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1. INTRODUCTION

The Burr type XII distribution was first introduced in the literature by Burr ([5]).
It has gained special attention in the last two decades and applied in different fields including
the area of reliability, failure time modeling and acceptance sampling plan and so on. The
two-parameter Burr type XII distribution has the following probability density function

f(x;α, β) = αβxα−1(1 + xα)−(β+1), x > 0, α > 0, β > 0,(1.1)

where α and β represent the shape parameters. It is easy to see that when α = 1, the Burr
type XII reduces to the log-logistic distribution. Maximum likelihood and Bayesian inferential
issues for the unknown parameters of Burr type XII distribution with different types of
data were considered by several authors. See, for example, Wang et al. ([35]), Moore and
Papadopoulos ([21]), Ghitany and Al-Awadhi ([11]), Mousa and Jaheen ([22]), Wahed ([34]),
Li et al. ([17]), Jaheen and Okasha ([13]), Panahi and Asadi ([29]), Al-Baldawi et al. ([1]),
Rao et al. ([31]), Belaghi et al. ([3]) and Hakim et al. ([12]).

All the earlier works on the estimation of the parameters of the Burr type XII distribu-
tion have been done under the assumption of precise data. In the classical estimation theory,
we consider only one source of uncertainty available, namely randomness. However, in many
practical situations, in addition to the randomness, we may face other source of uncertainties,
namely, vague uncertainty. Vagueness occurs as a result of imprecisely recording or measuring
the observations due to, for example, machine errors, human errors, etc. For instance, the
lifetime of a specific electric device may be recorded as vague statements like “about 3 years”,
“approximately less than 2 years”, “approximately 3 years”, “approximately between 3 and 4
years” and so on.

In recent years, many papers extended the statistical methods to analysis of fuzzy data
for different distributions. Among others, Denœux ([8]), for a general parametric statistical
model, showed that the EM algorithm may be used for analyzing statistical problems involv-
ing fuzzy data. Pak et al. ([27]) investigated different classical and Bayesian methods for
estimating the parameters of Weibull distribution when the available data are in the form of
fuzzy numbers. Pak et al. ([28]) discussed different procedures for estimating the parameter
of Rayleigh distribution under doubly type II censoring when the available observations are
described by means of fuzzy information. They computed the maximum likelihood, highest
posterior density and method of moments estimators. Makhdoom et al. ([20]) estimated the
parameter of exponential distribution on the basis of type II censoring scheme when the avail-
able data are in the form of fuzzy numbers. The Bayes estimate of the unknown parameter
was also obtained under the assumption of gamma prior. Khoolenjani and Shahsanaie ([15])
derived the maximum likelihood estimator of the mean of exponential distribution under type
II censoring scheme when the lifetime observations are in the form of fuzzy numbers. They
also obtained the estimate, via Bayesian method, of the unknown parameter. Pak ([23]) ob-
tained the maximum likelihood estimation and Bayesian estimation for Lindley distribution
when the available observations are reported in the form of fuzzy data. The classical and
Bayesian inferences for the Pareto distribution of life time fuzzy observations was studied
by Shafiq ([32]). Chaturvedi et al. ([6]) presented procedures of parameter estimation of
the Rayleigh distribution based on type II progressively hybrid censored fuzzy lifetime data.
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Classical as well as the Bayesian procedures for the estimation of unknown parameters were
investigated. Pak and Mahmoudi ([26]) estimated the parameters of Lomax distribution
when the available observations are described by means of fuzzy information. They com-
puted the maximum likelihood and the Bayesian estimators. Basharat et al. ([2]) derived
the distribution of a linear combination of two independent exponential random variables.
The parameter estimates of the proposed distribution were obtained by using the maximum
likelihood estimation method and the method of moments from fuzzy data. Finally, Pak et

al. ([25]) provided Bayesian inference for the parameters of the generalized exponential model
under asymmetric and symmetric loss functions when the observations are described in terms
of fuzzy numbers.

To the best of our knowledge, there are no studies focused on the analysis of fuzzy
data on the parameter estimation of two-parameter Burr type XII distribution. The main
purpose of this paper is to investigate the inferential procedures for the distribution of the
two parameters of Burr type XII, where the available data is in the form of fuzzy data. In
Section 2, we review the basic notations and definitions of fuzzy set theory. In Section 3,
we address the estimation of the unknown parameters of the maximum likelihood estimates
using the Newton–Raphson and expectation-maximization (EM) algorithm. In Section 4,
the Bayes estimates of the unknown parameters are obtained via Lindley’s approximation,
Tierney–Kadane approximation and highest posterior distribution estimation method under
the assumption of Gamma priors. A Monte Carlo simulation study is conducted in Section
5, to assess the performance of the proposed estimators. For illustration, analyses of three
datasets are provided. Finally, some conclusions are provided in Section 6.

2. BASIC DEFINITION OF FUZZY SETS

In this section, we review some basic definitions and notations of fuzzy sets and fuzzy
probability theory used in this paper. Suppose a random experiment with a probability space
(Rm,Bm, Pθ), where Rm is an m-dimensional Euclidean space, Bm is the smallest Borel σ-field
defined on Rm and Pθ, θ ∈ Θ, is a probability measure defined on Bm. In many applications,
we have a situation that the outcome of the experiment cannot be observed exactly and only
partial information is available. For example, the lifetime of a specific electric device may
be recorded as “about 3 years”, “approximately less than 2 years”, “approximately 3 years”,
“approximately between 3 and 4 years” and so on. These lifetimes can be modeled and
described in the form of fuzzy subset. A fuzzy set Ã in Rm is characterized by a membership
function µÃ : Rm → [0, 1], where µÃ(x), x ∈ Rm, represents the degree of membership of x

in Ã. A fuzzy event is a fuzzy set whose membership function is Borel measurable function.
According to Zadeh ([36]) the probability of a fuzzy event Ã is computed by

P (Ã) =
∫

µÃ(x)dPθ.(2.1)

The most common fuzzy subsets that are frequently encountered in fuzzy statistical analysis
are the fuzzy numbers and among them, the triangular fuzzy numbers are the most common
type. A triangular fuzzy number, written as x̃ = (a, b, c), has the following membership
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function

µ
ex(x) =


x− a

b− a
, if a ≤ x ≤ b,

c− x

c− b
, if b ≤ x ≤ c,

0, otherwise.

In particular, assume X to be a random variable with a probability density function (p.d.f.)
g(x; θ) that is absolutely continuous with probability measure Pθ. The conditional probability
of a crisp (non-fuzzy) set A given a fuzzy set B̃ is given by (see Denœux ([8]))

P (A|B̃) =

∫
A µB̃(x)g(x; θ)dx∫
µB̃(x)g(x; θ)dx

.

Consequently, the conditional density of X given B̃ can thus be computed by

g(x|B̃) =
µB̃(x)g(x; θ)∫
µB̃(x)g(x; θ)dx

.

3. MAXIMUM LIKELIHOOD ESTIMATION

Let X1, X2, ..., Xn denote a random sample of size n from Burr type XII distribution
with p.d.f. given in (1.1). Let X = (X1, X2, ..., Xn) denote the corresponding random vector.
If a realization x of X was exactly observed, the likelihood function can be written as

L(α, β|x) =(αβ)n
n∏

i=1

xα−1
i (1 + xα

i )−β−1.(3.1)

Suppose now x is not observed precisely, and only partial information about x is available
in form of fuzzy observation x̃ = (x̃1, ..., x̃n) with Borel measurable membership function
µx̃(x) = (µx̃1(x), ..., µx̃n(x)). Then, based on fuzzy observation x̃, the log-likelihood function
reduces to

l(α, β|x̃) = n log α + n log β +
n∑

i=1

log
∫

xα−1(1 + xα)−β−1µx̃i(x)dx

= n log α + n log β +
n∑

i=1

log
∫

A(x)µx̃i(x)dx,(3.2)

where

A(x) = xα−1(1 + xα)−β−1.(3.3)

The maximum likelihood estimate of the parameters α and β can be obtained by maximizing
the log-likelihood l(α, β|x̃) with respect to α and β. First we need to prove the following
result.

Theorem 3.1. The MLEs of α and β for α > 0 and β > 0 exist and unique.

Proof: The detailed proof of the theorem is deferred in the Appendix.
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By taking the partial derivatives of the log-likelihood l(α, β|x̃) with respect to α and β

and equating the resulted equations to zero, we get the following two normal equations

∂l(α, β|x̃)
∂α

≡ lα =
n

α
+

n∑
i=1

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0(3.4)

and

∂l(α, β|x̃)
∂β

≡ lβ =
n

β
+

n∑
i=1

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(3.5)

where

Aα(x) ≡ ∂A(x)
∂α

= (1 + xα)−β−2xα−1 log(x)[1− βxα],

Aβ(x) ≡ ∂A(x)
∂β

= −xα−1(1 + xα)−β−1 log(1 + xα).

Since there are no closed forms to the normal equations (3.4) and (3.5), iterative numerical
methods can be used to obtain the MLEs. In this section, we propose two methods to compute
the MLEs of α and β, namely; Newton–Raphson method and EM method.

3.1. Newton–Raphson algorithm

The Newton–Raphson (NR) method is a numerical approach that is commonly used to
compute MLEs of the unknown parameters. In this method, the solution of the likelihood
function is obtained through an iterative procedure. First, we obtain the second-order deriva-
tives of the log-likelihood with respect to α and β in order to implement the NR method:

lαα =
−n

α2
+

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aαα(x)µx̃i(x)dx− (

∫
Aα(x)µx̃i(x)dx)2

(
∫

A(x)µx̃i(x)dx)2
,(3.6)

lββ =
−n

β2
+

n∑
i=1

∫
A(x)µx̃i(x)dx

∫
Aββ(x)µx̃i(x)dx− (

∫
Aβ(x)µx̃i(x)dx)2

(
∫

A(x)µx̃i(x)dx)2
,(3.7)

lαβ =
n∑

i=1

∫
A(x)µx̃i(x)dx

∫
Aαβ(x)µx̃i(x)dx−

∫
Aα(x)µx̃i(x)dx

∫
Aβ(x)µx̃i(x)dx

(
∫

A(x)µx̃i(x)dx)2
,(3.8)

where

Aαα(x) = xα−1(log(x))2(1 + xα)−β−3
[
x2α(β + 1)(β + 2)− 3xα(β + 1)(1 + xα) + (1 + xα)2

]
,

Aββ(x) = xα−1(1 + xα)−β−1(log(1 + xα))2

Aαβ(x) = x2α−2(1 + xα)−β−2 log(x)[(β + 1)x log(1 + xα)− (1 + xα) log(1 + xα)− x].
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Assume α(k) and β(k) are the values of α and β at the k-th iteration. Then at (k + 1)-th
iteration, the updated values of α and β are obtained as(

α(k+1)

β(k+1)

)
=

(
α(k)

β(k)

)
−

(
lαα lαβ

lαβ lββ

)−1

α=α(k),β=β(k)

(
lα
lβ

)
α=α(k),β=β(k)

,

which is equivalent to

α(k+1) = α(k) −
lαlββ − lβlαβ

lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

,(3.9)

β(k+1) = β(k) −
lβlαα − lαlαβ

lααlββ − l2αβ

∣∣∣
α=α(k),β=β(k)

.(3.10)

The iteration process then continues until convergence, i.e., |α(k+1)−α(k)|+ |β(k+1)−β(k)|< ε,
for some pre-specified ε > 0.

To estimate the standard error of maximum likelihood estimators, α̂ and β̂, we use the
observed information matrix method. The variance-covariance matrix of the MLEs of α and β

is defined as

Σ =
[

var(α̂) cov(α̂, β̂)
cov(α̂, β̂) var(β̂)

]
,

and can be estimated by using the inverse of the observed information matrix

I(α̂, β̂) =
(
−lαα −lαβ

−lαβ −lββ

)
α=α̂,β=β̂

,(3.11)

where lαα, lββ and lαβ are given in (3.6),(3.7) and (3.8), respectively. Then the 100(1− γ)%
Wald confidence intervals of α and β using the observed information matrix can be con-
structed, respectively, as

α̂± zγ/2

√
var(α̂) and β̂ ± zγ/2

√
var(β̂),

where zp is the upper p-th percentile of the standard normal distribution.

It is known that Newton–Raphson method is very sensitive to the initial values of
parameters. In addition, the calculation of the second-order derivatives of the log-likelihood
based on fuzzy data sometimes can be rather tedious. So we propose to use an alternative
method to the Newton–Raphson method which is the EM algorithm.

3.2. EM Algorithm

In this subsection, we propose to use the EM algorithm to calculate the MLEs of the
unknown parameters.

The EM algorithm, proposed by Dempster et al. ([7]), is a very powerful technique
used in parameter estimation based on incomplete or missing information data. As stated by
Pradhan and Kundu ([30]), the EM algorithm is an iterative method and each iteration con-
sists of two main steps; Expectation(E)-step and Maximization(M)-step. In E-step, we form
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the “pseudo-likelihood” function by replacing the incomplete or missing observations in the
likelihood function with their corresponding expected values. In the M-step, we maximize the
“pseudo-likelihood” function with respect to the parameters. Let us denote the observed data
set by X̃ = (X̃1, ..., X̃n) and let the complete data denoted by X = (X1, ..., Xn). Define Z =
(Z1, ..., Zn) where Zi represents the conditional expectation of the complete observation Xi

given the corresponding fuzzy observation X̃i with membership function µx̃i(x). Observe that

Zi = E(Xi|X̃i) =
∫

xf(x;α, β)µx̃i(x)dx∫
f(x;α, β)µx̃i(x)dx

, i = 1, ..., n.(3.12)

Then the pseudo likelihood function takes the form

Lc(α, β|z) =(αβ)n
n∏

i=1

zα−1
i (1 + zα

i )−β−1,(3.13)

with pseudo log-likelihood function

lc(α, β|z) = n log α + n log β + (1− α)
n∑

i=1

log(zi)− (β + 1)
n∑

i=1

log(1 + zα
i ).(3.14)

By taking the partial derivatives of lc with respect to α and β, respectively, and equating the
resulted equations to zero we obtain the following equations:

n

α
+

n∑
i=1

log(zi)− (β + 1)
n∑

i=1

zα
i log(zi)
(1 + zα

i )
= 0,(3.15)

n

β
−

n∑
i=1

log(1 + zα
i ) = 0.(3.16)

Therefore the EM algorithm is given by the following iterative process:

Step 1. Given starting values of α and β, say α(0) and β(0), and take k=0.

Step 2. At the (k + 1)-th iteration,

Step 2.1. E-step. Evaluate Z = (Z1, ..., Zn), where Zi ≡ Zi(α(k), α(k)) is
computed using the expression (3.12) with α and β are replaced
by α(k) and β(k), respectively.

Step 2.2. M-step. Solve the equations (3.15) and (3.16) and obtain the
next values α(k+1) and β(k+1) of α and β, respectively.

Step 3. If |α(k+1)−α(k)|+ |β(k+1)−β(k)| < ε, for some pre-specified value ε > 0, then
set α(k+1) and β(k+1) as the maximum likelihood estimators of α and β,

otherwise, set k = k + 1 and go to Step 2.

Estimating the standard errors and constructing the confidence intervals in this section are
similar to that given in Section 2 with NR estimates are replaced by EM estimates.



412 A.A. Hussein and R. Al-Mosawi

4. BAYESIAN ESTIMATION

In this section, we estimate the unknown parameters of Burr type XII distribution
using Bayesian method under squared error loss function. The Bayes estimators are obtained
using three different methods; Lindley’s approximation, Tierney–Kadane approximation and
highest posterior density methods. Assume that the parameters α and β have independent
gamma priors such that α ∼ π1(α) = Gamma(a, b) and β ∼ π2(β) = Gamma(c, d). Based on
the above priors, the joint posterior density function of α and β given the data can be written
as follows

π(α, β|x̃) =
αn+a−1βn+c−1e−bα−dβ

n∏
i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dx

∞∫
0

∞∫
0

αn+a−1βn+c−1e−bα−dβ
n∏

i=1

∞∫
0

xα−1(1 + xα)−β−1µx̃i(x)dxdαdβ

.(4.1)

Then, under a squared error loss function, the Bayes estimate of any function of α and β,
say g(α, β), is given by

E(g(α, β)|x̃) =
∫ ∞

0

∫ ∞

0
g(α, β)π(α, β|x̃)dαdβ.(4.2)

Note that Equation (4.2) cannot be obtained analytically; therefore, in the following, we pro-
pose to use three methods, namely; Lindley’s approximation and Tierney–Kadane approxi-
mation and highest posterior density methods to solve it and compute the Bayes estimators.

4.1. Lindley’s Approximation

Lindley’s approximation was proposed by Lindley ([18]) to approximate the integrals
involved in Bayes estimator. Lindley proposed a ratio of integrals of the form

E(g(α, β)|x̃) =

∫∞
0

∫∞
0 g(α, β)eQ(α,β)dαdβ∫∞
0

∫∞
0 eQ(α,β)dαdβ

(4.3)

that can be approximated by

ĝ(α, β) = g(α̂, β̂) +
1
2

[
(ĝαα + 2ĝαρ̂α)σ̂αα + (ĝαβ + 2ĝβ ρ̂α)σ̂αβ + (ĝαβ + 2ĝαρ̂β)σ̂αβ

+ (ĝββ + 2ĝβ ρ̂β)σ̂ββ

]
+

1
2

[
(ĝασ̂αα + ĝβσ̂αβ)(lααασ̂αα + 2l̂ααβσ̂αβ + l̂αββσ̂ββ)(4.4)

+ (ĝασ̂αβ + ĝβσ̂ββ)(l̂ααβσ̂αα + 2l̂αββσ̂αβ + l̂βββσ̂ββ)
]
,

where
Q(α, β) = log[π1(α)π2(β)] + log L(α, β|x̃) ≡ ρ(α, β) + `(α, β|x̃).

The expressions l̂, ĝ, ρ̂ and σ̂ denote, respectively, the functions l, g, ρ and σ evaluated at α̂

and β̂, the MLEs of α and β. Here, the expressions ĝα, ĝβ, ĝαα, ĝαβ and ĝββ denote the first
and the second order partial derivatives of g with respect α and β evaluated at the MLEs of
α and β. First note that, the expressions of lα, lβ, lαα, lββ and lαβ are given in (3.4), (3.5),
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(3.6), (3.7) and (3.8), respectively. The third order of partial derivatives of the log-likelihood
function with respect to α and β are given by

lααα =
2n

α3
+

n∑
i=1

C2
i Ci,ααα − 3CiCi,αCi,αα + 2C3

i,α

C3
i

,

lβββ =
2n

β3
+

n∑
i=1

C2
i Ci,βββ − 3CiCi,βCi,ββ + 2C3

i,β

C3
i

,

lαββ =
n∑

i=1

C2
i Ci,αββ − 2CiCi,βCi,αβ − CiCi,αCi,ββ + 2Ci,αC2

i,β

C3
i

,

lααβ =
n∑

i=1

C2
i Ci,ααβ − 2CiCi,αCi,αβ − CiCi,ααCi,β + 2C2

i,αCi,β

C3
i

,

where

Ci =
∫

A(x)µx̃i(x)dx,

Ci,α =
∫

Aα(x)µx̃i(x)dx,Ci,αα =
∫

Aαα(x)µx̃i(x)dx, Ci,ααα =
∫

Aααα(x)µx̃i(x)dx,

Ci,β =
∫

Aβ(x)µx̃i(x)dx,Ci,ββ =
∫

Aββ(x)µx̃i(x)dx,Ci,βββ =
∫

Aβββ(x)µx̃i(x)dx,

Ci,αβ =
∫

Aαβ(x)µx̃i(x)dx,Ci,ααβ =
∫

Aααβ(x)µx̃i(x)dx,Cαββ =
∫

Aαββ(x)µx̃i(x)dx,

and

Aααα(x) = x2α−1(β + 1)(log(x))3(1 + xα)−β−4
[
− x2α(β + 2)(β + 3)

+ 6xα(1 + xα)(β + 2)− 7(1 + xα)2
]

+ xα−1(log(x))3(1 + xα)−β−1,

Aβββ(x) = − xα−1(log(1 + xα))3(1 + xα)−β−1,

Aαββ(x) = xα−1 log(1 + xα) log(x)(1 + xα)−β−2
[
− xα(β + 1) log(1 + xα),

+ 2xα + log(1 + xα)(1 + xα)
]
,

Aααβ(x) = (β + 1)(log(x))2x2α−1(1 + xα)−β−3
[
− xα(β + 2) log(1 + xα) + xα

+ 3(1 + xα) log(1 + xα)
]

+ (log(x))2x2α−1(1 + xα)−β−3
[
xα(β + 2)

− 3(1 + xα)
]
− (log(x))2xα−1(1 + xα)−β−1 log(1 + xα).

The function ρ given by

ρ(α, β) = (a− 1) log(α)− bα + (c− 1) log(β)− dβ

has the following partial derivatives:

ρα =
∂ρ(α, β)

∂α
=

a− 1
α

− b,

ρβ =
∂ρ(α, β)

∂β
=

c− 1
β

− d.
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In addition (
σαα σαβ

σαβ σββ

)
=

(
−lαα −lαβ

−lαβ −lββ

)−1

.

If g(α, β) = α, we obtain gα = 1 and gαα = gβ = gββ = gαβ = 0. Thus the Bayes estimator
using Lindley’s approximation is given by

α̂ = α̂MLE + ρ̂ασ̂αα + ρ̂βσ̂βα +
1
2

[
σ̂αα(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂βα)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββ ˆσβα + l̂βββσ̂ββ)
]
.

If g(α, β)=β, we obtain gβ = 1 and gαα = gα = gββ = gαβ = 0. Then the Bayes estimates of
β is given by

β̂ = β̂MLE + ρ̂ασ̂βα + ρ̂βσ̂ββ +
1
2

[
σ̂αβ(l̂ααασ̂αα + l̂ααβσ̂αβ + l̂ααβσ̂βα + l̂αββσ̂ββ)

+ (σ̂ββ)(l̂ααβσ̂αα + l̂αββσ̂αβ + l̂αββσ̂βα + l̂βββσ̂ββ)
]
.

4.2. Tierney–Kadane approximation

In this subsection, we utilize another approximation of the integral (4.2) to compute
the Bayes estimators. Using Laplace transformation, Tierney and Kadane [33] proposed an
alternative method to approximate the ratio of integrals. The advantage of using Tierney–
Kadane method is that it requires only the first and the second derivatives of the posterior
density. The posterior expectation of a g(α, β) can be written as

E(g(α, β|˜̃x)) =

∫∞
0

∫∞
0 enH∗(α,β)dαdβ∫∞

0

∫∞
0 enH(α,β)dαdβ

,(4.5)

where

H(α, β) =
1
n

[
(a− 1) log(α)− bα + (c− 1) log(β)− dβ + l(α, β|x̃)

]
,

H∗(α, β) = H(α, β) +
1
n

log(g(α, β)).

Then the integral given in Equation (4.5) can be approximated by

ĝ(α, β) =
(det

∑∗

det
∑ ) 1

2 exp{n[H∗(ᾱ∗, β̄∗)−H(ᾱ, β̄)]},(4.6)

where (ᾱ∗, β̄∗) and (ᾱ, β̄) maximize H∗ and H, respectively,
∑∗ and

∑
are the negatives

of the inverse Hessian matrix of H∗ and H evaluated at (ᾱ∗, β̄∗) and (ᾱ, β̄), respectively.
Therefore (ᾱ, β̄) can be obtained by solving the following two equations

Hα =
∂H(α, β)

∂α
=

a− 1
α

− b + lα(α, β|x̃) = 0,

Hβ =
∂H(α, β)

∂β
=

c− 1
β

− d + lβ(α, β|x̃) = 0,
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and from the second derivatives of H(α, β), the determinant of the negative of the inverse
Hessian of H (α, β) at (ᾱ, β̄) is given by

det
∑

=
(
H̄ααH̄ββ − H̄2

αβ

)−1
,

where

H̄αα ≡ ∂H̄α

∂α
= −a− 1

ᾱ2
+ lαα(ᾱ, β̄|x̃),

H̄ββ ≡
∂H̄β

∂β
= −a− 1

β̄2
+ lββ(ᾱ, β̄|x̃),

H̄αβ ≡ ∂H̄α

∂β
= lαβ(ᾱ, β̄|x̃).

Similarly, for the function H∗(α, β), the determinant of the negative of the inverse Hessian
of H∗(α, β) evaluated at (ᾱ∗, β̄∗) is given by

det
∑∗

= (H̄∗
ααH̄∗

ββ − H̄∗2
αβ)−1.

For g(α, β) = α, we get

H∗
α(α, β) = H(α, β) +

1
n

log(α)

and consequently, we have

H∗
α,α =

∂H∗(α, β)
∂α

= Hα +
1

nα
,

H∗
α,β =

∂H∗(α, β)
∂β

= Hβ,

H∗
α,αβ =

∂H∗(α, β)
∂αβ

= Hαβ ,

H∗
α,αα =

∂H∗
1

∂α
= Hαα −

1
nα2

,

H∗
α,ββ =

∂H∗
2

∂β
= Hββ.

For g(α, β) = β, we have

H∗
β(α, β) =

1
n

log(β) + H(α, β)

and

H∗
β,α =

∂H∗(α, β)
∂α

= Hα,

H∗
β,β =

∂H∗(α, β)
∂β

= Hβ +
1

nβ
,

H∗
β,αβ =

∂H∗(α, β)
∂αβ

= Hαβ ,

H∗
β,αα =

∂D∗1
∂α

= Hαα,

H∗
β,αα =

∂D∗2
∂β

= Hββ −
1

nβ2
.

Finally, substituting the above expressions in (4.6), we obtain the Bayes estimates of α and β.
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4.3. Highest posterior density estimation

The highest posterior density estimation is another popular method used to compute
the Bayes estimates. The highest posterior density (HPD) estimate represents the mode of
the posterior density. The Bayes estimates using HPD method can be obtained by solving
the equations

∂π(α, β|x̃)
∂α

=
n + a− 1

α
− b +

∫
Aα(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0,(4.7)

∂π(α, β|x̃)
∂β

=
n + c− 1

β
− d +

∫
Aβ(x)µx̃i(x)dx∫
A(x)µx̃i(x)dx

= 0.(4.8)

It can be seen that, the solutions of the above two equation cannot be obtained explicitly
and, similar to the maximum likelihood method, numerical methods like Newton–Raphson
can be used to solve them.

5. SIMULATION EXPERIMENTS

In this section, we conduct Monte-Carlo simulation experiments to show how the various
approaches work with different sample sizes. The performance of the proposed approaches
was compared on the basis of their expected biases, root mean square error, average of
standard errors and of 95% confidence intervals. The true values of the parameters (α, β) are
assumed to be (1.25, 1.5), (1.5, 0.5) and (0.5, 0.75), respectively. The sample sizes are chosen
as n = 25, 50 and 100 to represent small, moderate and large samples, respectively. Each
observation from Burr type XII, xi, was then fuzzified with the corresponding membership
function µ

exi
(x), where

µ
exi

(x) =



x− (xi − ai)
ai

, if xi − ai ≤ x ≤ xi,

(xi + ai)− x

ai
, if xi ≤ x ≤ xi + ai,

0, otherwise,

(5.1)

and ai = 0.05xi (see, for example, Pak and Chatrabgoun ([24]), Pak et al. ([27]), Chaturvedi
([6])). That is the observer is unable to provide exact value of observation and an interval
of plausible values [xi − ai, xi + ai] is provided. For example the triangular fuzzy number
(0.1805, 0.1995) represents the observed value 0.19 i.e. the interval of plausible values of 0.19
is [0.1805, 0.1995]. Then, we compute the MLEs of α and β for the fuzzy sample via Newton–
Raphson (NR) and Expectation-Maximization (EM) algorithm. The process is replicated
1000 times. In each replication, we compute the average of biases (Bias), sample standard
error (SSE) and the root mean squared error (RMSE) using the expressions

Bias(θ) =
1
k

k∑
i=1

(θi − θ0),
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SSE(θ) =

√√√√1
k

k∑
i=1

(θi − θ̄)2

and

RMSE(θ) =

√√√√1
k

k∑
i=1

(θi − θ0)2,

where θ represents α or β, θ0 is the true value of θ, θ̄ is the mean of the estimates of θ and k is
the number of replications. Moreover, to compute the estimated standard error (ESE) for the
MLEs, we use the observed information matrix given in (3.11). Approximated 95% confidence
intervals for the MLE are constructed using the observed information matrix. Moreover, in
each iteration, we compute the Bayes estimators using Lindley’s approximation, Tierney–
Kadane approximation and highest posterior density (HP) methods. At the end, we compute
the averages of the absolute biases, sample standard deviation, estimated standard deviation,
root mean squared error and 95% confidence intervals. For computing Bayes estimators, we
consider gamma priors for α and β with hyperparameters (a, b) and (c, d) , respectively. To
make the comparison meaningful, it is assumed that the priors are non-informative a = b =
c = d = 0 but these priors are improper priors hence we have tried a = b = c = d = 0.001 to
get proper priors. However, these results are same as those obtained for improper priors. The
simulation results of the MLEs and Bayes estimators are reported in Tables 1–2. We have
utilized R-4.0.3 software to compute the proposed estimators. The stopping criteria for the
algorithms is based on the sum of the absolute differences between two consecutive values of
parameters estimates less than 10−4.

From Table 1, we observe that the biases for all estimators, in general, are reasonably
small which indicate that the estimated values are close to the true parameter values. As
expected, the biases of all estimators become better when the sample size increases. The
values of sample standard error (SSE) of the MLEs are approximately close to estimated
standard error (ESE) for all the cases and hence the estimated standard error can be used
to estimate the standard error of the estimators. In addition, the Bias, SSE, ESE, RMSE
and the length of 95% confidence inetrvals of all MLEs are decreasing when sample sizes
increasing for all the cases. The estimated coverage probabilities of 95% confidence intervals
(CP) are very close to the nominal level for all the cases. Hence, the performance of the
MLEs are satisfactory in terms of the biases, standard errors and coverage probabilities of
the estimates. Moreover, the Bias of the computed MLEs estimators using EM algorithm for
most of the cases are slightly higher than that of the MLEs computed using EM-algorithm.
In addition, the central processing time CPU required for NR per iteration is shorter than
that of EM algorithm. Figure 1 demonstrates the histograms for the MLEs of α and β when
n = 100 for the three sets of values. The histograms show approximately normal distribution
of the MLEs of α and β.

From Table 2, the biases of the Bayesian estimates of all three methods are also rea-
sonably small. It is clear that the Bias and RMSE are decreasing for increasing values of
sample sizes. Moreover, the Bias and RMSE of the Bayes estimates obtained under highest
posterior density (HP) are smaller than that of Lindley’s method (LN) and Tierney–Kadane
approximation (TK). Hence we recommend to use HP method for computing Bayes estima-
tor. From the above results, we conclude that the estimation methods proposed in the article
to compute the MLEs and Bayes estimators perform very well.
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Table 1: Simulation results for MLEs of α and β.

n Bias RMSE ESE SSE 95% CI Length CP

25

α = 1.25
NR 0.068 0.258 0.218 0.249 (0.95, 1.82) 0.87 93.6
EM 0.069 0.255 0.218 0.245 (0.93, 1.81) 0.88 93.8

β = 1.50
NR 0.072 0.353 0.321 0.345 (1.05, 2.35) 1.30 94.1
EM 0.075 0.350 0.320 0.342 (1.01, 2.30) 1.29 94.8

50

α = 1.25
NR 0.029 0.162 0.150 0.159 (1.02, 1.61) 0.59 94.5
EM 0.031 0.160 0.152 0.160 (1.04, 1.60) 0.56 94.6

β = 1.50
NR 0.027 0.226 0.220 0.224 (1.15, 2.03) 0.88 95.0
EM 0.029 0.225 0.218 0.222 (1.11, 1.98) 0.87 95.0

100

α = 1.25
NR 0.013 0.106 0.104 0.105 (1.07, 1.48) 0.41 94.9
EM 0.015 0.108 0.103 0.105 (1.08, 1.46) 0.38 94.8

β = 1.50
NR 0.012 0.153 0.154 0.153 (1.24, 1.85) 0.61 95.0
EM 0.012 0.155 0.156 0.155 (1.24, 1.83) 0.59 95.1

25

α = 1.50
NR 0.155 0.511 0.415 0.484 (1.01, 2.72) 1.71 93.8
EM 0.157 0.515 0.413 0.486 (1.02, 2.72) 1.70 93.6

β = 0.50
NR 0.007 0.143 0.135 0.146 (0.29, 0.87) 0.58 94.8
EM 0.007 0.144 0.138 0.144 (0.30, 0.87) 0.57 94.3

50

α = 1.50
NR 0.062 0.290 0.270 0.291 (1.12, 2.19) 1.07 94.7
EM 0.067 0.297 0.269 0.290 (1.12, 2.19) 1.07 94.5

β = 0.50
NR 0.002 0.098 0.098 0.097 (0.34, 0.73) 0.39 95.0
EM 0.003 0.097 0.097 0.097 (0.34, 0.73) 0.39 95.0

100

α = 1.50
NR 0.026 0.188 0.182 0.186 (1.21, 1.93) 0.72 95.2
EM 0.027 0.187 0.180 0.185 (1.20, 1.93) 0.73 95.4

β = 0.50
NR 0.002 0.069 0.069 0.070 (0.38, 0.66) 0.28 94.9
EM 0.001 0.071 0.072 0.071 (0.38, 0.65) 0.27 94.9

25

α = 0.50
NR 0.080 0.280 0.211 0.267 (0.51, 1.37) 0.86 93.4
EM 0.082 0.270 0.210 0.265 (0.51, 1.38) 0.87 93.8

β = 0.75
NR 0.006 0.140 0.140 0.143 (0.30, 0.86) 0.56 94.4
EM 0.007 0.145 0.138 0.145 (0.30, 0.86) 0.56 94.2

50

α = 0.50
NR 0.033 0.149 0.134 0.145 (0.56, 1.10) 0.54 94.5
EM 0.034 0.150 0.132 0.143 (0.56, 1.10) 0.56 94.6

β = 0.75
NR 0.002 0.096 0.095 0.095 (0.34, 0.73) 0.39 95.0
EM 0.002 0.097 0.097 0.097 (0.34.0.73) 0.39 95.2

100

α = 0.50
NR 0.013 0.094 0.096 0.093 (0.60, 0.97) 0.37 95.2
EM 0.013 0.092 0.091 0.094 (0.60, 0.96) 0.36 95.5

β = 0.75
NR 0.003 0.069 0.070 0.069 (0.38, 0.66) 0.28 94.9
EM 0.002 0.070 0.069 0.070 (0.38, 0.65) 0.27 94.6
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Figure 1: Histograms of the estimated values of the MLEs, α̂ and β̂, for n = 100.
The first line for (α = 1.25, β =1.5), the second line for (α =1.5, β = 0.5)
and the third line for (α = 0.5, β = 0.75).
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Table 2: Simulation results for Bayesian estimates of α and β.

n LN TK HPD LN TK HPD

α = 1.25 β = 1.5

25
Bias 0.068 0.065 0.040 0.068 0.067 0.014
RMSE 0.259 0.264 0.247 0.348 0.345 0.328

50
Bias 0.029 0.029 0.016 0.025 0.022 0.003
RMSE 0.162 0.160 0.158 0.224 0.220 0.218

100
Bias 0.013 0.012 0.006 0.011 0.009 −0.001
RMSE 0.106 0.105 0.105 0.153 0.152 0.151

α = 1.5 β = 0.5

25
Bias 0.191 0.199 0.140 0.015 0.015 −0.009
RMSE 0.529 0.556 0.504 0.141 0.143 0.140

50
Bias 0.084 0.080 0.058 0.006 0.004 −0.006
RMSE 0.309 0.309 0.295 0.096 0.096 0.095

100
Bias 0.030 0.034 0.022 0.007 0.004 −0.002
RMSE 0.191 0.190 0.187 0.069 0.071 0.068

α = 0.5 β = 0.75

25
Bias 0.103 0.105 0.075 0.014 0.015 −0.009
RMSE 0.298 0.306 0.276 0.142 0.144 0.141

50
Bias 0.042 0.040 0.029 0.005 0.006 −0.006
RMSE 0.152 0.154 0.147 0.096 0.092 0.095

100
Bias 0.018 0.017 0.011 0.004 0.002 −0.002
RMSE 0.095 0.092 0.093 0.069 0.070 0.068

6. APPLICATION EXAMPLES

In this section, we analyze three real data sets to explain how the proposed approaches
can be applied in real data analysis. We are assuming that each observation in any of these
datasets, xi, is reported as a fuzzy numbers with membership function given in (5.1). For
computing Bayes estimators in this section, we assume gamma priors with hyperparameters
a = b = c = d = 0.001. This choice of hyperparameters will make the priors proper. However,
we have tried to consider different values of hyperparameters, for example, we have considered
the cases a = b = c = d = 1, and a = 2, b = 1, c = 2, d = 1 and the results are not much
different than that we have obtained from that case, and are not reported due to the space.

Example 1. The first data set was considered and analyzed by Zimmer et al. ([37])
and Lio et al. ([19]). The dataset contains the 19 times in minutes to oil breakdown
of an insulating fluid under high test voltage (34 kV). The data set is listed as follows:
0.19, 0.78, 0.96, 0.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52,
33.91, 36.71, 72.89. Lio et al. ([19]) showed that the two-parameters Burr type XII fits the
data set very well. The MLEs of (α, β) using Newton–Raphson method are (1.440, 0.354) with
standard errors (0.435, 0.126) and 95% confidence intervals (0.588, 2.292) and (0.106, 0.601),
respectively, and MLEs using EM algorithm are (1.436, 0.357) with estimated standard error
(0.431, 0.127) and 95% confidence intervals (0.590, 2.281) and (0.108, 0.606). In addition, the
Bayes estimates of (α, β) are (1.427, 0.338) using Lindley’s approximation, (1.507, 0.364) using
Tierney–Kadane approximation and (1.427, 0.338) using highest posterior density method.
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Example 2. Lawless ([16]) reported the time between failure of air conditioning
equipment in a particular type of aircraft. These observations are:

0.500, 0.875, 1.083, 1.125, 1.208, 1.208, 2.00, 2.375,

2.458, 2.917, 3.083, 6.375, 13.583, 16.083, 20.917.

Kayal et al. ([14]) concluded that Burr type XII model fits the data set quite good. The MLEs
of (α, β) using Newton–Raphson method are (3.571, 0.275) with standard errors (1.488, 0.127)
and 95% confidence intervals (0.654, 6.487) and (0.026, 0.524), respectively, and MLEs using
EM algorithm are (3.500, 0.284) with estimated standard error (1.434, 0.129) and 95% con-
fidence intervals (0.690, 6.311) and (0.031, 0.537), respectively. In addition, the Bayes esti-
mates of (α, β) are (3.519, 0.260) using Lindley’s approximation, (3.921, 0.289) using Tierney–
Kadane approximation and (3.519, 0.260) using highest posterior density method.

Example 3. In this example, we analyze a dataset that represents the survival time
of animals observed due to different dosage of poison administered (see Box and Cox ([4])).
The observations are listed as:

0.18, 0.21, 0.22, 0.22, 0.23, 0.23, 0.23, 0.24, 0.25, 0.29, 0.29, 0.30,

0.30, 0.31, 0.31, 0.31, 0.33, 0.35, 0.36, 0.36, 0.37, 0.38, 0.38, 0.40,

0.40, 0.43, 0.43, 0.44, 0.45, 0.45, 0.45, 0.46, 0.49, 0.56, 0.61, 0.62,

0.63, 0.66, 0.71, 0.71, 0.72, 0.76, 0.82, 0.88, 0.92, 1.02, 1.10, 1.24.

Kayal et al. ([14]) analyzed the above data and they concluded that the data might have
come from a two-parameter Burr type XII distribution. The MLEs of (α, β) using Newton–
Raphson method are (2.346, 4.938) with standard errors (0.231, 0.822) and 95% confidence
intervals (1.893, 2.798) and (1.887, 2.785), respectively, and MLEs using EM algorithm are
(2.336, 5.075) with estimated standard error (0.229, 0.850) and 95% confidence intervals
(3.326, 6.550) and (3.408, 6.742), respectively. In addition, the Bayes estimates of (α, β) are
(2.373, 4.928) using Lindley’s approximation, (2.338, 4.923) using Tierney–Kadane approxi-
mation and (2.304, 4.761) using highest posterior density method.

7. CONCLUSION

In this article, we have considered both classical and Bayesian analysis of fuzzy survival
time observations when the lifetime of the items follows two-parameter Burr type XII dis-
tribution. The MLEs do not have explicit forms. Thus, Newton–Raphson and Expectation-
Maximization algorithms have been used to compute the MLEs and both of them work quite
well. The Bayes estimates under the squared error loss function also do not exist in explicit
form. In this case, we have proposed to use Lindley’s approximation, Tierney–Kadane approx-
imation and highest posterior density method to compute the Bayes estimates when the two
unknown parameters have independent gamma priors. However, we have considered gamma
priors, but a more general prior, namely a prior which has the log-concave p.d.f. may be used,
and the method can be easily incorporated in that case. Moreover, in Bayesian estimation,
we proposed to use a very well-known symmetric loss function which is the squared-error loss
function. However, we may extend the results of the paper by adopting other loss function
like LINEX. Another direction for extension is to consider censored fuzzy observations like
type II progressively censored fuzzy observations.



422 A.A. Hussein and R. Al-Mosawi

A. Proof of Theorem 3.1

Recall that, the log-likelihood function of α and β is given by

l(α, β|x̃) = n log α + n log β +
n∑

i=1

log
∫

A(x)µx̃i(x)dx,

where

A(x) = xα−1(1 + xα)−β−1.(A.1)

Observe that, for fixed β > 0, we have

lim
α→0

l(α, β|x̃) = lim
α→∞

l(α, β|x̃) = −∞

and, for fixed α > 0, we have

lim
β→0

l(α, β|x̃) = lim
β→∞

l(α, β|x̃) = −∞.

We can see that
∂2 log(A(x))

∂α2
= −(β + 1)(log(x))2xα

(1 + xα)2
< 0

for fixed β > 0, i.e., A(x) is strictly log-concave in α for fixed β > 0. Similarly, we can prove that
A(x) is log-concave in β for fixed α > 0. By Prekopa–Leindler inequality (see Gardner [10])
we obtain that

∫
A(x)µx̃i(x)dx is strictly log-concave in α (or β) for fixed β > 0 (or α > 0).

Therefore, for fixed α (or β), l(α, β|x̃) is strictly concave and unimodal function with respect
to β (or α). Moreover,

lim
α→0
β→0

l(α, β|x̃) = lim
α→0
β→∞

l(α, β|x̃) = lim
α→∞
β→0

l(α, β|x̃) = lim
α→∞
β→∞

l(α, β|x̃) = −∞.

The rest of the proof is the same as that of Dey et al. ([9]).

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees and the associate editor for making
many helpful comments and suggestions on an earlier version of this manuscript which resulted
in this improved version.



Estimating the parameters of Burr type XII distribution with fuzzy observations 423

REFERENCES

[1] AL-Baldawi, T.H.K.; Rasheed, H.A. and Jaseim, S.H. (2015). Using generalized square
loss function to estimate the shape parameter of the Burr type XII distribution, International
Journal of Advanced Research, 3(5), 393–398.

[2] Basharat, H.; Mustafa, S.; Mahmood, S. and Jun, Y.B. (2019). Inference for the linear
combination of two independent exponential random variables based on fuzzy data, Hacettepe
Journal of Mathematics and Statistics, 48(6), 1859–1869.

[3] Belaghi, R.A.; Noori Asl, M.N. and Singh, S. (2017). On estimating the parameters of
the Burr XII model under progressive type-I interval censoring, Journal of Statistical Compu-
tation and Simulation, 87(16), 3132–3151.

[4] Box, G.E. and Cox, D.R. (1964). An analysis of transformations, Journal of the Royal
Statistical Society: Series B (Methodological), 26(2), 211–243.

[5] Burr, I.W. (1942). Cumulative frequency functions, The Annals of Mathematical Statistics,
13(2), 215–232.

[6] Chaturvedi, A.; Singh, S.K. and Singh, U. (2018). Statistical inferences of type II progres-
sively hybrid censored fuzzy data with Rayleigh distribution, Austrian Journal of Statistics,
47(3), 40–62.

[7] Dempster, A.P.; Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incom-
plete data via the EM algorithm, Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1), 1–22.

[8] Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm,
Fuzzy Sets and Systems, 183(1), 72–91.

[9] Dey, T.; Dey, S. and Kundu, D. (2016). On progressively type-II censored two-parameter
Rayleigh distribution, Communications in Statistics – Simulation and Computation, 45(2),
438–455.

[10] Gardner, R. (2002). The Brunn-Minkowski inequality, Bulletin of the American Mathemat-
ical Society, 39(3), 355–405.

[11] Ghitany, M. and Al-Awadhi, S. (2002). Maximum likelihood estimation of Burr XII dis-
tribution parameters under random censoring, Journal of Applied Statistics, 29(7), 955–965.

[12] Hakim, A.R.; Novita, M. and Fithriani, I. (2019). Using Jeffrey prior information to
estimate the shape parameter of Burr distribution, Journal of Physics: Conference Series,
IOP Publishing, 1218(1).

[13] Jaheen, Z.F. and Okasha, H.M. (2011). E-Bayesian estimation for the Burr type XII model
based on type II censoring, Applied Mathematical Modelling, 35(10), 4730–4737.

[14] Kayal, T.; Tripathi, Y.M.; Rastogi, M.K. and Asgharzadeh, A. (2017). Inference for
Burr XII distribution under type-I progressive hybrid censoring, Communications in Statistics
– Simulation and Computation, 46(9), 7447–7465.

[15] Khoolenjani, N.B. and Shahsanaie, F. (2016). Estimating the parameter of exponen-
tial distribution under type II censoring from fuzzy data, Journal of Statistical Theory and
Applications, 15(2), 181–195.

[16] Lawless, J.F. (2011). Statistical Models and Methods for Lifetime Data, John Wiley & Sons.

[17] Li, X.; Shi, Y.; Wei, J. and Chai, J. (2007). Empirical Bayes estimators of reliability
performances using LINEX loss under progressively type II censored samples, Mathematics
and Computers in Simulation, 73(5), 320–326.

[18] Lindley, D.V. (1980). Approximate Bayesian methods, Trabajos de Estad́ıstica y de Inves-
tigación Operativa, 31(1), 223–245.



424 A.A. Hussein and R. Al-Mosawi

[19] Lio, Y.; Tsai, T.R. and Wu, S.J. (2010). Acceptance sampling plans from truncated life
tests based on the Burr type XII percentiles, Journal of the Chinese institute of Industrial
Engineers, 27(4), 270–280.

[20] Makhdoom, I.; Nasiri, P. and Pak, A. (2016). Estimating the parameter of exponential
distribution under type II censoring from fuzzy data, Journal of Modern Applied Statistical
Methods, 15(2) 495–509.

[21] Moore, D. and Papadopoulos, A.S. (2000). The Burr type XII distribution as a failure
model under various loss functions, Microelectronics Reliability, 40(12), 2117–2122.

[22] Mousa, M.A. and Jaheen, Z. (2002). Statistical inference for the Burr model based on
progressively censored data, Computers & Mathematics with Applications, 43(10), 1441–1449.

[23] Pak, A. (2017). Statistical inference for the parameter of Lindley distribution based on fuzzy
data, Brazilian Journal of Probability and Statistics, 31(3), 502–515.

[24] Pak, A. and Chatrabgoun, O. (2016). Inference for exponential parameter under pro-
gressive type II censoring from imprecise lifetime, Electronic Journal of Applied Statistical
Analysis, 9(1), 227–245.

[25] Pak, A.; Khoolenjani, N.B.; Alamatsaz, M.H. and Mahmoudi, M.R. (2020). Bayesian
method for the generalized exponential model using fuzzy data, International Journal of Fuzzy
Systems, 22(4), 1243-1260.

[26] Pak, A. and Mahmoudi, M.R. (2018). Estimating the parameters of Lomax distribution
from imprecise information, Journal of Statistical Theory and Applications, 17(1), 122–135.

[27] Pak, A.; Parham, G.A. and Saraj, M. (2013a). Inference for the Weibull distribution
based on fuzzy data, Revista Colombiana de Estadistica, 36(2), 337–356.

[28] Pak, A.; Parham, G.A. and Saraj, M. (2013b). On estimation of Rayleigh scale parameter
under doubly type II censoring from imprecise data, Journal of Data Science, 11(2), 305–322.

[29] Panahi, H. and Asadi, S. (2011). Analysis of the type II hybrid censored Burr type XII
distribution under LINEX loss function, Applied Mathematical Sciences, 5, 3929–3942.

[30] Pradhan, B. and Kundu, D. (2014). Analysis of interval-censored data with Weibull lifetime
distribution, Sankhya B, 76(1), 120–139.

[31] Rao, G.S.; Aslam, M. and Kundu, D. (2015). Burr-XII distribution parametric estimation
and estimation of reliability of multicomponent stress-strength, Communications in Statistics
– Theory and Methods, 44(23), 4953–4961.

[32] Shafiq, M. (2017). Classical and Baysian inference of Pareto distribution and fuzzy life times,
Pakistan Journal of Statistics, 33(1), 15–25.

[33] Tierney, L. and Kadane, J.B. (1986). Accurate approximations for posterior moments and
marginal densities, Journal of the American Statistical Association, 81(393), 82–86.

[34] Wahed, A.S. (2006). Bayesian inference using Burr model under asymmetric loss function:
an application to carcinoma survival data, Journal of Statistical Research, 40(1), 45–57.

[35] Wang, F.; Keats, J.B. and Zimmer, W.J. (1996). Maximum likelihood estimation of the
Burr XII parameters with censored and uncensored data, Microelectronics Reliability, 36(3),
359–362.

[36] Zadeh, L.A. (1968). Probability measures of fuzzy events, Journal of Mathematical Analysis
and Applications, 23(2), 421–427.

[37] Zimmer, W.J.; Keats, J.B. and Wang, F. (1998). The Burr XII distribution in reliability
analysis, Journal of Quality Technology, 30(4), 386–394.


	"Estimating the Parameters of Burr Type XII Distribution with Fuzzy Observations"
	1 INTRODUCTION
	2 BASIC DEFINITION OF FUZZY SETS
	3 MAXIMUM LIKELIHOOD ESTIMATION
	3.1 Newton--Raphson algorithm
	3.2 EM Algorithm

	4 BAYESIAN ESTIMATION
	4.1 Lindley's Approximation
	4.2 Tierney--Kadane approximation
	4.3 Highest posterior density estimation

	5 SIMULATION EXPERIMENTS
	6 APPLICATION EXAMPLES
	7 CONCLUSION
	A Proof of Theorem 3.1
	ACKNOWLEDGMENTS
	REFERENCES

