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Abstract:

The aim of this paper is to discuss the presence of the Taylor property in the class
of simple bilinear models. Considering strictly and weakly stationary models, we
deduce autocorrelations of the process and of its square and analyze the presence of
the Taylor property in non-negative bilinear models considering several error process
distributions, which are chosen according to the kurtosis value. For each one of
these error process distributions, the class of parameterizations for the corresponding
bilinear model satisfying Taylor property is obtained. The analysis of the relationship
between the Taylor property and leptokurtosis in these bilinear processes allows to
conclude that this property is a consequence of heavy tailed model distributions.

With the goal of extending this research to real valued bilinear models, a simulation
study is developed in a class of such models with symmetrical innovations.
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1. INTRODUCTION

The search for non-trivial empirical regularities in time series, usually called
stylized facts, has been the subject of several studies in order to identify classes
of time series models that conveniently capture such empirical properties.
A stylized fact detected by Taylor ([9]) when he analyzed 40 returns series is
known as the Taylor effect. He observed that, for most of the returns series,
denoted by X; for instant ¢, the sample autocorrelations of the absolute re-
turns, px|(n) = corr(| X[, |X¢—nl), were larger than those of the squared returns,
px2(n) = corr(X2, X2_,,), for n € {1,...,30}. More recently, Gongalves et al. ([2])
also recorded Taylor effect in the physical time series of plage region areas de-
scribing solar activity.

We point out that there is still little research on the theoretical counterpart
on this empirical property due to the difficulty of handling the true autocorrela-
tions of time series models. For example, this theoretical counterpart was studied
by He and Tersvirta ([5]) on conditionally Gaussian absolute value generalized
ARCH (AVGARCH) models, assuring its presence for some of these models.
More precisely, they called the theoretical relation px|(n) > px2(n), n > 1, the
Taylor property and concentrated their study on the autocorrelation of lag 1.
Analogously, Gongalves, Leite and Mendes-Lopes ([1]) studied the presence of
the Taylor property in TARCH models, concluding that this property is satisfied
when n = 1, for some first-order models. Generalizing these papers, Haas ([4])
proposed a methodology for identifying the Taylor property in AVGARCH(1,1)
models at all lags.

The research of this property within heteroskedastic models is mainly re-
lated to the empirical facts observed and the good fit of those models to financial
time series. The established results have shown a strong connection between the
Taylor property and the kurtosis of the process; in fact, its presence seems to be
more related to the leptokurtic character of those models than to its conditional
heteroskedascity. This interpretation is consistent with the leptokurtic nature of
the real series presenting such stylized fact. Thus, we believe that it is important
to assess the presence of the Taylor property in other classes of processes with
relevance in time series analysis as it is the case of bilinear ones, which have also
been proven to be suitable in financial and physical time series modeling ([3],
p. 181).

In this paper we consider the simple bilinear diagonal model
(11) Xt = ﬁXt_k?:t_k +é&t, k>0 s

where [ is a real parameter and (¢, t € Z) a sequence of i.i.d. random variables,
designated here by error process.
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We state sufficient conditions for the strict and weak stationarity of the
processes X = (X;,t € Z) and X% = (X?,t € Z), and we derive expressions for
the moments of X up to the 4th order. We also consider the study of the Taylor
property assuming that § > 0 and that the error process is non-negative. In
fact, there has been considerable interest in non-negative bilinear models. For
instance, Pereira and Scotto ([7]) studied some properties of the simple first-order
bilinear diagonal model (k = 1) driven by exponentially distributed innovations.
Also Zhang and Tong ([10]) have examined some distributional properties of a
simple first-order non-negative bilinear model considering for the error process
the uniform distribution in (0, 1).

The remainder of the paper is organized as follows. In Section 2 we establish
sufficient conditions under which X and X? are strictly and weakly stationary.
Moreover, the moments of X up to 4th order are evaluated and a working example
on this matter is presented in appendix. In Section 3, the Taylor property in first-
order bilinear diagonal models with non-negative error process is analyzed. This
study is developed considering several distributions for the error process with
significantly different kurtosis values. A simulation study evaluating the Taylor
property in other real-valued simple bilinear models is presented in Section 4.
Some concluding remarks and future developments are given in Section 5.

2.  STATIONARITY AND MOMENTS OF X AND X?

In this section we consider the simple bilinear model defined by (1.1) and
we denote y; = E(el), i € N.

Proposition 2.1. Suppose that py and E(In|ey|) exist. If 3% iz < 1 then
the process X is strictly and weakly stationary.

Proof: The strict stationarity of the process X is achieved by proving that

X; =Y, as., with
+oo

Y;f:&t‘f'ZTna

n=1

where, for each n € N, T,, = T,,(¢) is given by

n
T, = ﬂnet—nk Het—jk .
i=1

The proof of this result is similar to that of Theorem 1 in Quinn ([8]), as the
condition 3?us < 1 implies Quinn’s condition In |3| + E(In|e|) < 0 by applying
Jensen’s inequality to the random variable 2.
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To prove the weak stationarity, we now verify that E(Y;?) < +o00. We have
~+00 2
E(YP) = E ( + ZTz)
i=1
E(?) + QZE led| |T3]) + ZZE IT,T}]) .

=1 j=1

(2.1)

| /\

Under the given conditions, each series in (2.1) is convergent. In fact, let us
[ el o)

consider, for example, the series Z Z E(|T;Ty)).
i=1 j=1

For each 7,7 € N, we have

1/2
BT < 1519 [B(ot et st o)
1/2
[19(5?—jk5?—k5§—2k~-5?-@>4)k)]
_ 1/2]%47
= M4M21[(52M2) / } ’

by Schwarz’s inequality and the independence of ther.v/se;, t€Z. As (BQ ,ug)l/ < 1,
the series is convergent.

Taking into account the equality X; = Y%, a.s., and the strict stationarity of
the process X, we conclude that E(X?) exists and that X is weakly stationary.
O

Proposition 2.2. Suppose that E(In|e;|) and pg exist. If 3*j4 < 1 then
the process X? is strictly and weakly stationary.

Proof: The condition $%uy < 1 implies 3%us < 1, by Schwarz’s inequality,
which implies in turn the strict stationarity of X and, consequently, of X2. The
proof of the weak stationarity of X? is analogous to the previous one. We have

[ e Ol e S B¢ e

E(Y}) < E(eh) + > > EB(TTT,T,)) +4ZE\5t||T|
i=1 j=1 p=1 g=1

A S Bl M) + 633 BETT)

i=1 j=1 p=1 i=1 j=1

[o¢] o0 o0 (o]
Let us consider, for example, the series Z Z Z Z E(|T;T;T,Ty|), which
=1 j=1p=1 g=1
is a sum of series of the types
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> D2 2 BULTTLT,),

i=1 j=i+1 p=1 q=p+1

o0 o0
Z ZE (T212),

i=1 p=1

(i) > > 3 B(TLITY)

=1 j=i+1p=1
Concerning (i), as j > ¢ and ¢ > p, we have
B(TTT,T,)) = B[(TT) (I1,7,)]
1/2
< 2 2 2
= [ S I 5t I—(i— l)kgt—]kgt—l—zk"'Et—l—(]—l)k>:|
1/2
4 4 4 4 2 2 2
[E(gtpkgtlgtlk"‘gt—l—(p—l)kgtqutlpk"'gt—l—(q—l)k:):| )

by Schwarz’s inequality.

Taking into account the independence of the random variables ¢, we have,
fori,j €N, j>i,

4 4 4 4 2 2 2 i1, =it
E<5t—z‘k Et—1Ct—l—k - Ct—1—(i—1)k Et—jk €t—l—ik"'€t—l7(j71)k> Hy M :

Then

> > 2. BILTTLT,)

1=1 j=i+1 p=1 q—p+1

Z Z Z Z |ﬁ|z+j+p+q HPHM —itq— p+2)1/2

1=1 j=i+1 p=1 g=p+1

D3PI ID I R (C R

1=1 j=i+1 p=1 g=p+1

As (B*u4)'/? <1 and (6%u2)Y/? < 1, the series in (i) is convergent. The conver-
gence of the series (ii) and (iii) is proved in a similar way. Then we conclude that
E(X}) < +oo, t € Z. As the process X? is strictly stationary and E(X}) exists,
then it is weakly stationary. O

Let us now evaluate the moments up to the 4th order of the process X
given by (1.1).
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Proposition 2.3. If 3*u, < 1 and ug exists then the nth moment of X,
n < 4, can be expressed as

n

n n n—i n—i_n—i
(2.2 By = 3 () B
1=0
where
n_n 1 . n n—i n—i_n—i
(2.3) E(Xt ey) = m ;(Z)ﬁ ,U/n-l—iE(Xt € ) n<4.

Proof: For n <4, we have

n

BIXP) =2 (?) B Ble) (Xegern)™™

1=0

- Z - (5)gr e,

since the process (X;e¢, t € Z) is strictly stationary due to the fact that X;e; is
a measurable function of ¢, &1, .... Now we need to evaluate E(X/c}), n < 4.

n

BXPe) = 3 (”) 5 B[} (Xirern)" " o]

=0

= Z( )ﬁn IE n+1) E(thfie?fi)
= (" un E(Xj'e Z( >ﬁn Zﬂn—i-z E(le_ig?_i)

and the result follows. O

It is easy to verify that E(X;er) = pa/(1 — Bu1). The values E(X[e}),
n = 1,2,3, are obtained recursively by using the previous equation; and finally,
we achieve F(X]"), n < 4. A working example to illustrate these evaluations is de-
veloped in appendix for a first order bilinear model with exponentially-distributed
erTor process.

We note that %4 < 1implies |3"u,| < 1, n = 1,2, 3, by Schwarz’s inequal-
ity.
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3. THE TAYLOR PROPERTY IN FIRST-ORDER
NON-NEGATIVE BILINEAR MODELS

3.1. Preliminary results

In this section we consider the first-order non-negative bilinear model
(3.1) Xy = BXy 1601+ &4, tez,

where 3 > 0 and (g, ¢ € Z) is a sequence of non-negative i.i.d. random variables.

We assume that E(Ine;) and pg exist and that 3%u4 < 1 in order to guar-
antee that both processes, X and X2, are strictly and weakly stationary.

In this context, the Taylor property for n =1 establishes that px(1) >
px2(1), where px (1) and px2(1) denote, respectively, the autocorrelations of lag 1
of the processes X and X?2. It is enough to evaluate E(X;X; 1) and E(X2X?2 ;)
in order to obtain these autocorrelations since we derived E(X}), i = 1,2,3,4, in
the previous section. Using (3.1) and the stationarity of the involved processes,
we have

E(X:X;_1) = BE(X?er) + B(Xi_164)
= BE(B*XP 1e] 160+ 28X 181167 + £7) + E(Xy—121)

Taking into account the independence of the random variables &, t € Z, and the
strict stationarity of the related processes, we have E(X? je7 1&;) = u1 E(X2e?)
and E(X;_16416?) = po E(Xset). Then

E(X; Xi1) = BPumE(XPe}) +28°m E(Xier) + mE(Xy) + Bus -

Using an analogous procedure, we obtain
E(X?X? 1) = B'Ey+28°Ey + 28° 11 B3 + 48° By + B°Es + 28 Eg
+ B B(X7ed) + 2 Bmpa E(Xeer) + 3

where

(XX giei ) = BPraB(X/e)) +2Bus E(XPe}) + pa B(X 7€)
(XPXiieter1) = BPusB(XPe}) + 20 E(XPe]) + ps B(Xer)
(X X7 1&gt 1) = BmE(X}e)) + m E(X7e}) |
(
(X;

XXt 16261 1) = Bus B(X2e}) + pus B(Xiey)
el) = BPruaE(XPe}) + 2Bus B(Xier) + pe
EG = E(tht) = BusE(Xier) + pa -

Finally, the results of the previous section allow us to obtain the values of
E(X;X;_1) and E(X?X? ) in terms of the moments of &;.

||
Djtijtijtijbj
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3.2. The Taylor property and the error process

In the following, we investigate the presence of the Taylor property in Model
(3.1), considering some non-negative distributions for the error process, namely,

the uniform distribution in ]0, a, the exponential distribution in ]0, +-oo[ with
vaV

mean «, and the Pareto distribution with density f(x) = s Do, 4o0f(z), for

v=12 and v = 9. In all cases, « is a non-negative parameter and the condition

E(|Ing]) < 400 is satisfied.

The choice of these distributions takes into account the fact that the Taylor
property seems to be related with the kurtosis value of the process. In this paper,
we consider that the kurtosis of a random variable Z is given by Kz = M, /M22 -3,
where M,, is the n'" central moment of Z, n = 2,4, providing that M, exists
(K7 is also called “excess kurtosis”). The uniform distribution is platykurtic with
a constant kurtosis value equal to —1.2, while the exponential distribution is
leptokurtic with a constant kurtosis value equal to 6. On the other hand, the

kurtosis of the Pareto distribution depends on the parameter v and it is given by

6(v3+v2—6v—2)
v(v—3)(v—4)

tends to infinity, and to infinity when v tends to 4. So, the Pareto distribution is

, v > 4. This is a decreasing function of v that goes to 6 when v

leptokurtic, no matter what is the value of v.

We also point out that, in all cases, the condition $%j4 < 1 and the values
of px (1) and px2(1) can be written in terms of r = /3.

In each case, we also present the value of the kurtosis of the process X given
by (3.1), which also depends on r = a3, as well as the corresponding graphic
representation as a function of r. We point out that, in all these models, the
leptokurtosis of the error process implies the same property for the process X.
In what concerns the Taylor property and kurtosis of X, comparisons are made
separately between the first two distributions, uniform and exponential, and also
between the two referred Pareto distributions.

3.2.1. Error process with uniform distribution in |0, |

In this case, the condition #%u4 < 1 is equivalent to 0 < r < v/5 ~ 1.495
and we obtain

(=180 + 1207 — 5172 — 473 4 r4)
—180 + 1807 — 17772 + 1273 + 7rt

_r Nu(r)
12 DU(T) ’

px(1) =

px2(1) =
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Ny (r) = —604800 — 4806007 — 15570072 — 257400 73 — 2490 7+ + 48525 r°

— 627075 + 681077 +106207° + 11384 7% + 4012719 — 586 1
+94712 — 5371 4601

Dy (r) = 50400 + 126007 + 3570072 + 4020073 + 13490 r* 4 14015 % + 8360 °

—52107" — 599978 — 240777 — 720710 + 114, 177712 — 8213 .

From Figure 1(a), we can see that the Taylor property is present for values

of r in the intervall ]1.1868987, \4/5[ So, for a fixed «, the Taylor property is
achieved for parameterizations of Model (3.1) such that

0.04

o2t / 10r /
/
/
/
e ‘ ‘ ‘ ‘ ‘ /

o "«

5 ] 1.1868987 /5 [

=002 ~

Figure 1: Graphs from px (1) — px2(1) (a) and Ky (r) (b), 0 < r < v/5.

For Model (3.1) with such an error process, the kurtosis is given by

B -3(-3+7r?) N (r)
Kol = sy s ey ng =3

where

N () = 907200 — 1814400 7 + 428400072 — 45108007 + 3254460
—20305207° + 197354075 — 61717577 — 185700 % + 371005 r°
—236308 10 4 78747t — 11496 712 + 511713,

Di(r) = (<180 + 1807 — 17772 + 124 + 7r4)%.

From Figure 1(b), we observe that the kurtosis of this model is an increasing

function of r and that the model is leptokurtic for r > 0.8 (approx.). We also
observe that the Taylor property occurs for large values of the kurtosis, namely

for

Kuy(r) > 4.403 (~ Ky(1.1868987)).

The value 1.1868987 was obtained with an approximation error inferior to 5x107°.
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3.2.2. Error process with exponential distribution with mean « (in ]0, +0o0])

The condition #*p4 < 1 is now equivalent to 0 < r < —= ~ 0.4518. In this

V24 —
case,
27 (2 — 37+ 7r2 — 673 + 274)
px(1) = 2 3 1 o
1—2r+19r4 —-20r3 4+ 67
Ng(r)
1) = 2r .
pXQ( ) DE(T)
with

Ng(r) = =5 — 807 + 6571 — 1127° — 11847 — 577475 + 1084875 + 12720 +7
—9408 7% — 178807 — 1627270 4 52992711 + 921612
— 46656 713 + 17280 714 |

Dp(r) = =5+2r —217% — 60273 — 90607 + 11126 7° + 1325275 — 2644877
+163687° + 1389677 — 12192710 4 13824+ — 12672712 4- 4032213

So, when the errors are exponentially distributed with mean «, Model (3.1)
presents the Taylor property for parameterizations such that?

0.0695566 0.1437879 1
ﬁ S O, T @)

(6% ’ \‘l/ﬂa '
This conclusion is illustrated in Figure 2(a). In Figure 2(b), we have the graphic
representation of the kurtosis of Model (3.1) with exponential errors, which is
given by

—3(~1+27?) N (r)
(=1+673) (=14 24r%) Dy, (r)

KE(T'): —3,

where

Ni(r) = 3—127 +527% — 13473 + 11815r% — 3675275 + 4480275 + 106277
— 42648 7% + 170287 4+ 1224010 + 5616 7' — 17280712 + 6048 113,

Diy(r) = (1—2r+1972 —207% 4614

As in the previous case, the kurtosis of Model (3.1) is an increasing function
of r but the process X is always leptokurtic in this case. Again, we observe that
large kurtosis values correspond to large values of the difference px (1) — px2(1).
In fact, the Taylor property is clearly present in this model for kurtosis values
greater than 13 (~ K(0.16)).

2The values 0.0695566 and 0.1437879 were obtained with an approximation error inferior to
5x107%.
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Figure 2: Graphs from px (1) — pxz(1) (a) and Kg(r) (b), 0 <r < \4/1?.

We also observe that the kurtosis of the process X is larger when the errors
are exponentially distributed than when they are uniformly distributed, corre-
sponding to an analogous relation between the kurtosis of those error processes.
The Taylor property seems to emerge in a relatively stronger way when the kur-
tosis of X increases.

12 12
3.2.3. Error process with Pareto density f(z) = 7?3 [, +oo[(Z)
x

The region of existence of the autocorrelations in terms of r = a3 is now

defined by 0 < r < f/g ~ (0.9036. We have
447 (6050 — 102307 4 1303572 — 752473 + 1296 r4)

1) =
px(1) 3 (36300 — 792007 + 21925572 — 17116073 + 29472 7r4) ’
T Nplg(T)
1) = — —=~2
pX2( ) 55 DPlQ(T) )

with
Npia(r) = —7043652000 — 56384790007 — 190048320072 — 6228372150 1
— 3064649280 r* + 2622844140 r° + 24533447400 r°
+ 19854650865 r7 + 11360213480 % — 16340416020
— 30235824828 1% + 23037530976 11 4 7650162960 12
— 11215587456 '3 + 2802615552 714 |

Dp1a(r) = —58697100 + 14229600 r — 142425360 2 — 468153840 >
— 218936564 r* + 536116224 r° + 616017864 r°
+374454192r7 4+ 130906149 r8 — 805701976 r*

— 15605040 70 + 401099652 r!!
— 245871648 r'? + 48736320713 .
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Concerning the kurtosis of this model, it is given by

—2(=5+677) Npio(r)

K = -7
p12(r) 49(=3 +473) (=2 + 37r1) Db ,(r) ’

where

Npo(r) = 599933276250 — 2617890660000 7 + 4970166270300 12
— 5546727078200 % + 59041 720498845 r* — 161234870633760 1°
+126074334149694 15 + 2238307939140 77 + 25296348 317400 °
—57875913071352 % — 89078826937116 ' + 180941306693040 't

—102607682886720 72 + 19713391 884288 '3

Dippa(r) = (36300 — 79200 7 + 21925512 — 17116073 + 2947214)% .

As can be seen in Figure 3(a), the Taylor property is now achieved for all consid-
ered parameterizations of Model (3.1). From Figure 3(b), we conclude that the

process X is always leptokurtic.

0020 -
\ P
2 |

\ 1
0015 F \
// N / \ ol \ T “
ootof / A\ / \\\ \ / |
/ ' N |
7 \ / Y sk /‘
/

0025 T
/ 14t
: |
/
/

0.005

L L L L
02 04 06 08 00

(@) (b)

Figure 3:  Graphs from px (1) — px2(1) (a) and Kp12(r) (b), 0 < r < {/2.

: : 9a°
3.2.4. Error process with Pareto density f(z) = % [, +oo[(Z)
x b

We have

Fluy <l «—= 0<r< §/§:0.863 and
(1) = 87 (15680 — 277207 4 39564 r? — 2786417 + 6561 1)
PX) = 47040 — 1058407 + 34311972 — 31550473 + 73791 4

. T Npg(’l")
px2(1) = 18 Dpo(r)
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with

Npo(r) = —67737600 — 833392007 + 1903860072 — 88401600 -3
— 148138920 7* — 511287075 4 1466330040 70 + 1499354145 17
— 1537629480 r® — 1966005837 r — 602608896 11"
+ 3869347563711 — 61620912712 — 2818841796 713 + 1179090432 1

Dpg(r) = —627200 4 235200 — 165060072 — 8601600 7> — 13809280
+ 31729095 r° + 27010080 r® — 23002305 r7 — 21773448 r®
— 24182469 % 4+ 58517640 0 + 9248823 1
— 50143536 2 + 19665504 13 .

The Taylor property is also present for all considered parameterizations
of Model (3.1), as it is illustrated in Figure 4(a), and we point out that the
magnitude of the difference px (1) — px2(1) is greater in this case than in the case
v=12.

006 F e
4k
005 F ‘
s
004 | /
/ 5t |

003 | / .
/ 30F o N |
/ / }

002 F ) / 25E ‘
TN |
SN/ ~ |

001 F / S~ 20F |
/ /

| L L L/

23

f J
02 04 06 ~ 04

02 04 06 08
(@) (b)

Figure 4: Graphs from px (1) — px2(1) (a) and Kpg(r) (b), 0 <7 < {*/g.

The kurtosis of Model (3.1) is now given by

7—97r2 Nio(r)

-3
9(—2+373) (=54 974) Dipy(r) ’

Kpy(r) =

where

Npo(r) = 62449049600 — 281020723200 7 + 532657440000 72 — 582241598400 2
+25718506014670 r* — 92872063045440 > + 100396 353649230 6
—633771163672577 — 8536591340550 75 — 41782534519 365 r°
—62336742758694 ' + 195729014255481 !

— 145385404 543008 712 4 35664808109193 13

Dipg(r) = (15680 — 35280 7 + 11437372 — 10516813 + 245974 .
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The process X is also leptokurtic for all considered values of . We observe
that the kurtosis of the process X is greater when v =9 than when v = 12,
corresponding to an analogous relation between the kurtosis of the respective
error processes. In these two examples, it is seen again how the Taylor property
emerges when the process X is leptokurtic.

As regards the Pareto distribution, graphic representations for several val-
ues of v also suggest that the presence of the Taylor property is stronger for
higher values of the kurtosis of the process X. In fact, as functions of v, the
difference px (1) — px2(1) seems to increase when Kp,(r) increases, for all values
of r that satisfy the condition $*uy < 1. This situation is illustrated in Figure 5
and strongly contributes to conjecture that the Taylor property and leptokurtosis
are highly related in time series.

0.06
005
004 - s

003 -

001 [ / 7 S

02 04 0.6 08

Figure 5: Graphs from px (1) — px2(1) (a) and Kp,(r) (b),
v = 100, 50, 20, 10,9 (from bottom to top), 0 < r < (‘/g.

4. THE TAYLOR PROPERTY IN THE CASE OF SYMMETRI-
CALLY DISTRIBUTED ERRORS: SIMULATION STUDY

When the errors are symmetrically distributed, the autocorrelation function
of X2 for Model (1.1) verifies px2(1) =0, if k> 1 (Martins, [6]). So, in this
case, the property p x|(1) > px2(1) is equivalent to p x|(1) > 0. However, the
autocorrelation function of the process (|X¢|, ¢ € Z) is not available when the
error process is allowed to assume negative values. To investigate the presence
of the Taylor property in Model (3.1) with symmetrically distributed errors, we
perform a simulation study considering the simple first-order bilinear diagonal
model with an i.i.d. error process (&, t € Z) with four symmetrical distributions
with unit variance, namely, the uniform distribution in ] — /3, v/3[, the standard

normal distribution, and the distribution of a variable e = 4/ ”7_2 Y, where Y has a
Student distribution with v degrees of freedom (v = 30 and v = 9). In each case,
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the condition E(|In|e¢||) < 400 is satisfied and parameterizations that satisfy
B4y < 1 are considered in the simulations. For each value of the parameter
B and each one of the considered distributions, we generate 500 observations
according to the corresponding model and obtain the 95% confidence intervals
for the probability that such a model satisfies the Taylor property. The results
appear in Table 1 (where NA means “Not Applicable”, due to the fact that the
corresponding value of 3 does not satisfy the condition 3*uy < 1). The special
values 0.69, 0.74, 0.75 and 0.863 are the greatest values of 3 such that f%uy < 1

for each one of the considered distributions.

Table 1:  95% confidence intervals for the probability that the model
with symmetrical innovations presents the Taylor property.

8 || U(-v3.V3E[) | N(0,1) 1y, Y~T(30) | \/3Y, Y~T(©
0.01 0.373,0. 627] 0.459,0.708] [0.459,0.708] [0.476,0.724]
0.05 (0.357,0.610] | [0.373,0.627] (0.373,0.627] 0.407, 0.660]
0.1 0.140,0.360] | [0.292,0.541] 0.214, 0.453] (0.260, 0.506]
0.2 [0,0] [0,0.105] [0,0.049] [0,0.049]
0.3 [0,0] [0,0] [0,0] [0,0.079]
0.4 [0,0] [0,0] [0,0.079] 0.260, 0.506]
0.5 [0,0] [0.155,0.379] [0.292,0.541] 0.699, 0.901]
0.6 [0,0] [0.566,0.801] [0.603,0.831] [0.781,0.953]
0.69 [0,0] 0.802, 0.965] 0.802, 0.965] 0.951, 1]

0.74 [0,0.079] | [0.847,0.987] (0.870,0.996] NA
0.75 [0.004,0.130] | [0.847,0.987] NA NA
0.863 [0.566,0.801] NA NA NA

We can observe that the Taylor property seems to be present for high values
of B and that this presence increases with the kurtosis of the error process, as we
have established and observed in non-negative bilinear models.

The confidence intervals corresponding to small values of 5 do not allow us
to infer about the presence of the Taylor property, as they certainly correspond

to values of 3 for which the difference px (1) — px2(1) is close to zero.

5. CONCLUSIONS

In this paper, we analyze the presence of the Taylor property in first-order
bilinear time series models. For this analysis we evaluate the autocorrelations of
the process X and of X2. Considering X non-negative, we discuss the presence
of the Taylor property taking several distributions for the error process, chosen
according to the kurtosis value as this property is strongly related with the value
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of this parameter. More precisely, the Taylor property seems to emerge when the
process X is leptokurtic.

Based on a simulation study, we also analyze the presence of the Taylor
property in the class of real valued first-order bilinear diagonal models with sym-
metrical innovations.

The studies presented here show that bilinear models are able to reproduce
the Taylor effect. They also reinforce the connection of the Taylor property to lep-
tokurtic models which has been observed in the few theoretical studies developed
until now. In fact, He and Terésvirta ([5]), Gongalves, Leite and Mendes-Lopes
([1]) and Haas ([4]) show the presence of this property in some conditional het-
eroskedastic models, which are leptokurtic processes. Moreover, all the cases
considered in this paper also show that, when the Taylor property occurs, the
model is leptokurtic.

We still observe that leptokurtosis is not enough to induce the Taylor prop-
erty. Examples of bilinear models that are leptokurtic but do not have the Taylor
property are Xy = X;_164-1 + €, where &; is uniformly distributed in [0, 1], and
X; =0.5X;_164_1 + &, where &; is exponentially distributed with mean 0.2. This
is in line with the simulation results of He and Terédsvirta ([5]) suggesting that
the Taylor property is not present for the standard GARCH(1, 1) process with
normal errors.

In conclusion, our study allows to conjecture that a general assessment of
the Taylor property in the bilinear process is strongly dependent on the magnitude
of its tails weight.

6. APPENDIX

A working example to illustrate the results of Section 2, namely evaluation
of E(X}'ey) and E(X}"), n < 4, for a first-order bilinear process is now presented.

Let us suppose that €, t € Z, is exponentially distributed with density
f(z) = ée‘x/o‘ [0, +00[(z). Then p, =n!a™, n € N. In this case, the condition
By < 1 is equivalent to 0 < r < ﬁ, where r = a3. Under this hypothesis,
and taking into account that ¢; is independent of X' e}’ |, t € Z, and that the

process (Xiet, t € Z) is strictly stationary, we have
E(Xiey) = E(BXi_16t_16¢) + E(e?) = BE(Xyer) 1 + pio

which is equivalent to

(61) E(Xté‘t) =




224 E. Gongalves, C.M. Martins and N. Mendes-Lopes
Then, by (2.3), we have

E(Xe]) = (28ps E(Xet) + pa)

1
(1—r)(1—2r2) "

1
1— 2y
= 240"

(6.2)

Taking into account (2.3), (6.1) and (6.2), we now obtain

E(X}e}) = TP (38%ua E(X7e?) + 30us B(Xie1) + p6)

1 1728 o2 720 aSr
1-6r3 \(1—r)(1—1r?) 1—r
212 45
(1—r)(1—=2r2)(1—673) "

+ 720 a6>

= 144a°

Finally, we evaluate F(X/e}) using (2.3), (6.1), (6.2) and (6.3).

1

E(X/et) = 1_754%(453#5 E(X}e}) + 6% BE(X{e}) + 4 Bur E(Xier) + i)
B 1 69120 a®r3 (212 +5)

(6.4 Sl =24t \ (1 —7) (1 —72) (1 —7r3)

103680 a2 40320 a®r
G—n—r)  1-7
1877 + 412 4+ 7
(1—7)(1—2r2) (1 —673) (1 —24r%) ~

+ 40320 a8>

= 57608

The values of E(X}"), n < 4, are then given by (2.2). More precisely,

147
(65) E(Xt) = ,BE(XtEt) + H1p = @ 1—r 5
E(X7?) = BPE(X7e}) + 2mBE(Xeer) + po
24 o132 4a®
(6.6) - o AaTB

1-r)(1—=2r2) 1-—7r
_ 92 1+7+10r%2 — 293
B 1—r)(1-2r2) ~’

B(X}) = BBE(X}e}) + 382 mE(X7e}) + 3Bue E(Xier) + ps
144 533 (212 2 o 32 124
6.7) _ a®B3?(2r° +5) n 72a° 3 n aﬂ+6a3
1—r)(1—=2r2)(1—-6r3) (1—7r)(1—272) 1—r
6o LT+ 1072 + 11273 — 6r% — 129 + 1270
(1—7r)(1—=2r2)(1—673)
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E(X}) = B'E(X/e}) + AB°m E(XPe}) + 6 82 ua E(X[e?) + 48us E(Xeer) + pua

15760 B34 (813 + 472 +7) 576 a7 33(2r2 + 5)
T A28 (167 (124 (T-r)(1-2/2)(1_6)
(6.8) 288 852 48 a°3 .
A—r(i—22) 1, T2
2404 D(r)
T (1—r) (1—2r%)(1—673) (1 —24r%) "’
with

D(r) = 147+ 1072 4+ 11273 + 16507 — 36> + 73270 4+ 163277
+144 8 4+ 2889 — 28810
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