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Abstract:

o Let {Z,(t), t > 0} be areward process based on a semi-Markov process {J (¢), t > 0}
and a reward function p. Let T, be the first passage time of {Z,(t), ¢ > 0} from
Z,(0) = 0 to a prespecified level z. In this article we provide the Laplace transform
of the E[T¥] and obtain the exact formulas for ET,, ET? and var(T,). Formulas for
certain type I counter models are given.
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1. INTRODUCTION

Let {J(t), t > 0} be a semi-Markov process with a Markov renewal pro-
cess {(In,Tn), n = 0,1,2,...}. The state space of {7,} is assumed to be N =
{0,1,2,...., N}. A reward process is a certain functional that is defined on a
semi-Markov process (Markov renewal process) by

(1) Z,t) = Y p(Tns Tos1 — To) + p(T (1), X(t))

n: Tpp1<t

where X (t) is the age process. The function p in (1) is a real function of two
variables; p : N xR — R, and p(i,7) measures the excess reward when time 7
is spent in the state i. The process Z,(t) given by (1) provides the cumulative
reward at time ¢, under the given reward function p. This process was introduced
and studied in [4], for general p. For p(i,7) = i7, the reward process Z,(t)
has been treated by different authors, see [1] [2] [5]. Let 7%, be the first passage
time of Z,(t) from Z,(0) = 0 to a prespecified level z. Asymptotic behaviors of
ET,, ET? as z — 0o, were obtained in [5] for p(i, z) = iz, and in [3] for general p.
In this article we provide exact formulas for ET,, ET? and var(T}), under general p.
We apply our formulas to certain type I counter models and provide precise re-
sults. The main results are Theorems 2.1, 3.1, Corollary 3.1, Remark 3.1, and
formulas (23), (24).

2. NOTATION AND PRELIMINARIES

Let {J(t), t > 0} be a semi-Markov process and {(Jn,7,), n =0,1,2,...}
be a Markov renewal process, where 7, is a Markov chain in discrete time on
state space N = {0,1,2,..., N}, and 7, is the n-th transition epoch with 7y = 0.
The behavior of the Markov renewal process is governed by a semi-Markov matrix
A(z) = [A;j(z)], where

(2) Ay(@) = P{Tuir =, Ton —To <@ | Ju =i}

We assume that the stochastic matrix P = [P;;] = A(oc0) governing the embedded
Markov chain {7, : n =0,1,2,...} is aperiodic and irreducible. For convenience
let,

A]mj :/ l‘kAU(d{L‘) s
0
(3) N
A :/ xkAi(dx) , k=0,1,2,...,
0

if they exist, where
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We note that A;(z) = P{T,+1 — 7T, < x| J, = i} is the cumulative distribution
function of the dwell time of the semi-Markov process at state i, and A;(x)
is the corresponding survival function. Let §;; =1 if ¢ = j and d;; =0 if ¢ # j.
We define,

Ap(z) = [0;4;(x)] . Ap(z) = [654;(2)]

Ay = [Ak:ij]a Ap = [5z'jAk:i] ) k=0,1,2,....

(4)

Note that Ap.g = I. The Laplace—Stieltjes transform of A(x) is denoted by

o0

(5) a(s) = [ (s)] . auys) = /0 e~ Ayy(da)

Laplace—Stieltjes transforms «;(s), ap(s), etc. are defined similarly. We define
n-fold convolution A(z) by

A0 () — /0 "A(da') A (z — o)

A0 0 ift<0
AR A (R

and
0 if t<0

AN () = t _
) Z/AW(dy)ASL D—y) it t>0
v 0

if M is a matrix of measures and N is a matrix of measurable functions, the
convolution of M and N (written M x N) is defined by M « N (t) = [(M % N ) (t)],
where

M*Njk(t) = Z /(]Mju(dy) Nuk(t_y) .

Let A(x) be a semi-Markov matrix. Then
Alz) = > AM(z)
n=0

is called the Markov renewal matrix corresponding to A(x). Also denote the
Laplace transform of the Markov renewal matrix by

1 _
Ls[A] = B [I—a(s)] 7t .
The transition probability matrix of J(t) is denoted by P(t), i.e.,
(6) P(t) = [Py(0)] ,  Py®) = P{I)=j | J(0) =i} .
The state probability vector at time ¢, p'(¢t) = ( po(t), p1(t),...,pn(t) ), is given

by p'(t) = p’(0)P(t), where p’(0) is the initial probability vector. In this article e
is the unit vector, i.e., e =(1,...,1).
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Let X (t) be the age process, i.e., the time elapsed at time ¢ since the last
transition of J(t), X(t) = t — 7,, where n = sup{m : 7, < t}. The joint
distributions corresponding to the bivariate process {(J(t), X(t)), t > 0} and
the trivariate process {(J(t), X (t), Z,(t)), t > 0}, respectively, are given by

Giylet) = P{T(t) =j, X(t) <o | J(O) =i},
(7)
Fy(w,21) = P{LI(t) =), X() <2, Z,(0) <2 | JO) =i}

The Laplace transform of Fj;(x,z,t) is denoted by

(8) ij (v, w, ) :/ / / I N R
0 J-ocoJO

in the matrix form ¢(v,w, s) = [¢j(v,w,s)]. It is demonstrated in [4] that the
following informative transform formula plays a crucial role in studying the sta-
tistical properties of the reward process (1), see also [5],

(9) ¢<’U7w78) = [I - C(w75)]_1 ED(LU,U + 3) )
where
C(wvs) = [ij<w,8)] ) ij(w73) :/(;Ooewp(k’x)sxAkj(dx) )
(10) .
Po(w,s) = BBy, 9], Bilw.s) = [ e 00 A @) da

Let z be a given level, then the first passage time of the level z for Z,(t), given
Z,(0) =0, is defined by

T, = inf{t>o L Z,(t) =2 | Z,(0) :0} .
Clearly
(11) P{T. >t} = P{Z,(1) < 2} .

Let H(z,t) be the distribution of T, and denote the Laplace transform of E[e~*7%]
by

(12) P(w,s) = /Oooe“’ZE[eSTZ] dz .

Similarly we denote the Laplace transform of the survival function H(z,t) =
P{T, >t} by ¢(w,s). We recall from [5] that,

(13) 1/1(0%3) =1 _SEO")?S) )

where s € Dy = {u: Re(u) >0} and w € Im = {u:u=it, t € R}. The follow-
ing theorem was provided in [2] for p(i,x) = iz, and in [3] for general p.
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Theorem 2.1.

(14)  Blws) = ép/((]) I— Clw,s)] " Ep(w,s)e,  wseDp.

For deriving the moments of T, we first note that

(%)k@(w,s) = (_1)k/oooewz (/Oootk e P{T. > t} dt>dz,

[e.e]

<—1>’“<k+1>(§)kw<w,s>|szo = [Cepya:.

0 < k < K, where E[TX*+!] < 00 is assumed. Hence from the formula given above
and Theorem 2.1,

@5) [T Bt = ) (-0 pof (%)kqb(o,w, SIS

In next section we use (15) to derive exact formulas for E[TF].

3. EXACT FORMULAS

In this section we apply (15) in order to derive formulas for ET,, ETZ,
and var(7T,). Throughout this section we assume that p satisfies the following
condition.

(A) For each k, p(k,x):[0,00) — [0,00) is one to one, admits a continuously
differential inverse, and p(k,0) = 0.

We also introduce the following matrices:
F(t) = [0 (o7 (b, 1)) Auo™ . 1)]
B(t) = iB“‘)(t) :
=
K(0) = [5107 (6, (07 (b, ) Arp™ . 0)]
D(t) = [/Ot pt(k,x) dBkj(x)} ,

where B is the matrix with entries Byj(z) = Ag;(p~'(k, 2)) and B™ is n-fold
convolution of B.
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Theorem 3.1. Let T, be the first passage time of the reward process
Z,(t), t > 0, given by (1) with a reward function p(k,x), k € N, x > 0, that
satisfying condition (A). If B(t) exist then

@  r =0 [ Brreae,
(b) ET? = 29/(0) {/OZB*K(QE) dx}g + 29/(0) {/OZB*D*B*F($) d:r}g,

(c) wvar(T,) = 2p'(0) {/OZB*K(l’) d:z}g + 29'(0) {/OZB*D*B*F(x) d:c}g

- {p/(O) {/OZB* Fla) da:}g}2.

Proof: (a): By using (15) and (9) we obtain that
1
(16) L,(ET,) = ;p,(()) [I-C(w,0)] 'Ep(w,0)e,

where

C(w,0) = [Ckj(w,0)] ,
with -
Cioy(w,0) = / erk) G4, () .
0

Now for each k, j, let By;(A) = Apj{z € [0,00): p(k,xz) € A}, A C[0,00), then
By;(.) is a probability distribution on [0, c0) and it follows by change of variable
that,

ij(w,O) = / et dBkj(t)
0

= Brj(w) -

Therefore Cj;(w, 0) is the Laplace transform of the distribution By, and in matrix
form

(17) [ Cw, 0] = [I-Bw) ™.

Also note that
Ep(w,0) = [§;;Ej(w,0)] ,

where

Ej(w,0) :/ e~wPls) Aj(z)dz |
0

and it follows by change of variable that
Bw.0) = [T T G0y A G o)t

z/ e “TF(j,t)dt .
0
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Therefore in matrix form we have

(18) Ep(w,0) = / U R(t) dt .
0

If we replace (17) and (18) in (16) we obtain

L,(ET,) = p'(0)

S

or equivalently
z
ET, = p'(0) {/ B x F(t) dt}g ,
0

giving (a).

(b): It follows from (15) that

(19) LoB[TY = 22 p'(O){%¢(o,w,s)|szo}g.

But from (9),

0¢(0,w, s) 0C (w, )

— I — -1 I —— I - _lE
(20) ds = Clw )] —5= I = Clw, ) Epw,s)
o 2
where 0o
Crj(w,s) = / e DT A Ak ()
0
9C;j(w, ) _ / k) g4
R o ; Te dAkg(ZU) .

Again it follows by change of variable that

0Ckj(w, s)
0s

_ / e (ke ) By (8) -

s=0 0
Therefore in matrix form

0C(w, s)

(21) 0s

s=0

where
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On the other hand

aEk(wv S)
0s

= —/ z e PR A () da |
s=0 0

and using change of variable

0FEk(w, s)

Therefore in matrix form

OEp(w, s)
(22) 0s

= /0 e WK () dt
= L, (K) .

By replacing (17), (18), (21) and (22) in (20), we obtain from (19) that

EW(ETZZ) = 2p/(0)

~

= B! Lo(DO) [T = Bw)] T Lu(F (1)) e

[I= )] Lu(K(t) e,

[

S

S

+ 2p'(0)

or

ET? = 2p'(0){/OzB*K(m)d:L‘}§ + Zp'(O){/OzB*D*B*F(x)dx}Q

Part (c) Follows from (a) and (b).

53

Corollary 3.1. Let p(k,z) = gn(k)z™, k € N, z € [0,00) and g, (k) > 0.
If B(t) exists, then the formulas (a), (b) and (c) of Theorem 3.1 are satisfied.

Moreover
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Proof: The reward function satisfies condition (A), therefore Theorem 3.1
can be applied. O

Remark 3.1. Let n = 1 in Corollary 3.1, i.e., the reward function is linear.
Then Corollary 3.1 holds with n = 1.

4. APPLICATIONS TO CERTAIN TYPE I COUNTERS MODELS

Arrivals at a counter form a Poisson process with rate ¢. An arriving par-
ticle that finds the counter free gets registered and locks it for a random duration
with distribution function F'(¢). Arrivals during a locked periods have no ef-
fect whatsover. Suppose a registration occurs at Ty = 0, and write Ty, 11,15, ...
for the successive epochs of changes in the state of the counter. Write X,, =1
or 0 according as the n-th change locks or frees the counter. Clearly Xy =1,
X1=0, Xo=1, X3=0, ... and (X,,T,) is a Markov renewal process.
Its semi-Markov matrix is

0 1—e 9%
F(x) 0 ] '

Let F(z) =1—e729% and Z,(t) be the reward process that is defined by (1)
with reward function p(k,z) = prx, po=1, p1=2. Let T, be the first passage
time reward process Z,(t) from Z,(0) = 0 to a prespecified level z. We apply the
formulas of the previous section to give explicit expressions for ET, and ETE.
Note that for each k, j

t
Bi(t) = A | — ),
kj() m(ﬂk)
B(1) 0 R
B o 0 ’
BO#) =1.

By induction it follows that

(2n+1)
B(2n+1) (t) _ 0 BOI ]
B0
where
2 t2 2n t2n
B((ﬁn-l-l) — B§§n+1) — 1 _ qte—qt o q_e—qt o qie_qt

2! 2n! ’
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and (2n)
n
B (1) = By 0
(2n) |’
0 B11
242 3.3
(2n) _ p@n) _ - - gt _ q v _ q
Boon = Blln =1-—e¢ qt—qte qt—Te qt—Te qt*"'*me
Therefore
0 ( ) [e’s) 2n—1<qt>k
n —
Boo(t) = ZBOO (t) = H’Z 1 " Z K|
n=0 n=1 k=0 ’

Boo(t) = 1+ i[1 _P(Y<2n+ 1)]
n=0

o0
=1+) PY>2n+1),

n=0

o0

Bou(t) = > [1 _P(Y < 2n)]

n=0
o

=) P(Y >2n),
n=0

where Y is a Poisson random variable with A = gt. Therefore
B o0 oo
1+) P(Y >2n+1) > P(Y > 2n)
n=0

n=0

B(t) =

o0 oo
> P(Y > 2n) 1+ P(Y >2n+1)
n=0 n=0

The derivation of B(t) can be simplified by noting that if

e emA
Pr = X
where \ = gt, then
Prp = P{Yeven} = Z Dk
ke{0,2,4,...}
and
Py = P{Yodd} = Z Dk

ke{1,3,5,...}

55
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implying that (after simplication)

0
STPY >2n+1) = (p2+2pa+3ps+...) + (p3+2p5 +3pr +...)

n=0
A A _a 1 Y
= —P, —(Pg — ——(Pp— A
20+{2(E e ") 2(0 e )}
B A Po
2 2
similarly

o0
S TP(Y >2n) = (p1+2ps +3ps +...) + (p2 +2pa + 3p6 + ...)
n=0
1 A
= 5 {APe+ P} + SPo
A Po
2 2
Now if P(s) =Y 7Pk s® = e 22 then
P(1) =po+pi+p2+p3+..=1= Po+ Pg,
P(-1) =po—pi+p2—p3+.. =e = Pp—Po,

implying Pp = 3(1+ e 2") and Pp = 3(1 — e ?"). Hence

o
A1 e gt 1 e 2
PlY >2 1) = = — = - 2 _ -
;—:0 (Y>2m+1) = 5 -2+ 5 5
o0
A1 e gt 1 e 2
PY>2n) = —+-— = =4+ - —
nz_%( "= 5t1T 2 t1" 1
and
—2qt —2qt
i+t ge}ocp
B(t) = » ot
t |1 —2q t , 3 —2qt
%*Z*SA: %+Z+64
F e ¢ 0 te 1 0
(t) - O %e_qt 9 (t - O 1 e_qt ’
0 gte 4t
DO=| |
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hence
1 —qt | —2qt 1 —oqt
Bx F (D {1 —2e79" f 720} 1l —e "}
* F(t) =
{1 —e20%} {1 —2e9" 4 72t}
and
z_ 3 4 1,—qz__ 1 _-2g2 z_ 1 4 1 _,-2g2
/ZB Fla)d 3 " ig T g€ 1q° 18 T3¢
«* F(z)dr =
0 z_ 1 4 1 _,-2g z_3 4 1 _,-qz_ 1 _-2q
3 "1t 3¢ 18 T 24€ 8¢ €

In the example Xy = 1, the initial probability vector is clearly p’(0) = (1,0),
then
3 7 1 1

2 ET, = Sz — — 4 - 9% - ¢ 207
(23) 2 = 7 8q+q€ 8q6

B*D*B*Fgo(.ﬁlﬁ) B*D*B*Fm(x)
BxDxBxF(x) = ,
B*D*B*Flo(l‘) B*D*B*Fn(l‘)

where

1 9 9
Bx D xBx Fy(x) = g{?)x ~ + 66_2‘11 + 12ze™ 9" + 3:66_2‘793} ,

1 10 12 10
B« D xBx Fy(z) = —{Sx — eI e T 3pem 2 4qw26_qx} ,
16 7 q q
1 8 16 8
B DxBx Fip(x) = g{Sx ~ + gequ - 5672(]% — 3pe 27 4 2qx2eqx} ,
1 9 9 —2qx —qx —2qx
B D xBxFyi(x) = 6 3x — — + —e M 4+ 12z 1 4 3xe 41 5 .
qa q
Also
%{g — Lo 2566_‘”} g{g — 270 56—2@}
BxK(x) =

1)1 1 _—2qx 2 —qx 1)1 —qx 1_—2qx
59-+ e —Ze 59> —2ze” ¥ — e
Q{q + q q } S{q q

If we replace B* D« B« F(x) and B* K (x) in formula (b) of Corollary 3.1, we get

(24)
T2 2 2 2 2
E z = 1—6{92 —;Z‘f‘@_q_?e qz_2_q2€ qz_;ze qz—i—;ze %1 8z2%¢ qz}'

Remark 4.1. The asymptotic behaviors of ET,, ET? were derived in [5]
for p(k,z) = prx, and in [3] for general p. For the case considered in the Example
given above,

m *k 1 k3%
ET, = m*l*z + p'(0) {Ho Apa — §H1 PD:lAD:Q}Q + o(1),
1

mi

ETf:{

2
} 22— p'(0) {2 Vi Apa — V57" + Hi‘*AD:Q]} ez + o(z)

k%
my
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as z — 0o, where m;= 7n’'Aye, pp.1 = diagonal matrix of p;,

*k

1
By =ppkAr, mi"=nBe, H{*=—er', Zy=[I-P+er] ",
my

kk 1

1 1 1
: 2m>{* BZQ’/T/}_'_{ZO_TTLT* ﬁW,BIZO} {P_m—T*BIQﬂJ}7

Vi = (H{"ppa1A2 — Hy* A1) H{" — H{" A Hy™
Vo* = —H{"A1H{"pp.1Ap:2 .

For the semi-Markov A(z) defined above

= ) 1= 1 > D:1 — 1 .
1 0 2 0 0 %
0o 2 20
AQ: 1 q], AD;Q:[q 1 y
7 0 0 3¢

7P=7 = 7' =(05,05),

3
= /A = —
mp = mAre 4q°

U
By = pp2As = | , ;
Z 0
Zy=[I-P+en]!,
therefore
1[5 3
%0 =5 1§]’
2 2
H{* = **67'('/,
1
therefore
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1 1
Hy* = — gTr’{Bl+ = BQQW’}+{Z0 = ern BlZo} {Pﬁ By Qﬂ'/} ,
1 2mj mj mj
hence
_1 1
sk 4 4
HO - 1 _l] )
1 1
Vi = (H{"ppaAs — Hy A1) H{" — H{" A Hy™
therefore
12 14
o = 16 16] ’
10 12
16 16

Vo* = —-H{"A1H{"pp.1Ap:2 ,

3 3
4q 8q
k%
V2 - — 3
1 8¢

In the example, Xy =1, so that the initial probability vector is clearly p’(0)=(1, 0).
Then by replacing values in ET,, ETZ2, we have

3 7
ETZ = ZZ— 8—q+0(1) s
9 18
ETE = EZQ - %Z + O(Z) y

as z — oo, which also can be observed from the formulas (23), (24), as z — oo.

Remark 4.2. If one wishes to compare ET, with the asymptotic be-
haviour it is sensible to allow for a general initial probability vector say p’(0) =
(po(0), p1(0)). In this case

3, Tpo(0) +5p1(0) | 2p0(0) +p1(0) oo P1(0) +20(0) g

ET, =

4 8q 2q 8q
3 Tpo(0) +5p1(0)

= —z— 1) .
1 3 +0(1)

This last result is also obtained for the asymptotic expression for ET, with a
general initial probability vector.
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