6= µ0.

We focus on the power of the W0 test. The Shapiro–Wilk W test was

investigated against different nonnormal alternatives. Very exhaustive research

was done by Shapiro et al. ([14]) and Chen ([3]). It was showed that the W test

is very powerful in comparison to other normality tests such as Kolmogorov,

chi-square, β1, β2 and against very different distributions including Student’s t,

Gamma, Beta or Uniform.

As the construction of W0 is similar to the W test, it may be expected

that the W0 test will also be powerful against alternatives of kind b) and c).

Hence, in our study we confine ourselves to the a) alternative, i.e. when the true

distribution is normal with a mean other than µ0. The W0 test is compared with

two other procedures. The first one is the Kolmogorov test (modified to the case

of known mean). The test statistic of the Kolmogorov test is given by

max
1≤i≤n

{

∣

∣

∣

∣

F
(

X(i)

)

−
i− 1

n

∣

∣

∣

∣

,

∣

∣

∣

∣

F
(

X(i)

)

−
i

n

∣

∣

∣

∣

}

,

where F
(

X(i)

)

= Φ
(

X(i)−µ0

S

)

, S =
1

n

√

n
∑

i=1
(Xi − µ0)

2 and Φ is the CDF of the

standard normal distribution.

The second procedure, denoted by W + t, is a two-step one. In the first

step the normality is verified by the classical W test. If normality is not rejected,

then the hypothesis of equality of the mean to a given number µ0 is verified by

the t test.

All three tests are calculated at the significance level α. In the case of the

W + t test we need to apply two significance levels αW and αt for both tests.

Those numbers were chosen in such a way that the overall significance level is α,

i.e.

PH0

{

W accepts normality and t accepts mean µ0

}

≥ 1 − (αW + αt) = 1 − α .

Because there are no preferences to the W or t test, αW = αt = α
2 were taken.

The power comparison of the three tests was performed by the Monte Carlo

method. A sample of size n from the standard normal distribution was generated

and this sample was used in all tests. The sample was then shifted to differ-

ent values of µ and then each of the tests was applied to the shifted sample.
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This procedure was repeated 10,000 times. The number of rejections of the hy-

pothesis H0 : X∼N(µ0, σ
2) was calculated. It should be added that critical points

for Kolmogorov test were also determined by Monte Carlo method. In the sim-

ulations the hypothesis H0 was verified for samples of sizes 10, 20, 30, 40, 50 and

significance levels α = 0.01, 0.05, 0.1. The simulated powers are given in Table 4.

Table 4: Power of W0, Kolmogorov and W + t tests.

α = 0.01 α = 0.05 α = 0.1
n µ

W0 K W + t W0 K W + t W0 K W + t

0.0 0.011 0.010 0.010 0.050 0.049 0.048 0.101 0.100 0.098
0.3 0.034 0.030 0.023 0.129 0.112 0.097 0.216 0.198 0.176
0.6 0.148 0.115 0.097 0.386 0.326 0.287 0.526 0.464 0.422
0.9 0.392 0.310 0.287 0.705 0.610 0.585 0.829 0.746 0.727

10 1.2 0.687 0.565 0.560 0.916 0.845 0.847 0.964 0.925 0.924
1.5 0.892 0.789 0.813 0.987 0.957 0.965 0.996 0.985 0.989
1.8 0.974 0.920 0.943 0.998 0.991 0.995 1.000 0.998 0.999
2.1 0.996 0.978 0.990 1.000 0.999 1.000 1.000 1.000 1.000
2.4 1.000 0.993 0.997 1.000 1.000 1.000 1.000 1.000 1.000

0.0 0.011 0.011 0.010 0.049 0.050 0.051 0.096 0.099 0.096
0.2 0.036 0.031 0.027 0.131 0.113 0.106 0.214 0.189 0.179
0.4 0.165 0.123 0.121 0.383 0.313 0.297 0.515 0.442 0.424
0.6 0.435 0.329 0.344 0.709 0.602 0.610 0.808 0.732 0.733
0.8 0.741 0.601 0.656 0.916 0.842 0.861 0.960 0.913 0.955

20 1.0 0.924 0.835 0.879 0.988 0.959 0.976 0.995 0.984 0.991
1.2 0.988 0.950 0.978 0.999 0.994 0.997 1.000 0.998 0.999
1.4 0.999 0.991 0.997 1.000 1.000 1.000 0.999 0.991 1.000
1.6 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999 1.000
1.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.012 0.009 0.012 0.054 0.053 0.051 0.105 0.103 0.097
0.15 0.039 0.030 0.028 0.124 0.107 0.099 0.201 0.182 0.165
0.30 0.150 0.111 0.106 0.350 0.285 0.267 0.478 0.408 0.388
0.45 0.398 0.290 0.312 0.657 0.550 0.565 0.762 0.679 0.683
0.60 0.693 0.540 0.608 0.876 0.793 0.817 0.930 0.878 0.889

30 0.75 0.891 0.777 0.844 0.972 0.932 0.952 0.987 0.968 0.977
0.90 0.975 0.922 0.959 0.996 0.985 0.992 0.999 0.994 0.997
1.05 0.997 0.981 0.994 1.000 0.998 1.000 1.000 0.999 1.000
1.20 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
1.35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.011 0.009 0.010 0.051 0.051 0.050 0.098 0.101 0.101
0.15 0.042 0.034 0.033 0.144 0.125 0.114 0.236 0.206 0.196
0.30 0.213 0.152 0.159 0.440 0.364 0.357 0.565 0.486 0.486
0.45 0.539 0.402 0.459 0.776 0.672 0.702 0.861 0.789 0.802

40 0.60 0.837 0.706 0.785 0.953 0.900 0.924 0.978 0.951 0.963
0.75 0.972 0.910 0.955 0.995 0.981 0.991 0.998 0.993 0.996
0.90 0.997 0.981 0.995 1.000 0.998 1.000 1.000 1.000 1.000
1.05 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.00 0.010 0.008 0.011 0.050 0.050 0.050 0.099 0.100 0.099
0.15 0.064 0.048 0.044 0.179 0.150 0.141 0.272 0.237 0.225
0.30 0.301 0.212 0.224 0.538 0.444 0.452 0.661 0.579 0.578

50 0.45 0.691 0.542 0.609 0.872 0.784 0.817 0.927 0.872 0.891
0.60 0.937 0.840 0.905 0.983 0.956 0.973 0.993 0.978 0.986
0.75 0.994 0.968 0.988 0.999 0.996 0.999 1.000 0.999 1.000
0.90 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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The relative powers of W0 with respect to the Kolmogorov and W + t tests

are shown in Figure 2. On the x-axis there are values of µ ≥ 0 and on the y-axis

there are values of

power of W0 test

power of Kolmogorov test
(solid line) and

power of W0 test

power of W + t test
(dashed line) .

One can see that generally the lines are above 1, which shows that W0 is more

powerful than the other two tests.

Figure 2: Relative power of W0 with respect to Kolmogorov and W + t tests.
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4. CONCLUDING REMARKS

In many statistical models it is assumed that random variables are normally

distributed with known mean. Thus the W0 test is more adequate and should be

used instead of the classical Shapiro–Wilk W test.

In the paper it is shown via a simulation study that the W0 test is generally

more powerful than the Kolmogorov, and W and Student t tests combined.
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