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1. INTRODUCTION

Suppose we have two normal populations with a common mean ‘µ’ and possibly different
variances σ2

1 and σ2
2. More specifically, let X˜ = (X1, X2, ..., Xm) and Y˜ = (Y1, Y2, ..., Yn) be

independent random samples taken from two normal populations N(µ, σ2
1) and N(µ, σ2

2)
respectively. The problem is to estimate the common mean ‘µ’ under the assumption that
the variances follow the ordering σ2

1 ≤ σ2
2. In order to evaluate the performance of an estimator

the loss functions

L1(d, µ) =
(
d− µ

σ1

)2

,(1.1)

L2(d, µ) = |d− µ|,(1.2)

and

L3(d, µ) = (d− µ)2,(1.3)

are typically used, where d is an estimator for estimating ‘µ’ and α˜ = (µ, σ2
1, σ

2
2); σ

2
1 ≤ σ2

2.

Furthermore the risk of an estimator d is defined by

R(d, µ) = Eα˜{Li(d, µ)}; i = 1, 2, 3.

The problem of estimating the common mean of two or more normal populations,
without considering the order restriction on the variances, is quite popular and has a long
history in the literature of statistical inference. In fact, the origin of the problem has been
in the recovery of inter-block information in the study of balanced incomplete block designs
problem (see Yates [23]). Moreover, the problem has received considerable attention by
several pioneer researchers in the last few decades due to its practical applications as well as
the theoretical challenges involved in it. This well known problem arises in situations, where
two or more measuring devices in a laboratory are used to measure certain quantity, several
independent agencies are employed to test the effectiveness of certain new drugs produced
by a developer, two or more different methods are used to evaluate certain characteristic
etc.. Under these circumstances, if it is assumed that the samples drawn follow normal
distributions, then the task boils down to draw inference on the common mean when the
variances are unknown and unequal. We refer to some excellent papers by Chang and Pal
[4], Lin and Lee [12] and Kelleher [10] for applications as well as examples of such nature.
Probably, Graybill and Deal [8] were the first to consider this well-known common mean
problem under normality assumption, without taking into account the order restriction on
the variances. They proposed a combined estimator by taking convex combination of two
sample means with weights as the functions of sample variances. Their combined estimator
performs better than the individual sample means in terms of mean squared error when the
sample sizes are at least 11. Since then a lot of attention has been paid in this direction
by several researchers. In fact, the main goal has been to obtain either some competitors
to Graybill-Deal estimator or some alternative estimators which may perform better than
both the sample means. Also few attempts have been made to prove the admissibility or
inadmissibility of the Graybill-Deal estimator. For a detailed literature review and recent
updates on estimating the common mean of two or more normal populations without taking
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into account the order restriction on the variances, we refer to Khatri and Shah [11], Brown
and Cohen [3], Cohen and Sackrowitz [6], Moore and Krishnamoorthy [14], Pal and Sinha
[16], Pal et al. [15], Tripathy and Kumar [20, 21] and the references cited therein.

On the other hand, relatively less attention has been paid in estimating the common
mean ‘µ’ when it is known a priori, that the variances follow certain simple ordering, say,
σ2

1 ≤ σ2
2. As an application of the common mean estimation under two ordered variances one

can cite the example of evaluating the octane level of a particular grade of gasoline by the
state inspectors in the United States. Usually the inspectors evaluating the octane level of
gasoline sold at a gasoline station take two types of samples. Multiple samples of gasoline are
taken on spot and their octane levels are quickly evaluated by a hand held device which is less
precise and hence have high variance. Another batch of gasoline samples is taken and sent to
state labs for a detailed, time consuming analysis of the octane level which is more accurate
and has a smaller variance. If the spot analysis shows the mean octane level within a certain
margin of the declared octane level then the inspector gives the seller a pass. Otherwise, the
results from the lab tests are combined with the spot tests to determine the mean octane level.
Disciplinary actions against the seller can be taken only if the combined estimate of the mean
octane level falls below the declared level by a substantial margin. Probably Elfessi and Pal
[7] were the first to consider this model with some justification and proposed an estimator
that performs better than the Graybill-Deal estimator. In fact, their proposed estimator
performs better than the Graybill-Deal estimator in terms of stochastic domination as well
as universal domination. Later on, their results have been extended to the case of k(≥ 2)
normal populations by Misra and van der Meulen [13]. Chang et al. [5] also considered the
estimation of a common mean under order restricted variances. They proposed a broad class
of estimators that includes estimator proposed by Elfessi and Pal [7]. In fact, their proposed
estimators stochastically dominate the estimators which do not obey the order restriction on
the variances. However, for practical applications purpose, it is essential to have the specific
estimators. Moreover, it is also necessary to know the amount of risk reduction after using
the prior information regarding the ordering of the variances. Also we note that, the problem
of estimation of a common standard deviation of several normal populations when the means
are known to follow a simple ordering has been considered by Tripathy et al. [22] from a
decision theoretic point of view.

In view of the above, we have proposed certain alternative estimators for the common
mean when it is known a priori that the variances are ordered. These new estimators, which
utilize the information about variance ordering, are shown to dominate their unrestricted
counterparts (proposed by Moore and Krishnamoorthy [14], Khatri and Shah [11], Brown
and Cohen [3], Tripathy and Kumar [20]) stochastically, universally and in terms of Pitman
nearness criterion. Moreover we have obtained a plug-in type restricted MLE which beats
the unrestricted MLE with respect to a squared error loss function which has been shown
numerically. In addition to these, we derive a sufficient condition for improving equivariant
estimators using orbit-by-orbit improvement technique of Brewster and Zidek [2]. It is also
interesting to see the performance of MLE with respect to other estimators (including the
existing one proposed by Elfessi and Pal [7]), under order restriction on the variances, which
is lacking in the literature. We also observe that a detailed and in-depth study to compare
the performances of all the existing estimators for the common mean under order restricted
variances is lacking in the literature. Therefore, we intend to study the performances of all the
estimators, - both proposed as well as the existing ones, through a comprehensive simulation
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study which may fill the knowledge gap and provide useful information to the researchers
from an application point of view.

The rest of the work is organized as follows. In Section 2, certain basic results have
been discussed and a new plug-in type restricted MLE for the common mean µ has been
proposed. In Section 3, some alternative estimators for the common mean µ have been con-
structed under order restriction on the variances. It is shown that the proposed estimators
dominate their old counterparts proposed by Moore and Krishnamoorthy [14], Khatri and
Shah [11], Brown and Cohen [3], Tripathy and Kumar [20] in terms of stochastic domination
as well as universal domination. Moreover, in Section 4, we have proved that these alterna-
tive estimators also dominate their respective unrestricted counterparts in terms of Pitman
measure of closeness criterion (see Pitman [18]). Sufficient conditions for improving the es-
timators which are invariant under affine transformations have been proved in Section 5,
and consequently improved estimators have been derived. Interestingly, these improved es-
timators turned out to be the same as obtained in Section 2. We note that a theoretical
comparison of all these proposed estimators seems difficult, and hence a simulation study
has been carried out in order to compare numerically the risk functions of all the proposed
estimators in Section 6. Moreover, the percentage of risk improvements of all the improved
estimators upon their unrestricted counterparts have been noted with respect to all the three
loss functions (1.1)–(1.3), which are quite significant. The percentage of relative risk improve-
ments of all the proposed estimators have been obtained with respect to the Graybill-Deal
estimator (treated as a benchmark) and recommendations have been made there. Finally we
conclude our remarks with some examples to compute the estimates in Section 7.

2. SOME BASIC RESULTS

In this section, we discuss the statistical model and propose some alternative estimators
for the common mean µ, when it is known a priori that the variances follow the simple
ordering, that is, σ2

1 ≤ σ2
2.

LetX˜ = (X1, X2, ..., Xm) and Y˜ = (Y1, Y2, ..., Yn) be independent random samples taken
from two normal populations with a common mean µ and possibly different variances σ2

1 and
σ2

2 respectively. Let N(µ, σ2
i ) be denote the normal population with mean µ and variance

σ2
i ; i = 1, 2. The target is to derive certain estimators for µ, when it is known a priori that,

the variances are ordered, that is, σ2
1 ≤ σ2

2 or equivalently σ1 ≤ σ2. We note, that a minimal
sufficient statistics (not complete) for this model exists and is given by (X̄, Ȳ , S2

1 , S
2
2) where

X̄ =
1
m

m∑
i=1

Xi, Ȳ =
1
n

n∑
j=1

Yj , S
2
1 =

m∑
i=1

(Xi − X̄)2, S2
2 =

n∑
j=1

(Yj − Ȳ )2.(2.1)

We further note that, X̄ ∼ N(µ, σ2
1/m), Ȳ ∼ N(µ, σ2

2/n), S2
1/σ

2
1 ∼ χ2

m−1, and S2
2/σ

2
2 ∼ χ2

n−1.

When there is no order restrictions on the variances, a number of estimators have been
proposed by several researchers in the recent past. Let us consider the following well known



Alternative Estimation of the Common Mean of Two Normal Populations 331

estimators for the common mean µ when there is no order restriction on the variances:

dGD =
m(m− 1)S2

2X̄ + n(n− 1)S2
1 Ȳ

m(m− 1)S2
2 + n(n− 1)S2

1

(Graybill and Deal [8]),

dKS =
m(m− 3)S2

2X̄ + n(n− 3)S2
1 Ȳ

m(m− 3)S2
2 + n(n− 3)S2

1

(Khatri and Shah [11]),

dMK =
X̄

√
m(m− 1)S2 + Ȳ

√
n(n− 1)S1√

m(m− 1)S2 +
√
n(n− 1)S1

(Moore and Krishnamoorthy [14]),

dTK =
X̄
√
mcnS2 + Ȳ

√
ncmS1√

mcnS2 +
√
ncmS1

(Tripathy and Kumar [20]),

dBC1 = X̄ +
{ (Ȳ − X̄)b1S2

1/m(m− 1)
S2

1/m(m− 1) + S2
2/(n(n+ 2)) + (Ȳ − X̄)2/(n+ 2)

}
dBC2 = X̄ + (Ȳ − X̄)

{ b2n(n− 1)S2
1

n(n− 1)S2
1 +m(m− 1)S2

2

}
(Brown and Cohen [3]),

dGM =
mX̄ + nȲ

m+ n
(grand sample mean),

where cm = Γ(m−1
2 )/(

√
2Γ(m2 )), cn = Γ(n−1

2 )/(
√

2Γ(n2 )), 0 < b1 < bmax(m,n), 0 < b2 <

bmax(m,n− 3), and bmax(m,n) = 2(n+2)/nE(max(1/V, 1/V 2)). Here V is a random variable
having F -distribution with (n+ 2) and (m− 1) degrees of freedom.

Finally we consider the MLE of µ whose closed form does not exist (see Pal et al. [15]).
The MLE of µ can be obtained numerically by solving the following system of three equations
in three unknowns µ, σ2

1, and σ2
2:

µ =
m
σ2
1
x̄+ n

σ2
2
ȳ

m
σ2
1

+ n
σ2
2

,(2.2)

σ2
1 =

s21
m

+
( nσ2

1

nσ2
1 +mσ2

2

)2
(x̄− ȳ)2,(2.3)

σ2
2 =

s22
n

+
( mσ2

2

nσ2
1 +mσ2

2

)2
(x̄− ȳ)2.(2.4)

Here (x̄, ȳ, s21, s
2
2) denotes the observed value of (X̄, Ȳ , S2

1 , S
2
2). Let the solution of the above

system of equations be µ̂ML, σ̂
2
1ML and σ̂2

2ML. These are the MLEs of µ, σ2
1 and σ2

2 respectively,
when there is no order restriction on the variances.

Next, we discuss some results on estimating common mean when it is known a priori
that the variances follow the simple ordering σ2

1 ≤ σ2
2. Let β = (n(n− 1)S2

1)/(m(m− 1)S2
2 +

n(n− 1)S2
1). Under order restriction on the variances, Elfessi and Pal [7] proposed a new

estimator, call it d̂EP which is given by

d̂EP =

 (1− β)X̄ + βȲ , if S2
1

m−1 ≤
S2

2
n−1

β∗X̄ + (1− β∗)Ȳ , if S2
1

m−1 >
S2

2
n−1 ,

where

β∗ =

 β, if m = n

m

m+ n
, if m 6= n.
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In the above definition of d̂EP for the case m = n, when β∗ = β, we mean β as well as the
conditions must be simplified for m = n.

It is well known that the estimator d̂EP dominates dGD stochastically as well as univer-
sally when σ2

1 ≤ σ2
2. Further Misra and van der Meulen [13] extended these dominance results

to the case of k(≥ 2) normal populations and also proved that the estimator d̂EP performs
better than dGD in terms of Pitman measure of closeness criterion. The MLE of µ has been
obtained by solving the system of equations numerically as shown above (see equations (2.2)
to (2.4))). When the variances are ordered, using the isotonic version of the MLEs of σ2

i , we
obtain plug-in type restricted MLEs (numerically) of σ2

1 and σ2
2 respectively as

σ̂2
1R =


σ̂2

1ML, if σ̂2
1ML ≤ σ̂2

2ML

1
2
(σ̂2

1ML + σ̂2
2ML), if σ̂2

1ML > σ̂2
2ML,

and

σ̂2
2R =


σ̂2

2ML, if σ̂2
1ML ≤ σ̂2

2ML

1
2
(σ̂2

1ML + σ̂2
2ML), if σ̂2

1ML > σ̂2
2ML

(see Barlow et al. [1]). Substituting these estimators in (2.2), we get a plug-in type restricted
MLE, (call it dRM ) for µ as

dRM =
mσ̂2

2RX̄ + nσ̂2
1RȲ

mσ̂2
2R + nσ̂2

1R

.

Further using the grand sample mean of the two populations, one gets another plug-in type
restricted MLE of µ, call it d̂RM , and is given by

d̂RM =


µ̂ML, if σ̂2

1ML ≤ σ̂2
2ML

mX̄ + nȲ

m+ n
, if σ̂2

1ML > σ̂2
2ML.

Through a simulation study, Tripathy and Kumar [20] concluded that the estimators
dMK and dTK compete with each other and perform better than dGD when the variances
are not far away from each other. Authors also mentioned that for small values of the ratios
of the variances, the estimator dKS compete with dGD. Hence, it is quite evident that one
needs to find alternative estimators for µ which may compete with d̂EP when σ2

1 ≤ σ2
2 or

equivalently σ1 ≤ σ2. In the next sections to follow (Sections 3 and 4), we propose some new
estimators which dominate their respective unrestricted counterparts stochastically as well
as universally and may compete with d̂EP in terms of risks. Now onwards for convenient we
will denote d̂EP as d̂GD.

Remark 2.1. One can construct another plug-in type estimator for µ by replacing
the estimators σ̂2

1R and σ̂2
2R in dRM by σ̂2

1R = min(σ̂2
1ML, (mσ̂

2
1ML + nσ̂2

2ML)/(m+ n)) and
σ̂2

2R = max(σ̂2
2ML, (mσ̂

2
1ML+nσ̂2

2ML)/(m+n)) respectively when m 6= n. It has been revealed
from our numerical study (Section 6) that it acts as a competitor of dRM .

Remark 2.2. The estimators dRM and d̂RM are seen to perform equally good, which
has been checked from our simulation study in Section 6. Hence we include only d̂RM in our
numerical comparison in Section 6.
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3. STOCHASTIC DOMINATION UNDER ORDER RESTRICTION
ON THE VARIANCES

In this section we propose some alternative estimators for the common mean µ under
order restriction on the variances that is when it is known a priori that σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2. Further it will be shown that each of these alternative estimators dominate their
unrestricted counterparts proposed by Moore and Krishnamoorthy [14], Tripathy and Kumar
[20], Khatri and Shah [11] and Brown and Cohen [3] stochastically under order restriction on
the variances.

To start with, let us define

β1 =

√
n(n− 1)S1√

m(m− 1)S2 +
√
n(n− 1)S1

,

β2 =
√
ncmS1√

mcnS2 +
√
ncmS1

,

β3 =
n(n− 3)S2

1

m(m− 3)S2
2 + n(n− 3)S2

1

,

β4 =
b2S

2
1

S2
1 + S2

2

.

We propose the following estimators for the common mean µ, when the variances known to
follow the simple ordering σ2

1 ≤ σ2
2:

d̂MK =


(1− β1)X̄ + β1Ȳ , if

√
n−1S1√
m−1S2

≤
√

n
m ,

β∗1X̄ + (1− β∗1)Ȳ , if
√
n−1S1√
m−1S2

>
√

n
m ,

d̂TK =


(1− β2)X̄ + β2Ȳ , if S1

S2
≤

√
n
m
cn
cm
,

β∗2X̄ + (1− β∗2)Ȳ , if S1
S2
>

√
n
m
cn
cm
,

d̂KS =


(1− β3)X̄ + β3Ȳ , if S2

1

S2
2
≤ m−3

n−3 ,

β∗3X̄ + (1− β∗3)Ȳ , if S2
1

S2
2
> m−3

n−3 ,

where for i = 1, 2, 3 we denote

β∗i =

 βi, if m = n,

m

m+ n
, if m 6= n.

Finally, we propose an estimator for the case of equal sample sizes as

d̂BC2 =


(1− β4)X̄ + β4Ȳ , if S2

2

S2
1
≥ (2b2 − 1),

β4X̄ + (1− β4)Ȳ , if S2
2

S2
1
< (2b2 − 1).
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In the above definitions of the estimators d̂MK , d̂TK , d̂KS for the case m = n, when β∗i = βi;
i = 1, 2, 3, we mean that both βi and the corresponding conditions must be simplified by
putting m = n.

To proceed further we need the following two definitions which will be used in developing
the section. Let d1 and d2 be any two estimators of the unknown parameter say θ.

Definition 3.1. The estimator d1 is said to dominate another estimator d2 stochasti-
cally if Pθ[(d2 − µ)2 ≤ c] ≤ Pθ[(d1 − µ)2 ≤ c], ∀ c > 0.

Definition 3.2. Let the loss function L(d, θ) in estimating θ by d be a non-decreasing
function of the error |d− θ|. An estimator d1 is said to dominate another estimator d2 uni-
versally if EL(|d1 − θ|) ≤ EL(|d2 − θ|), over the parameter space for all L(.) non-decreasing.
Further it was shown by Hwang [9] that d1 dominates d2 universally if and only if d1 dominates
d2 stochastically.

Next, we prove the following results for estimating the common mean µ, under order
restriction on the variances, which are immediate.

Theorem 3.1. Let the loss function L(.) be a non-decreasing function of the error

|d− µ|. Further assume that the variances are known to follow the ordering σ2
1 ≤ σ2

2. Then

for estimating the common mean µ we have the following dominance results.

(i) The estimator d̂MK dominates dMK stochastically and hence universally.

(ii) The estimator d̂TK dominates dTK stochastically and hence universally.

(iii) The estimator d̂KS dominates dKS stochastically and hence universally.

(iv) The estimator d̂BC2 dominates dBC2 stochastically and hence universally.

Proof: Please see Appendix.

4. PITMAN MEASURE OF CLOSENESS

In this section, we prove that the new proposed estimators d̂MK , d̂TK , d̂KS , and d̂BC2,

perform better than their old counterparts in terms of Pitman measure of closeness criterion
when it is known a priori that the variances follow the ordering σ2

1 ≤ σ2
2 or equivalently

σ1 ≤ σ2. To prove the main results of this section, we need the following results. Let δ1 and
δ2 be any two estimators of a real parametric function say ψ(θ). Pitman [18] proposed a
measure of relative closeness to the parametric function ψ(θ) for comparing two estimators
in the following fashions.

Definition 4.1. The estimator δ1 should be preferred to δ2 if for every θ, PMCθ(δ1, δ2)
= Pθ(|δ1 − ψ(θ)| < |δ2 − ψ(θ)||δ1 6= δ2) ≥ 1

2 , and with strict inequality for some θ.
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The following lemma will be useful for proving the main results of this section, which
was proposed by Peddada and Khatree [17].

Lemma 4.1. Suppose the random vector (X,Y ) has a bivariate normal distribution

with E(X) = E(Y ) = 0 and E(X2) < E(Y 2). Then P (|X| < |Y |) > 1
2 .

Let α˜ = (µ, σ2
1, σ

2
2) and ΩR = {α˜ = (µ, σ2

1, σ
2
2) : −∞ < µ < ∞, 0 < σ2

1 ≤ σ2
2 < ∞}.

We prove the following theorem.

Theorem 4.1. For estimating the common mean µ of two normal populations, when

σ2
1 ≤ σ2

2, we have the following dominance results:

(i) PMC(d̂MK , dMK) > 1
2 , ∀ α˜ ∈ ΩR.

(ii) PMC(d̂TK , dTK) > 1
2 , ∀ α˜ ∈ ΩR.

(iii) PMC(d̂KS , dKS) > 1
2 , ∀ α˜ ∈ ΩR.

(iv) PMC(d̂BC2, dBC2) > 1
2 , ∀ α˜ ∈ ΩR.

Proof: The proof of the theorem is easy after using the Lemma 4.1, and hence has
been omitted.

In the next section we will introduce the concept of invariance to our problem and prove
some inadmissibility results in the classes of equivariant estimators for the common mean.

5. INADMISSIBILITY RESULTS UNDER ORDER RESTRICTION
ON THE VARIANCES

In this section we introduce the concept of invariance to the problem and derive some
inadmissibility results for both affine and location equivariant estimators under order restric-
tion on the variances. As a consequence, estimators dominating some of the existing well
known estimators for the common mean have been derived, under order restriction on the
variances.

5.1. Affine Class

Let us introduce the concept of invariance to our problem. More specifically, consider
the affine group of transformations, GA = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R}. Under the
transformation ga,b, Xi→ aXi+b; i = 1, 2, ...,m, Yj → aYj+b; j = 1, 2, ..., n and consequently
the sufficient statistics X̄ → aX̄ + b, Ȳ → aȲ + b, S2

i → a2S2
i , µ→ aµ+ b, σ2

i → a2σ2
i and

the family of distributions remains invariant. The problem remains invariant if we choose the
loss function as (1.1). The form of an affine equivariant estimator for estimating µ, based on
the sufficient statistic (X̄, Ȳ , S2

1 , S
2
2) is obtained as

dΨ = X̄ + S1Ψ(T˜),(5.1)

where T˜ = (T1, T2), T1 = (Ȳ − X̄)/S1, T2 = S2
2/S

2
1 and Ψ is any real valued function.
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Let us define a new function Ψ0 for the affine equivariant estimator dΨ as

Ψ0(t˜) =



n

n+m
min(t1, 0), if Ψ(t˜) < n

n+m min(t1, 0),

Ψ(t˜), if n
n+m min(t1, 0) ≤ Ψ(t˜) ≤ n

n+m max(t1, 0),

n

n+m
max(t1, 0), if Ψ(t˜) > n

n+m max(t1, 0).

(5.2)

The following theorem gives a sufficient condition for improving estimators in the class of
affine equivariant estimators of the form (5.1), under order restriction on the variances.

Theorem 5.1. Let dΨ be an affine equivariant estimator of the form (5.1) for estimat-

ing the common mean µ and the loss function be the affine invariant loss (1.1). The estimator

dΨ is inadmissible and is improved by dΨ0 if P (Ψ(T˜) 6= Ψ0(T˜)) > 0, for some choices of the

parameters α˜; σ1 ≤ σ2.

Proof: Please see Appendix.

Next we will apply Theorem 5.1, to obtain some improved estimators for the common
mean µ, under the assumption that σ2

1 ≤ σ2
2. It is easy to observe that all the estimators dis-

cussed in Section 2, for the common mean µ without taking into account the order restriction
on the variances, fall into the class dΨ = X̄ + S1Ψ(T˜). We apply Theorem 5.1 to get their
corresponding improved estimators under the assumption that σ2

1 ≤ σ2
2. Let us first consider

the estimator dGD = X̄+S1Ψ(T˜), where Ψ(T˜) = (n(n−1)T1)/(m(m−1)T2 +n(n−1)). Note
that Ψ(t˜) > (n/(m+n))max(0, t1), when S2

1/(m− 1) > S2
2/(n− 1). Hence the estimator dGD

is inadmissible and is improved by the estimator

daGD =


m(m− 1)S2

2X̄ + n(n− 1)S2
1 Ȳ

m(m− 1)S2
2 + n(n− 1)S2

1

, if S2
1

m−1 ≤
S2

2
n−1

mX̄ + nȲ

m+ n
, if S2

1
m−1 >

S2
2

n−1 ,

under order restriction on the variances.

Similarly one can get the estimators which improve upon dKS , dMK , dTK , dBC1, and
dBC2 respectively as

daKS =


m(m− 3)S2

2X̄ + n(n− 3)S2
1 Ȳ

m(m− 3)S2
2 + n(n− 3)S2

1

, if S2
1

m−3 ≤
S2

2
n−3

mX̄ + nȲ

m+ n
, if S2

1
m−3 >

S2
2

n−3 ,

daMK =



√
m(m− 1)S2X̄ +

√
n(n− 1)S1Ȳ√

m(m− 1)S2 +
√
n(n− 1)S1

, if S1√
m−1

≤ S2√
n−1

,

mX̄ + nȲ

m+ n
, if S1√

m−1
> S2√

n−1
,
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daTK =



√
mcnS2X̄ +

√
ncmS1Ȳ√

mcnS2 +
√
ncmS1

, if S1
S2
≤

√
n
m
cn
cm
,

mX̄ + nȲ

m+ n
, if S1

S2
≤

√
n
m
cn
cm
,

daBC1 =


dBC1, if S2

2

S2
1

+ n( Ȳ−X̄S1
)2 > n+2

m(m−1) [b1(m+ n)− n]

mX̄ + nȲ

m+ n
, if S2

2

S2
1

+ n( Ȳ−X̄S1
)2 ≤ n+2

m(m−1) [b1(m+ n)− n],

and

daBC2 =


dBC2, if m(m−1)S2

2

n(n−1)S2
1
≥ b2(1 + m

n )− 1

mX̄ + nȲ

m+ n
, if m(m−1)S2

2

n(n−1)S2
1
< b2(1 + m

n )− 1.

Remark 5.1. It is interesting to note that, for the case of unequal sample sizes, that is
for m 6= n, the estimators daGD = d̂GD, d

a
KS = d̂KS , d

a
MK = d̂MK , d

a
TK = d̂TK , d

a
BC2 = d̂BC2.

However for equal sample sizes, application of the Theorem 5.1 produces different estimators.

Remark 5.2. We note that, though the MLE of µ can not be obtained in a closed form,
however from (2.2) it is easy to write µ̂ML = X̄ + S1ΨML(T˜), where ΨML(T˜) = T1nσ̂

2
1ML/

(mσ̂2
2ML + nσ̂2

1ML), and σ̂2
1ML, σ̂

2
2ML are to be found by solving (2.3) and (2.4). Though

ΨML(T˜) does not have a closed form, for a given dataset(sample values), we can find the
value of ΨML(t˜). Therefor, we can find ΨML

0 (t˜) by using (5.2). Hence we can apply Theorem
5.1 and find the value of the improved estimator daML = X̄ + S1ΨML

0 (t˜) which does not have
a closed form. It has been observed in our simulation study that the improved version of the
MLE appears to have the identical risk as the estimator dRM .

5.2. Location Class

A larger class of estimators than the class considered above is the class of location
equivariant estimators. Let GL = {gc : gc(x) = x+ c,−∞ < c <∞} be the location group of
transformations. Under the transformation gc, we observe that, X̄ → X̄+c, Ȳ → Ȳ +c, S2

1 →
S2

2 , S2
2 → S2

2 , and the parameters µ→ µ+ c, σ1 → σ1. The family of probability distributions
is invariant and consequently the estimation problem is also invariant under the loss (1.1).
Based on the minimal sufficient statistics (X̄, Ȳ , S2

1 , S
2
2) the form of a location equivariant

estimator for estimating the common mean µ is thus obtained as

dψ = X̄ + ψ(U˜ ),(5.3)
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where U˜ = (T, S2
1 , S

2
2), T = Ȳ − X̄, and ψ is a real valued function. Let us define a function

ψ0 for the location equivariant estimator dψ as

ψ0(t˜) =



n

n+m
min{t, 0}, if ψ(u˜) < n

m+n min{t, 0},

ψ(u˜), if n
n+m min{t, 0} ≤ ψ(u˜) ≤ n

n+m max{t, 0},

n

n+m
max{t, 0}, if ψ(u˜) > n

n+m max{t, 0}.

(5.4)

The following theorem gives a sufficient condition for improving location equivariant estima-
tors under the condition that the variances follow the ordering σ2

1 ≤ σ2
2.

Theorem 5.2. Let dψ be a location equivariant estimator for estimating the common

mean µ and the loss function be (1.1). Let the function ψ0(u˜) be as defined in (5.6). The

estimator dψ is inadmissible and is improved by dψ0 if Pα˜(ψ(U˜ ) 6= ψ0(U˜ )) > 0 for some choices

of the parameters α˜ = (µ, σ2
1, σ

2
2); σ

2
1 ≤ σ2

2.

Proof: The proof is similar to the proof of the Theorem 5.1, and hence has been
omitted for brevity.

Remark 5.3. We also observe that all the estimators proposed in Section 2, including
the MLE (whose closed form does not exist) belong to the class dψ(U˜ ) = X̄ +ψ(U˜ ). Hence as
an application of Theorem 5.2, produces improved estimators. Further we note that, though
location class produces larger class of estimators, the sufficient conditions in Theorem 5.2, does
not help to obtain different improved estimators than those obtained by applying Theorem
5.1, under order restriction on the variances. In fact, the sufficient conditions in Theorem 5.1
and 5.2 for improving equivariant estimators produces the same improved estimators under
order restricted variances.

Remark 5.4. The performances of all the improved estimators which has been pro-
posed in Section 2 as well as in this section by applying Theorem 5.1, will be evaluated in
Section 6, using the affine invariant loss function L1. Further the percentage of risk improve-
ments upon their respective old counterparts has been noted.

Remark 5.5. We note that the estimator dGM , also belongs to the classes given in
(5.1) and (5.5). However, the conditions in Theorem 5.1 and Theorem 5.2 for improving it,
do not satisfy. Hence the estimator dGM could not be improved by applying either Theorem
5.1 or Theorem 5.2, under the condition that the variances are ordered that is, σ2

1 ≤ σ2
2.

6. A SIMULATION STUDY

It should be noted that, in Section 2 we have constructed the plug-in type restricted
MLE d̂RM for the common mean µ, taking into account the order restriction on the variances.
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Moreover, in Sections 3 and 4 we have also constructed some alternative estimators such as
d̂MK , d̂TK , d̂KS , and d̂BC2 and proved that each of these estimators dominate their old
unrestricted counterparts in terms of stochastic domination as well as Pitman measure of
closeness criterion. Furthermore in Section 5, we have proposed some improved estimators
namely daGD, d

a
KS , d

a
MK , d

a
TK , d

a
BC1, d

a
BC2 by an application of Theorem 5.1 and 5.2. In

addition to all these estimators, we have also considered the improved estimator d̂GD proposed
by Elfessi and Pal [7]. In order to know the performances of all these improved estimators,
one needs to compare the risk functions. We observe that an analytical comparison of all
these estimators seems quite impossible, hence in this section we compare the risk functions
of all the improved estimators numerically through Monte-Carlo simulation method. For
this purpose we have generated 20, 000 random samples of sizes m and n respectively from
N(µ, σ2

1) and N(µ, σ2
2), with the condition that σ2

1 ≤ σ2
2. The accuracy of the simulation has

been checked and the error has been checked which is seen up to 10−3. To proceed further,
we define the percentage of risk improvements of all the improved estimators upon each of
their unrestricted counterparts as follows:

P1 =
(

1− R(d̂GD, µ)
R(dGD, µ)

)
× 100, P2 =

(
1− R(d̂KS , µ)

R(dKS , µ)

)
× 100,

P3 =
(

1− R(d̂MK , µ)
R(dMK , µ)

)
× 100, P4 =

(
1− R(d̂TK , µ)

R(dTK , µ)

)
× 100,

P5 =
(

1−
R(daGD, µ)
R(dGD, µ)

)
× 100, P6 =

(
1−

R(daKS , µ)
R(dKS , µ)

)
× 100,

P7 =
(

1−
R(daMK , µ)
R(dMK , µ)

)
× 100, P8 =

(
1−

R(daTK , µ)
R(dTK , µ)

)
× 100,

P9 =
(

1− R(d̂RM , µ)
R(dML, µ)

)
× 100.

In order to compare the performances of all the improved estimators among themselves
we use the affine loss function (1.1). It is better to compare the risk functions of all the
improved estimators with respect to a benchmark estimator which can be the Graybill-Deal
(see Graybill and Deal [8]) estimator. We define the percentage of relative risk performances
of all the improved estimators with respect to the benchmark estimator dGD as follows:

R1 =
(

1− R(d̂GD, µ)
R(dGD, µ)

)
× 100, R2 =

(
1− R(d̂KS , µ)

R(dGD, µ)

)
× 100,

R3 =
(

1− R(d̂MK , µ)
R(dGD, µ)

)
× 100, R4 =

(
1− R(d̂TK , µ)

R(dGD, µ)

)
× 100,

R5 =
(

1−
R(daGD, µ)
R(dGD, µ)

)
× 100, R6 =

(
1−

R(daMK , µ)
R(dGD, µ)

)
× 100,

R7 =
(

1−
R(daBC1, µ)
R(dGD, µ)

)
× 100, R8 =

(
1−

R(daBC2, µ)
R(dGD, µ)

)
× 100,

R9 =
(

1− R(d̂RM , µ)
R(dGD, µ)

)
× 100.
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It is easy to observe that the risks of all the estimators are functions of τ with respect
to the loss function L1 as given in (1.1), where we denote τ = σ2

1/σ
2
2, 0 < τ ≤ 1. We note

that, when the sample sizes are unequal (that is when m 6= n) d̂GD = daGD, d̂KS = daKS ,

d̂MK = daMK , and d̂TK = daTK . Further we notice that for equal sample sizes (that is when
m = n) d̂GD = d̂KS and d̂MK = ˆTK. In our simulation study we have chosen b1 = 1

2bmax(m,n)
and b2 = 1

2bmax(m,n−3), where the values of bmax(m,n) have been taken from the table given
in Brown and Cohen [3]. Moreover we observe that for b2 = 1, the estimator dBC2 = dGD
also when b2 = 0, it reduces to X̄. The percentage of risk improvements of daBC1, d

a
BC2 and

d̂BC2 upon their unrestricted counterparts are seen to be very marginal and hence have
not been tabulated. The simulation study has been carried out for various combinations
of sample sizes while the parameter τ ∈ (0, 1]. For illustration purpose we have presented
the percentage of risk improvements as well as the percentage of relative risk improvements
of all the estimators for some choices of sample sizes in Tables 1–7. In Tables 1 and 2 we
have presented the percentage of risk improvements of all the improved estimators upon
their unrestricted counterparts for equal and unequal sample sizes respectively with respect
to the loss function (1.1). Particularly, in Table 1, the percentage of risk improvements of
all the improved estimators have been presented for the sample sizes (5, 5), (12, 12), (20, 20)
and (30, 30). The first and the seventh column represent the values of τ and the rest of the
columns represent the percentage of risk improvements of each of the improved estimators.
The table consists of several cells. In each cell, corresponding to one choice of τ, there
correspond four values of percentage of risk values for the sample sizes (5, 5), (12, 12), (20, 20)
and (30, 30). Table 2, is divided into two parts, specifically the first half (column second to
sixth) represents the percentage of risk performances for all the estimators with sample sizes
(5, 10), and (12, 20). The second part (column seventh to eleventh) represents the percentage
of risk improvements for the sample sizes (10, 5) and (20, 12). In this table the first column
also represents the values of τ and the columns second onwards represent the percentage of
risk improvements of all the estimators upon their unrestricted counterparts. In this table
each cell contains two values of percentage of risk improvements. These two values correspond
to one value of τ. In a very similar fashion the percentage of risk improvements of all the
estimators have been presented in Tables 3 to 5 for equal and unequal sample sizes with
respect to the loss functions (1.2) and (1.3).

The percentage of relative risk improvements of all the improved estimators with respect
to the benchmark estimator dGD (denoted as Ri; i = 1, 2, 7) have been presented in Tables
6 and 7 for equal and unequal sample sizes respectively. Specifically, in Table 6 we have
presented the percentage of relative risk performances of all the improved estimators for the
sample sizes (5, 5), (12, 12) and (20, 20). The Table 6 consists of eight columns and each
column have several cells. Corresponding to each value of τ there correspond three values
of percentage of relative risks. These three values correspond to three sample sizes (5, 5),
(12, 12) and (20, 20) respectively. In a very similar way we have presented the percentage of
relative risk improvements of all the improved estimators for the unequal sample sizes (5, 10),
(12, 20), (10, 5) and (20, 12) in Table 7. Moreover, we have also plotted the risk values of
all the improved estimators with respect to the loss function (1.1), against the choices of τ
in Figure 1. Specifically, Figure 1 (a)–(b) presents the graph for equal sample sizes whereas
Figure 1 (c)–(f) presents for unequal sample sizes. We note that the estimators d̂GD, d̂KS ,
d̂MK , d̂TK , d̂RM , d

a
GD, d

a
MK , d

a
BC1, d

a
BC2 have been denoted by GDI, KSI, MKI, TKI, RML,

GDA, MKA, BC1A and BC2A respectively in Figure 1 (a)–(f).
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Table 1: Percentage of risk improvements of all the proposed estimators using the loss L1

for the sample sizes (m,n) = (5, 5), (12, 12), (20, 20), (30, 30).

τ ↓ P1 P5 P3 P6 P9 τ ↓ P1 P5 P3 P6 P9

1.93 1.17 0.72 0.41 17.78 9.76 8.91 5.93 4.43 11.82

0.05
0.00 0.00 0.00 0.00 1.63

0.55
3.85 2.77 2.06 1.27 3.53

0.00 0.00 0.00 0.00 0.00 1.42 0.94 0.73 0.42 1.04
0.00 0.00 0.00 0.00 0.00 0.43 0.29 0.22 0.13 0.31

5.66 3.53 2.56 1.46 13.90 8.93 9.13 5.42 4.42 11.77

0.10
0.00 0.00 0.00 0.00 0.31

0.60
3.95 2.92 2.11 1.33 3.55

0.00 0.00 0.00 0.00 0.00 1.50 1.09 0.77 0.48 1.23
0.00 0.00 0.00 0.00 0.00 0.83 0.53 0.42 0.24 0.57

6.52 4.19 3.19 1.87 11.42 8.46 9.08 5.14 4.34 11.39

0.15
0.16 0.09 0.07 0.04 0.46

0.65
3.32 2.92 1.79 1.26 3.61

0.00 0.00 0.00 0.00 0.00 1.77 1.38 0.92 0.59 1.55
0.00 0.00 0.00 0.00 0.00 1.01 0.70 0.52 0.31 0.75

7.88 5.24 4.09 2.44 10.55 7.43 9.14 4.62 4.32 11.39

0.20
0.51 0.30 0.23 0.13 0.67

0.70
4.07 3.59 2.23 1.57 4.32

0.02 0.01 0.01 0.01 0.01 2.12 1.70 1.10 0.73 1.92
0.00 0.00 0.00 0.00 0.00 1.30 0.93 0.67 0.41 0.99

8.30 5.65 4.49 2.73 10.63 6.29 9.04 3.80 4.14 11.61

0.25
0.49 0.30 0.23 0.13 0.47

0.75
3.22 3.41 1.76 1.41 4.22

0.06 0.04 0.03 0.02 0.04 2.09 1.88 1.10 0.78 2.11
0.01 0.00 0.00 0.00 0.00 1.04 0.98 0.53 0.39 1.05

9.23 6.50 5.14 3.18 10.28 6.64 9.82 4.14 4.55 11.69

0.30
0.88 0.53 0.43 0.24 0.80

0.80
2.96 3.81 1.61 1.49 4.80

0.15 0.09 0.07 0.04 0.11 2.30 2.27 1.22 0.92 2.57
0.07 0.04 0.03 0.02 0.04 1.51 1.31 0.78 0.54 1.4

10.02 7.35 5.70 3.63 11.26 3.39 8.52 2.11 3.65 10.86

0.35
1.57 0.99 0.79 0.45 1.48

0.85
2.86 4.15 1.61 1.61 5.05

0.26 0.15 0.13 0.07 0.19 2.21 2.57 1.17 0.99 2.92
0.05 0.03 0.02 0.01 0.03 1.67 1.67 0.87 0.66 1.81

9.70 7.42 5.60 3.68 11.00 3.38 9.01 2.07 3.80 11.72

0.40
2.11 1.35 1.07 0.62 1.81

0.90
1.47 3.65 0.80 1.26 4.67

0.52 0.32 0.26 0.14 0.37 1.35 2.31 0.72 0.81 2.64
0.04 0.02 0.02 0.01 0.02 1.25 1.66 0.65 0.60 1.79

10.91 8.78 6.49 4.41 12.00 1.82 8.51 1.19 3.53 10.70

0.45
2.35 1.53 1.22 0.70 1.99

0.95
0.81 3.62 0.47 1.20 4.48

0.55 0.36 0.27 0.16 0.41 1.27 2.60 0.69 0.89 2.94
0.19 0.11 0.09 0.05 0.12 0.05 1.32 0.02 0.36 1.46

10.17 8.62 6.02 4.25 11.23 0.68 7.72 0.49 2.83 9.87

0.50
3.47 2.36 1.82 1.08 3.06

1.00
0.55 3.34 0.31 0.93 4.21

1.11 0.73 0.56 0.33 0.85 0.21 2.23 0.11 0.59 2.55
0.32 0.21 0.16 0.09 0.23 0.78 2.09 0.42 0.67 2.29
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Table 2: Percentage of risk improvements of all the proposed estimators using the loss L1

for unequal sample sizes.

τ ↓
(m, n) = (5, 10), (12, 20) (m, n) = (10, 5), (20, 12)

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

0.05
0.00 0.01 0.00 0.00 0.02 2.18 0.89 2.19 1.98 43.23
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86

0.10
0.12 0.47 0.00 0.00 0.26 4.21 1.94 4.54 4.12 39.23
0.00 0.00 0.00 0.00 0.05 0.02 0.00 0.10 0.09 0.83

0.15
0.18 0.92 0.01 0.01 0.68 5.79 2.89 6.20 5.65 32.09
0.00 0.01 0.00 0.00 0.03 0.02 0.01 0.19 0.18 0.73

0.20
0.61 1.80 0.06 0.07 1.26 6.32 3.12 7.25 6.60 26.89
0.01 0.03 0.00 0.00 0.05 0.25 0.18 0.53 0.50 0.34

0.25
0.72 2.34 0.06 0.07 1.45 7.70 3.77 8.79 8.05 25.31
0.04 0.07 0.00 0.00 0.11 0.43 0.30 1.06 1.00 0.80

0.30
1.06 3.18 0.08 0.10 2.17 8.27 4.10 9.36 8.56 19.80
0.12 0.19 0.00 0.00 0.22 0.56 0.40 1.35 1.27 0.44

0.35
1.47 4.01 0.09 0.11 2.59 9.66 4.86 10.33 9.50 20.65
0.22 0.34 0.00 0.00 0.41 1.01 0.76 2.03 1.93 0.97

0.40
1.74 4.60 0.13 0.16 2.83 10.28 5.06 11.21 10.32 19.58
0.39 0.58 0.01 0.01 0.72 1.34 0.99 2.65 2.52 1.37

0.45
2.06 5.09 0.18 0.22 3.41 10.6 5.31 11.32 10.44 17.64
0.55 0.81 0.01 0.02 0.98 1.77 1.30 3.30 3.15 1.51

0.50
2.56 6.05 0.21 0.26 4.08 11.26 5.93 11.62 10.75 17.39
0.77 1.12 0.03 0.03 1.15 1.91 1.41 3.41 3.26 1.61

0.55
2.66 6.18 0.25 0.31 4.02 11.91 6.15 11.91 11.04 18.19
1.08 1.53 0.05 0.06 1.66 2.31 1.71 3.82 3.65 1.97

0.60
2.69 6.22 0.25 0.30 4.07 11.77 6.11 11.73 10.88 17.98
1.26 1.75 0.04 0.05 1.84 2.39 1.78 3.91 3.74 2.12

0.65
2.98 6.52 0.31 0.37 4.49 12.84 6.70 12.26 11.39 17.61
1.36 1.88 0.06 0.07 2.01 3.24 2.49 4.56 4.38 2.95

0.70
2.86 6.28 0.31 0.36 4.21 12.64 6.65 11.67 10.83 16.90
1.78 2.35 0.11 0.13 2.62 3.55 2.72 4.79 4.61 3.25

0.75
3.21 6.75 0.30 0.36 4.72 12.37 6.56 11.15 10.37 16.05
1.93 2.53 0.12 0.13 2.66 3.41 2.63 4.37 4.20 3.27

0.80
3.75 7.44 0.46 0.54 5.39 12.47 6.46 11.25 10.45 15.33
2.06 2.73 0.10 0.10 2.79 3.97 3.10 4.58 4.42 3.80

0.85
3.31 6.95 0.32 0.38 4.81 11.99 6.54 9.93 9.23 15.25
2.43 3.09 0.18 0.19 3.30 4.00 3.10 4.51 4.34 3.83

0.90
3.41 6.87 0.39 0.45 4.89 11.40 5.77 9.40 8.70 14.64
2.33 2.96 0.18 0.19 3.26 4.16 3.21 4.46 4.29 4.01

0.95
3.33 6.78 0.29 0.35 4.96 11.83 6.45 9.25 8.58 14.60
2.26 2.86 0.15 0.16 3.02 3.95 3.05 3.90 3.76 3.91

1.00
2.99 6.27 0.24 0.28 4.32 11.40 6.12 8.47 7.85 13.82
1.94 2.50 0.07 0.08 2.83 4.09 3.23 3.52 3.38 4.09
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Table 3: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3 loss.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P5 P3 P6 P9 P1 P5 P3 P6 P9

(0.05, 0.10) 4.62 3.96 2.81 1.99 5.37 10.73 9.21 6.55 4.69 11.72
(0.05, 0.30) 2.27 1.33 1.20 0.65 3.28 6.48 4.25 3.23 1.91 11.12
(0.05, 0.50) 1.26 0.70 0.63 0.33 3.06 3.94 2.41 1.72 0.97 13.05
(0.05, 0.70) 0.77 0.42 0.36 0.19 3.54 3.59 2.22 1.48 0.83 16.24
(0.05, 1.00) 0.61 0.32 0.27 0.14 3.27 2.79 1.75 1.07 0.61 19.27

(1.00, 1.10) 1.19 4.25 0.76 1.78 5.45 1.99 8.39 1.21 3.43 10.50
(1.00, 1.50) 3.71 4.17 2.27 1.96 5.45 8.26 9.29 5.10 4.45 11.27

(5, 5) (1.00, 2.00) 4.53 3.81 2.74 1.89 5.15 10.33 8.67 6.21 4.37 11.48
(1.00, 2.50) 4.71 3.43 2.76 1.74 4.91 9.80 7.52 5.66 3.72 10.99
(1.00, 3.00) 4.31 2.91 2.48 1.48 4.35 9.40 6.78 5.28 3.34 10.71

(2.00, 2.10) 0.21 3.94 0.18 1.43 5.03 1.61 8.57 0.98 3.49 10.69
(2.00, 2.30) 1.43 4.41 0.92 1.86 5.64 3.37 8.83 2.06 3.75 11.11
(2.00, 2.50) 3.16 4.87 2.06 2.25 6.19 6.11 9.37 3.86 4.33 12.05
(2.00, 2.70) 3.06 4.37 1.87 1.99 5.64 6.34 8.90 3.96 4.13 11.08
(2.00, 3.00) 4.26 4.39 2.67 2.14 5.74 8.38 9.18 5.21 4.46 11.75

(0.05, 0.10) 1.56 1.04 0.84 0.49 1.24 2.61 1.90 1.37 0.85 2.49
(0.05, 0.30) 0.04 0.02 0.02 0.01 0.09 0.17 0.09 0.07 0.04 0.26
(0.05, 0.50) 0.01 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.48
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.29
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.38

(1.00, 1.10) 1.39 2.19 0.83 0.88 2.65 0.98 3.51 0.53 1.16 4.47
(1.00, 1.50) 1.99 1.68 1.12 0.76 2.01 3.94 3.35 2.13 1.47 4.21

(12, 12) (1.00, 2.00) 1.41 0.98 0.78 0.46 1.19 2.77 1.98 1.46 0.89 2.59
(1.00, 2.50) 0.89 0.59 0.46 0.27 0.75 1.73 1.16 0.88 0.52 1.50
(1.00, 3.00) 0.61 0.36 0.31 0.17 0.47 1.35 0.82 0.67 0.37 1.18

(2.00, 2.10) 0.26 1.84 0.15 0.57 2.31 1.37 3.98 0.76 1.37 4.99
(2.00, 2.30) 0.92 1.80 0.46 0.63 2.22 1.80 3.61 1.00 1.31 4.45
(2.00, 2.50) 1.18 1.74 0.64 0.66 2.13 3.37 4.06 1.86 1.64 4.95
(2.00, 2.70) 2.08 1.93 1.15 0.83 2.33 4.04 3.90 2.21 1.66 4.77
(2.00, 3.00) 1.85 1.55 1.00 0.69 1.87 3.78 3.30 2.04 1.43 4.16

(0.05, 0.10) 0.56 0.34 0.29 0.16 0.38 1.12 0.72 0.57 0.33 0.81
(0.05, 0.30) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(1.00, 1.10) 0.34 1.00 0.20 0.34 1.14 1.23 2.37 0.65 0.81 2.74
(1.00, 1.50) 0.95 0.72 0.48 0.31 0.81 1.97 1.51 1.03 0.65 1.67

(20, 20) (1.00, 2.00) 0.62 0.37 0.33 0.18 0.41 1.10 0.69 0.56 0.32 0.79
(1.00, 2.50) 0.21 0.12 0.10 0.05 0.14 0.42 0.25 0.21 0.11 0.28
(1.00, 3.00) 0.12 0.06 0.06 0.03 0.07 0.28 0.16 0.14 0.07 0.20

(2.00, 2.10) 0.23 1.14 0.15 0.37 1.30 0.40 2.21 0.21 0.67 2.59
(2.00, 2.30) 0.95 1.22 0.47 0.44 1.40 1.52 2.21 0.80 0.80 2.52
(2.00, 2.50) 1.09 1.11 0.59 0.46 1.23 2.01 2.05 1.06 0.81 2.29
(2.00, 2.70) 1.03 0.92 0.53 0.37 1.03 2.45 2.07 1.29 0.88 2.31
(2.00, 3.00) 0.80 0.65 0.41 0.27 0.74 1.79 1.39 0.93 0.60 1.55
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Table 4: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

(0.05, 0.10) 1.27 2.84 0.12 0.14 1.87 2.46 5.73 0.18 0.22 3.86
(0.05, 0.30) 0.11 0.42 0.01 0.01 0.25 0.29 1.10 0.02 0.02 0.72
(0.05, 0.50) 0.03 0.13 0.00 0.00 0.08 0.10 0.39 0.01 0.01 0.28
(0.05, 0.70) 0.01 0.06 0.00 0.00 0.04 0.04 0.15 0.00 0.00 0.08
(0.05, 1.00) 0.00 0.02 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.05

(1.00, 1.10) 1.44 2.97 0.13 0.15 2.15 3.52 6.91 0.38 0.45 4.94
(1.00, 1.50) 1.59 3.45 0.17 0.20 2.37 3.21 6.94 0.32 0.39 4.86

(5, 10) (1.00, 2.00) 1.21 2.89 0.09 0.11 1.92 2.56 6.03 0.21 0.26 4.17
(1.00, 2.50) 0.81 2.21 0.06 0.07 1.42 1.92 4.95 0.15 0.19 3.29
(1.00, 3.00) 0.59 1.71 0.04 0.05 1.04 1.22 3.55 0.08 0.10 2.43

(2.00, 2.10) 1.73 3.37 0.21 0.24 2.52 3.00 6.39 0.20 0.25 4.43
(2.00, 2.30) 1.75 3.56 0.17 0.20 2.52 3.50 7.07 0.36 0.42 4.90
(2.00, 2.50) 1.67 3.47 0.17 0.20 2.47 3.36 7.03 0.32 0.39 5.13
(2.00, 2.70) 1.62 3.50 0.15 0.18 2.46 3.20 6.96 0.32 0.38 4.73
(2.00, 3.00) 1.68 3.60 0.18 0.21 2.51 3.15 6.83 0.32 0.38 4.98

(0.05, 0.10) 0.45 0.64 0.02 0.03 0.68 0.77 1.13 0.01 0.01 1.24
(0.05, 0.30) 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.02
(0.05, 0.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(1.00, 1.10) 0.96 1.26 0.04 0.04 1.32 2.28 2.93 0.16 0.17 3.24
(1.00, 1.50) 0.77 1.05 0.03 0.04 1.10 1.66 2.25 0.10 0.10 2.36

(12,20) (1.00, 2.00) 0.37 0.53 0.01 0.02 0.56 0.74 1.05 0.03 0.03 1.12
(1.00, 2.50) 0.18 0.27 0.00 0.00 0.28 0.35 0.53 0.00 0.01 0.61
(1.00, 3.00) 0.08 0.13 0.00 0.00 0.17 0.17 0.29 0.00 0.00 0.34

(2.00, 2.10) 1.14 1.45 0.07 0.07 1.51 2.13 2.69 0.16 0.17 2.86
(2.00, 2.30) 1.19 1.52 0.08 0.08 1.60 2.42 3.08 0.21 0.22 3.21
(2.00, 2.50) 0.88 1.18 0.05 0.05 1.20 1.78 2.37 0.12 0.13 2.58
(2.00, 2.70) 0.82 1.08 0.06 0.06 1.14 2.06 2.69 0.16 0.17 2.88
(2.00, 3.00) 0.76 1.01 0.05 0.05 1.06 1.59 2.12 0.10 0.11 2.27
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Table 5: Percentage of risk improvements of all the proposed estimators
using the loss L2 and L3.

(m, n) ↓ (σ2
1 , σ2

2) ↓
L2 − Loss L3 − Loss

P1 P2 P3 P4 P9 P1 P2 P3 P4 P9

(0.05, 0.10) 4.70 2.27 5.51 5.07 6.73 10.89 5.43 11.52 10.63 17.75
(0.05, 0.30) 1.79 0.81 2.49 2.24 6.69 5.34 2.37 6.24 5.64 28.01
(0.05, 0.50) 1.08 0.53 1.40 1.26 7.27 3.51 1.53 3.80 3.43 31.23
(0.05, 0.70) 0.71 0.30 0.96 0.86 7.45 3.48 1.58 3.29 2.99 40.10
(0.05, 1.00) 0.43 0.21 0.60 0.54 6.71 1.83 0.63 1.97 1.77 43.66

(1.00, 1.10) 5.78 3.04 4.89 4.51 7.06 12.93 7.12 10.35 9.65 16.21
(1.00, 1.50) 5.57 2.92 5.52 5.10 7.09 12.55 6.61 11.90 11.04 16.55

(10, 5) (1.00, 2.00) 4.88 2.44 5.66 5.21 6.60 11.60 5.89 12.07 11.16 19.34
(1.00, 2.50) 4.30 2.07 5.24 4.80 7.21 10.41 5.32 11.19 10.31 19.67
(1.00, 3.00) 3.42 1.58 4.52 4.11 6.99 9.87 5.14 10.47 9.67 20.79

(2.00, 2.10) 6.24 3.44 5.05 4.69 7.48 11.78 6.31 9.13 8.44 15.06
(2.00, 2.30) 6.06 3.21 5.19 4.83 7.05 12.13 6.47 10.05 9.32 15.78
(2.00, 2.50) 6.11 3.30 5.59 5.19 7.23 12.55 6.60 10.90 10.13 15.61
(2.00, 2.70) 6.13 3.24 5.82 5.41 7.43 13.47 7.47 11.94 11.14 16.27
(2.00, 3.00) 5.94 3.16 5.96 5.52 7.40 12.78 6.70 12.05 11.19 17.28

(0.05, 0.10) 0.88 0.64 1.71 1.63 0.74 1.91 1.42 3.46 3.29 1.71
(0.05, 0.30) 0.03 0.02 0.10 0.10 0.11 0.03 0.22 0.20 0.00 1.16
(0.05, 0.50) 0.00 0.00 0.02 0.02 0.06 0.00 0.00 0.03 0.03 2.40
(0.05, 0.70) 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.02 0.02 1.01
(0.05, 1.00) 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 1.66

(1.00, 1.10) 2.08 1.64 2.19 2.12 2.04 4.26 3.38 4.20 4.06 4.16
(1.00, 1.50) 1.71 1.31 2.47 2.38 1.55 3.02 2.30 4.33 4.16 2.72

(20,12) (1.00, 2.00) 0.91 0.68 1.73 1.65 0.74 2.03 1.51 3.62 3.46 1.75
(1.00, 2.50) 0.53 0.39 1.18 1.12 0.43 1.27 0.93 2.61 2.48 1.13
(1.00, 3.00) 0.34 0.24 0.83 0.78 0.28 0.64 0.43 1.67 1.58 0.50

(2.00, 2.10) 1.71 1.26 1.72 1.65 1.65 3.90 3.06 3.70 3.56 3.89
(2.00, 2.30) 1.80 1.40 1.98 1.91 1.74 3.83 2.97 4.11 3.96 3.83
(2.00, 2.50) 1.80 1.40 2.20 2.12 1.66 3.52 2.69 4.35 4.18 3.27
(2.00, 2.70) 1.74 1.33 2.38 2.29 1.62 3.63 2.80 4.68 4.51 3.47
(2.00, 3.00) 1.64 1.25 2.39 2.30 1.45 3.53 2.73 4.80 4.62 3.34
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Table 6: Percentage of relative risk improvements of all the proposed estimators
using the loss L1 for equal sample sizes.

τ ↓
(m, n) = (5, 5), (12, 12), (20, 20)

R1 R5 R3 R6 R7 R8 R9

1.93 1.17 −38.84 −39.28 13.40 12.32 −18.31
0.05 0.00 0.00 −44.28 −44.28 1.63 1.52 −0.52

0.00 0.00 −41.76 −41.76 0.31 0.29 0.26

6.52 4.19 −5.86 −7.31 11.43 7.96 −0.74
0.15 0.16 0.09 −17.8 −17.84 2.18 1.85 0.76

0.00 0.00 −19.5 −19.5 0.80 0.65 0.55

8.30 5.65 4.14 2.37 6.41 0.82 2.75
0.25 0.49 0.30 −6.49 −6.60 −0.05 −0.59 0.26

0.06 0.04 −8.94 −8.96 0.00 −0.12 0.15

10.02 7.35 10.34 8.37 −0.03 −8.24 4.55
0.35 1.57 0.99 −1.19 −1.54 −0.14 −0.64 0.46

0.26 0.15 −3.54 −3.59 −1.15 −1.15 0.07

10.91 8.78 13.07 11.15 −3.63 −13.69 6.22
0.45 2.35 1.53 2.36 1.85 −3.04 −3.62 0.75

0.55 0.36 −0.72 −0.83 −2.12 −1.98 0.06

9.76 8.91 14.54 13.18 −8.86 −20.58 6.29
0.55 3.85 2.77 5.09 4.32 −4.05 −4.93 1.80

1.42 0.94 1.64 1.34 −2.43 −2.08 0.53

8.46 9.08 14.31 13.59 −13.9 −27.3 6.72
0.65 3.32 2.92 6.02 5.51 −7.72 −8.41 1.77

1.77 1.38 2.88 2.56 −3.81 −3.38 0.92

6.29 9.04 13.72 14.02 −21.68 −37.8 6.07
0.75 3.22 3.41 6.31 5.98 −9.55 −9.94 2.31

2.09 1.88 3.85 3.53 −5.45 −4.59 1.40

3.39 8.52 12.52 13.89 −26.94 −44.56 5.66
0.85 2.86 4.15 6.75 6.76 −11.21 −11.56 3.07

2.21 2.57 4.70 4.53 −6.40 −5.48 2.09

1.82 8.51 12.45 14.52 −31.13 −50.45 5.42
0.95 0.81 3.62 6.04 6.73 −15.23 −15.35 2.32

1.27 2.60 4.20 4.40 −8.28 −7.02 2.20

0.68 7.72 10.26 13.22 −35.40 −55.92 4.94
1.00 0.55 3.34 4.97 6.14 −17.04 −16.80 2.14

0.21 2.23 3.34 4.02 −8.87 −7.50 1.83
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Table 7: Percentage of relative risk improvements of all the proposed estimators
using the loss L1 for unequal sample sizes.

τ ↓
(m, n) = (5, 10), (12, 20), (10, 5), (20, 12)

R1 R2 R3 R4 R7 R8 R9

0.00 −8.4 −23.32 −25.50 3.46 3.08 −1.69

0.05
0.00 −0.53 −30.31 −31.00 0.79 0.67 0.54

2.18 6.68 −63.88 −59.61 10.25 9.64 −4.87
0.00 0.34 −57.97 −56.84 1.18 0.97 0.68

0.18 −6.53 −0.40 −1.37 0.01 −0.93 −2.03

0.15
0.00 −0.71 −8.10 −8.45 0.13 0.00 −0.13

5.79 9.87 −22.3 −20.38 13.2 11.27 5.33
0.02 0.57 −30.61 −29.93 1.57 1.27 1.01

0.72 −2.63 5.58 5.09 −6.48 −7.87 −2.44

0.25
0.04 −0.43 −0.79 −0.99 −2.23 −2.29 −0.66

7.70 10.26 −6.39 −5.35 11.3 7.81 8.14
0.43 0.98 −17.05 −16.61 1.79 1.42 1.25

1.47 1.49 8.63 8.48 −13.83 −15.54 −1.73

0.35
0.22 0.01 2.81 2.70 −4.38 −4.29 −0.84

9.66 10.74 2.29 2.88 9.38 4.71 9.32
1.01 1.36 −8.73 −8.46 0.84 0.29 1.45

2.06 3.77 9.03 9.09 −22.4 −24.25 −1.3

0.45
0.55 0.59 4.21 4.15 −6.82 −6.24 −0.50

10.6 10.59 7.92 8.23 7.92 1.97 10.32
1.77 2.04 −3.95 −3.77 1.31 0.78 1.98

2.66 5.76 9.55 9.74 −27.42 −29.41 −0.41

0.55
1.08 1.52 5.02 5.02 −10.3 −9.21 0.26

11.91 11.00 11.17 11.35 6.33 −0.93 11.03
2.31 2.24 0.27 0.35 −0.60 −1.21 1.99

2.98 6.84 9.14 9.47 −35.76 −37.23 −0.34

0.65
1.36 1.97 4.65 4.69 −13.33 −12.04 0.67

12.84 11.37 13.59 13.68 4.43 −3.84 11.46
3.24 3.00 3.15 3.20 −1.05 −1.75 2.65

3.21 7.98 8.47 8.93 −43.11 −44.95 −0.14

0.75
1.93 2.67 4.58 4.65 −15.73 −13.78 1.42

12.37 10.08 14.27 14.29 0.59 −9.52 10.97
3.41 3.00 4.61 4.63 −2.65 −3.39 2.65

3.31 8.48 7.91 8.45 −51.29 −52.66 −0.84

0.85
2.43 3.20 3.95 4.04 −17.53 −15.15 2.18

11.99 9.02 14.76 14.74 −3.30 −14.75 10.02
4.00 3.47 5.95 5.94 −3.31 −3.93 3.14

3.33 9.10 7.54 8.17 −56.73 −58.04 −0.47

0.95
2.26 3.14 3.25 3.38 −21.16 −18.37 2.10

11.83 8.84 14.60 14.56 −4.47 −16.63 10.04
3.95 3.31 6.44 6.42 −4.8 −5.49 2.92

2.99 9.03 6.59 7.28 −62.71 −63.43 −1.96

1.00
1.94 2.84 2.52 2.65 −24.06 −21.01 1.91

11.4 8.07 14.64 14.59 −5.9 −19.2 9.47
4.09 3.55 5.81 5.81 −4.87 −5.47 3.18
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Figure 1: (a)–(f) Comparison of risk values of several estimators for common mean µ
using the loss L1 for sample sizes (5, 5), (12, 12), (5, 10), (10, 5), (12, 20) and
(20, 12) respectively.
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The following observations have been made during our simulation study as well as from
the tables, which we discuss separately for equal and unequal sample sizes.

Case I: m = n.

1. The percentage of risk improvements as well as the risk values of all the new es-
timators upon their respective unrestricted counterparts decreases as the sample
sizes increase for fixed values of the parameter, with respect to the loss functions
L1, L2 and L3.

2. Let the loss function be L1. The percentage of risk improvement of d̂GD (see P1)
is seen maximum up to 12%. The percentage of risk improvement of daGD (see P5)
is seen maximum up to 10%. The percentage of risk improvement of d̂MK (see P3)
is seen maximum up to 7%. The percentage of risk improvement of daMK (see P6)
is seen maximum up to 6%, where the percentage of risk improvement of d̂RM (see
P9) is seen maximum up to 20%.

3. Let the loss function be L2. The maximum percentage of risk improvement of d̂GD,
daGD, d̂MK , d

a
MK , and d̂RM upon their respective unrestricted counterparts are seen

near to 6%, 5%, 4%, 3% and 7% respectively. The maximum percentage of risk
improvement is seen in the case of d̂RM for small sample sizes and when σ2

1 and σ2
2

are close to each other.

4. Let the loss function be L3. The maximum percentage of risk improvement of d̂GD,
daGD, d̂MK , d

a
MK , and d̂RM upon their respective unrestricted counterparts are

seen respectively as 11%, 10%, 7%, 5% and 20%. The maximum percentage of risk
improvement of each of the estimators has been noticed for small sample sizes and
when the variances are close to each other.

5. Here we note that, the percentage of risk improvements of all the new estimators
upon their respective unrestricted counterparts are approximated values only which
have been obtained numerically and hence it may vary with sample sizes.

6. The above numerical results (2)–(4) validates the theoretical findings in Sections 3,
4, and 5.

7. The risk values of all the estimators such as d̂GD, daGD, d̂MK , d
a
MK , d

a
BC1, d

a
BC2,

and d̂RM , decrease as the sample sizes increase. Further for fixed sample sizes, as
the values of τ varies from 0 to 1, the risk values of all the estimators decrease. It
has been noticed that, for small values of τ (say 0 < τ < 0.25), the percentage of
relative risk improvement of daBC1 is maximum and seen up to 15%. For the values
of τ near to 1, (say for the range 0.50 < τ < 1) the estimators d̂MK and daMK have
almost same percentage of relative risk improvements. For moderate values of τ
(say 0.50 < τ < 0.75), the estimators d̂MK and daMK perform equally well, however
as the sample sizes increases from moderate to large, the performance of these two
estimators decrease and compete well with d̂GD. In fact, the dominance regions of
d̂MK and daMK upon d̂GD decrease. It has also been noticed that the estimators
d̂GD, d̂MK , and daBC1 compete with daGD, d

a
MK and daBC2 respectively.
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Case II: m 6= n.

1. The percentage of risk improvements of all the improved estimators decrease as the
sample sizes increase for fixed values of σ2

1 and σ2
2 with respect to the loss functions

L1, L2 and L3.

2. Let us first consider the loss function L1. The percentage of risk improvement
of d̂GD upon dGD (denoted as P1) is seen maximum up to 16%, the maximum
percentage of risk improvement of d̂KS upon dKS (denoted as P2) is seen near
to 8%. The maximum percentage of risk improvement of d̂MK and d̂TK over their
corresponding unrestricted counterparts are seen near to 14% and 13% respectively.
The maximum percentage of risk improvement of d̂RM upon dML is seen up to 15%.
We also note that, these maximum risk improvements have been noticed when
m > n for all the estimators.

3. Let us consider the loss function L2. The maximum percentage of risk improvement
of d̂GD upon dGD is seen up to 7%. The maximum percentage of risk improvement of
d̂KS over dKS is seen near to 4%. The maximum percentage of risk improvement of
d̂MK upon dMK is seen near to 7%. The maximum percentage of risk improvement
of d̂TK upon dTK is seen near to 7%. The maximum percentage of risk improvement
of d̂RM upon dML is seen near to 13%.

4. Consider the loss function L3. The maximum percentage of risk improvement of d̂GD
upon dGD is seen up to 13%. The maximum percentage of risk improvement of d̂KS
upon dKS is seen near to 8%. The maximum percentage of risk improvement of d̂MK

upon dMK is seen near to 13%. The maximum percentage of risk improvement of
d̂TK upon dTK is seen near to 13%. The maximum percentage of risk improvement
of d̂RM upon dML is seen near to 36%.

5. Here we note that, the percentage of risk improvements of all the improved estima-
tors upon their respective unrestricted counterparts are approximated values only
which have been obtained numerically and hence it may vary with sample sizes,
however the trends remain the same.

6. The above numerical results (2)−−(4) also validates the theoretical findings in
Sections 3, 4, and 5.

7. The risk values of all the estimators, such as d̂GD, d̂KS , d̂MK , d̂TK , d
a
BC1, d

a
BC2,

and d̂RM , decrease as the sample sizes increase. It has been noticed that for small
values of τ (say 0 < τ < 0.15), the percentage of relative risk improvements of daBC1

and daBC2 are maximum and seen up to 12%. For the values of τ near to 1, (say
0.75 < τ < 1) the estimator d̂KS (for m < n) and d̂MK , d̂TK (when m > n) has
maximum percentage of relative risk improvements. For moderate values of τ, the
estimators d̂MK and d̂TK perform equally well, however as the sample sizes increase
from moderate to large the performance of these two estimators decrease and in
this case the estimators d̂GD and d̂KS perform better.
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From the above discussions and also from our simulation study the following conclusions
can be drawn regarding the use of the proposed estimators in practice:

1. Let us consider that the sample sizes are equal, that is m = n. When the variance
of the first population is much smaller compare to the second, we recommend to
use daBC1. When the variance of both the populations are close to each other, we
recommend to use either d̂MK or daMK , as they compete with each other. In other
cases, that is neither the variances differ too much nor close to each other, the
estimators d̂MK and daMK can be used for small sample sizes (say m,n ≤ 10), and
d̂MK or d̂GD for moderate to large sample sizes.

2. Consider that the sample sizes are unequal, that is m 6= n. When the variance of
the first population is much smaller than the second, we recommend to use either
the estimator daBC1 or daBC2. When the variances of both the populations are close
to each other, the estimators d̂KS or d̂TK (for m < n) and d̂TK or d̂MK (for m > n)
can be recommended for use. However for moderate ranges of τ, the estimators
d̂MK or d̂TK (for m < n) and the estimators d̂KS , d̂GD, d̂RM or d̂TK (for m > n)
can be preferred as they all perform equally well.
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7. CONCLUDING REMARKS AND EXAMPLES

In this paper, we have re-investigated the problem of estimating common mean of two
normal populations when the variances are known to follow the ordering σ2

1 ≤ σ2
2. It should

be noted that, Elfessi and Pal [7] considered this model and obtained an estimator which
dominates the well known Graybill-Deal (see Graybill and Deal [8]) estimator in terms of
stochastic domination as well as Pitman measure of closeness criterion. We have proposed
some new estimators for the common mean under order restricted variances which beat their
unrestricted counterparts (previously proposed by Khatri and Saha [11], Moore and Krish-
namoorthy [14], Tripathy and Kumar [20], Brown and Cohen [3]) stochastically, universally
and in terms of Pitman measure of closeness criterion and compete well with the estimator
proposed by Elfessi and Pal [7]. Moreover, we have obtained a plug-in type restricted MLE
which beats the unrestricted MLE with respect to a squared error loss function. In addition
to these, we have derived a sufficient condition for improving equivariant estimators using
orbit-by-orbit improvement technique of Brewster and Zidek [2]. To the best of our knowl-
edge, the performance of the MLE of the common mean has not been discussed under order
restricted variances in the literature which was also lacking and we have tried to answer up
to some extent. We have carried out a detailed and in-depth simulation study in order to
compare the performances of both proposed as well as existing estimators with that of the
plug-in type restricted MLE which was lacking in the literature. Under order restriction on
the variances we have recommended estimators that can be used in practice. We hope that
the current study may fill the knowledge gap and provide useful information to the researchers
from an application point of view.

Example 7.1. (Simulated Data): The following two data sets each of size 10 from
normal distributions have been generated using the software R, with a common mean µ = 25
and with the condition that σ2

1 ≤ σ2
2. Data Set A: 24.28, 25.94, 25.76, 29.14, 28.39, 23.51,

23.43, 22.60, 22.29, 28.26. Data Set B: 24.61, 23.70, 26.25, 29.11, 26.13, 23.52, 25.57, 22.34,
26.19, 23.04. The sufficient statistics can be computed as x̄ = 25.36, ȳ = 25.04, s21 = 57.69,
s22 = 36.46. Based on the summery data it is seen that s21 > s22. This is a case where the
improved estimators can be obtained. The various estimators are computed as dGD =
25.17, d̂GD = 25.24, daGD = 25.20, dKS = 25.17, d̂KS = 25.24, daKS = 25.20, dMK = 25.18,
d̂MK = 25.22, daMK = 25.20, dTK = 25.18, d̂TK = 25.22, daTK = 25.20, dBC1 = 25.25, daBC1 =
25.25, dBC2 = 25.18, d̂BC2 = 25.20, daBC2 = 25.23, dML = 25.17, d̂RM = 25.20, daML = 25.20.
Depending upon the variance ratios, the improved estimators can be used.

Example 7.2. Rohatgi and Saleh [19], (p.515) discussed one example regarding the
mean life time (in hours) of light bulbs. Suppose a random sample of 9 bulbs has sample mean
1309 hours with standard deviation of 420 hours. A second sample of 16 bulbs chosen from a
different batch has sample mean 1205 hours and standard deviation 390 hours. A two sample
t-test fails to reject the hypothesis that the means are equal. Suppose it is known a priori that
the variance of first sample is smaller than the second one. This is a situation where our model
will be useful. On the basis of these samples, we havem = 9, n = 16, x̄ = 1309, ȳ = 1205, s1 =
(
√
m− 1)420, s2 = (

√
n− 1)390. The various estimators for the common mean are obtained

as dGD = 1269.27, d̂GD = 1271.24, dKS = 1267.44, d̂KS = 1271.24, dMK = 1274.22, d̂MK =
1274.22, dTK = 1274.01, d̂TK = 1274.01, dBC1 = 1284.37, daBC1 = 1284.37, dBC2 = 1287.32,
daBC2 = 1287.32, dML = 1269.87, d̂RM = 1271.24, and daML = 1271.24. In this situation we
recommend to use either of the estimators d̂GD, d̂KS , or daML.
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A. APPENDIX

Proof of Theorem 3.1: (i) First we prove the dominance result for equal sample
sizes that is m = n. Consider the estimator d̂MK which is given by

d̂MK =
{

(1− β1)X̄ + β1Ȳ , if S1 ≤ S2,
β1X̄ + (1− β1)Ȳ , if S1 > S2.

Our target is to show that,

P [(d̂MK − µ)2 ≤ c] ≤ P [(dMK − µ)2 ≤ c], ∀ c > 0.(A.1)

Which is equivalent to show that

P [(dMK − µ)2 ≤ c|S1 > S2] ≤ P [(d̂MK − µ)2 ≤ c|S1 > S2], ∀ c > 0.

Denoting X∗
1 = (1− β1)X̄ + β1Ȳ and X∗

2 = β1X̄ + (1− β1)Ȳ , we observe that X∗
1 − µ ∼

N(0, σ2), X∗
2 − µ ∼ N(0, σ2

∗), where σ2 = (1− β1)2
σ2
1
m + β2

1
σ2
2
m and σ2

∗ = β2
1
σ2
1
m + (1− β1)2

σ2
2
m .

Thus incorporating all these information the above inequality reduces to,

Φ
(√c
σ

)
≤ Φ

(√c
σ∗

)
, ∀ c > 0 and S1 > S2,(A.2)

where Φ(.) is the cumulative distribution function of a standard normal random variable.

The inequality (A.2) is equivalent to show that, σ2 > σ2
∗, when S1 > S2. This is true

as, σ2 − σ2
∗ > 0 when σ2

1 ≤ σ2
2 and S1 > S2. This proves the case of equal sample sizes.

Next we prove the result for the case of unequal sample sizes that is m 6= n. Denoting
V1 =

√
m
m−1S1 and V2 =

√
n
n−1S2, the estimator d̂MK can be written as,

d̂MK =
{
dMK , if V1 ≤ V2
mX̄+nȲ
m+n , if V1 > V2.

Proceeding as before, one needs to show that,

P [(dMK − µ)2 ≤ c|V1 > V2] ≤ P [(d̂MK − µ)2 ≤ c|V1 > V2], ∀ c > 0.

Which is further equivalent to show that

Φ
(√c
ν

)
≤ Φ

(√c
ν∗

)
, ∀ c > 0,

where ν2 = (m−1)s22σ
2
1+(n−1)s21σ

2
2

(
√
m(m−1)s2+

√
n(n−1)s1)2

and ν2
∗ = mσ2

1+nσ2
2

(m+n)2
. This is further equivalent to show

that ν2 > ν2
∗ , ∀ c > 0 when V1 > V2.

This is equivalent to show that,

σ2
1 + σ2

2λ
2

(
√
m+

√
nλ)2

>
mσ2

1 + nσ2
2

(m+ n)2
, ∀ c > 0, σ1 ≤ σ2,

where λ =
√
n−1S1√
m−1S2

. Let h(λ) = σ2
1+σ2

2λ
2

(
√
m+

√
nλ)2

. To show that h(λ) > h(
√

n
m), for λ >

√
n
m . We

observe that dh
dλ ≤ 0, if λ ≤

√
n
m
σ2
1

σ2
2
≤

√
n
m , as σ2

1/σ
2
2 ≤ 1. Further dh

dλ > 0, when λ >
√

n
m .

Hence h(λ) is increasing in the interval [
√

n
m ,∞). Universal domination follows from Defini-

tion 3.2. This proves (i). The proofs of (ii)–(iv) are very much similar to the proof of (i) and
hence have been omitted. This completes the proof of the Theorem 3.1.



354 A.K. Jena, M.R. Tripathy and N. Pal

Proof of Theorem 5.1: The theorem can be proved by using a well known technique
for improving equivariant estimators proposed by Brewster and Zidek [2]. To proceed, let us
consider the conditional risk function of dΨ given T˜ = t˜ :

R(α˜, dΨ|t˜) =
1
σ2

1

E{(X̄ + S1Ψ(T˜)− µ)2|T˜ = t˜}.
The above risk function is convex in Ψ(t˜) and attains minimum at

Ψ(t˜, α˜) =
E{(µ− X̄)S1|T˜ = t˜}

E{S2
1 |T˜ = t˜} .(A.3)

To evaluate the conditional expectations involved in the above expression, we use the following
transformations. Let us define V1 = (

√
m(X̄ − µ))/σ1, V2 = (

√
m(Ȳ − µ))/σ1, W1 = S2

1/σ
2
1

and W2 = S2
2/σ

2
2. With these substitution the expression for Ψ(t˜, α˜) then reduces to,

Ψ(t˜, α˜) = −
E(V1W

1
2
1 |T˜ = t˜)√

mE(W1|T˜ = t˜) .(A.4)

These conditional expectations have been evaluated in [20] and are given by,

E(W1|T˜ = t˜) =
m+ n− 1

λ
,

and

E(V1W
1
2
1 |T˜ = t˜) = −n

√
m(m+ n− 1)t1
(n+mρ)λ

,

where

λ =
mnt21
n+mρ

+
t2
ρ

+ 1, ρ =
σ2

2

σ2
1

≥ 1.

Substituting these expressions in (A.4), we get the minimimizing choice of Ψ(t˜, α˜) as

Ψ̂(t˜, ρ) =
nt1

n+mρ
.

In order to derive the inadmissibility condition of the theorem, we need the supremum and
infimum values of Ψ̂(t˜, ρ) with respect to ρ ∈ [1,∞) for fixed values of T˜ = t˜. We consider the
following two cases to obtain the supremum and infimum of Ψ̂(t˜, ρ):

Case-I: Let t1 ≥ 0. Now the function Ψ̂(t˜, ρ) is decreasing with respect to ρ ∈ [1,∞).
Hence we obtain

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→∞

Ψ̂(t˜, ρ) = 0 and sup
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) =
nt1

n+m
.

Case-II: Let t1 < 0. The function Ψ̂(t˜, ρ) is an increasing function of ρ. So for this case
we obtain

inf
ρ≥1

Ψ̂(t˜, ρ) = lim
ρ→1

Ψ̂(t˜, ρ) =
nt1

n+m
and sup

ρ≥1
Ψ̂(t˜, ρ) = lim

ρ→∞
Ψ̂(t˜, ρ) = 0.

Combining the Case-I and Case-II, it is easy to define the function Ψ0(t˜) as given
in (5.2). Utilizing the function Ψ0(t˜) and as an application of Theorem 3.1 (in Brewster
and Zidek [2]), we get R(dΨ0 , α˜) ≤ R(dΨ, α˜), when σ1 ≤ σ2. This completes the proof of the
theorem.
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A Sample Program Code of the Simulation Study

As suggested by an anonymous reviewer, below we present a sample program code of
the simulation study for equal sample sizes.

library(MASS)

library(nleqslv)

M=20000

n1=30

n2=30

b=1.5434/2.0

c=1.5045/2.0

sd2=1.0

mu=0.0

cm=gamma((n1-1)/2)/(sqrt(2)*gamma(n1/2))

cn=gamma((n2-1)/2)/(sqrt(2)*gamma(n2/2))

for(sd1 in seq(0.05,1.0,0.05))

{x1=matrix(0,n1,M)

x2=matrix(0,n2,M)

m1=array(0,M)

m2=array(0,M)

s1=array(0,M)

s2=array(0,M)

d=array(0,M)

a1=array(0,M)

a2=array(0,M)

a3=array(0,M)

a4=array(0,M)

a5=array(0,M)

a6=array(0,M)

a7=array(0,M)

a8=array(0,M)

a9=array(0,M)

a10=array(0,M)

a11=array(0,M)

a12=array(0,M)

a13=array(0,M)

a14=array(0,M)

a15=array(0,M)

a16=array(0,M)

b1=array(0,M)

b2=array(0,M)

b3=array(0,M)

b4=array(0,M)

b5=array(0,M)

b6=array(0,M)

b7=array(0,M)

b8=array(0,M)

b9=array(0,M)

b10=array(0,M)

b11=array(0,M)

b12=array(0,M)

b13=array(0,M)

b14=array(0,M)

b15=array(0,M)

b16=array(0,M)

c1=array(0,M)

c2=array(0,M)

c3=array(0,M)

c4=array(0,M)

c5=array(0,M)

c6=array(0,M)
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c7=array(0,M)

c8=array(0,M)

c9=array(0,M)

c10=array(0,M)

c11=array(0,M)

c12=array(0,M)

c13=array(0,M)

c14=array(0,M)

c15=array(0,M)

c16=array(0,M)

c17=array(0,M)

c18=array(0,M)

c19=array(0,M)

c20=array(0,M)

e1=array(0,M)

e2=array(0,M)

GD=array(0,M)

GDI=array(0,M)

GDA=array(0,M)

PsiGD=array(0,M)

Psi1=array(0,M)

Psi2=array(0,M)

PsiKS=array(0,M)

PsiMK=array(0,M)

PsiTK=array(0,M)

KS=array(0,M)

KSI=array(0,M)

KSA=array(0,M)

MK=array(0,M)

MKI=array(0,M)

MKA=array(0,M)

TK=array(0,M)

TKI=array(0,M)

TKA=array(0,M)

ML=array(0,M)

T1=array(0,M)

T2=array(0,M)

T3=array(0,M)

T4=array(0,M)

V1R=array(0,M)

V2R=array(0,M)

MLR=array(0,M)

PsiBC1=array(0,M)

BC1A=array(0,M)

BC1=array(0,M)

BC2=array(0,M)

PsiBC2=array(0,M)

BC2A=array(0,M)

g1=array(0,M)

g2=array(0,M)

g3=array(0,M)

g4=array(0,M)

RML=array(0,M)

beta1=array(0,M)

beta2=array(0,M)

beta3=array(0,M)

beta4=array(0,M)

beta5=array(0,M)

BC2I=array(0,M)

PsiML=array(0,M)

t1=array(0,M)

MLA=array(0,M)

for(j in 1:M)
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{x1[, j] = rnorm(n1,mean = mu, sd = sqrt(sd1))

x2[, j] = rnorm(n2,mean = mu, sd = sqrt(sd2))

m1[j] = mean(x1[, j])

m2[j] = mean(x2[, j])

d[j] = m2[j]−m1[j]

s1[j] = sum((x1[, j]−m1[j])2)

s2[j] = sum((x2[, j]−m2[j])2)

t1[j] = d[j]/sqrt(s1[j])

beta1[j] = (n2 ∗ (n2− 1) ∗ s1[j])/((n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j]))
a1[j] = ((1− beta1[j]) ∗m1[j]) + (beta1[j] ∗m2[j])

GD[j] = ((a1[j]−mu)/sqrt(sd1))2

a2[j] = s1[j]/(n1− 1)

a3[j] = s2[j]/(n2− 1)

if(a2[j] <= a3[j])

{a4[j] = a1[j]}
else{a4[j] = (beta1[j] ∗m1[j]) + ((1− beta1[j]) ∗m2[j])}
GDI[j] = ((a4[j]−mu)/sqrt(sd1))2

a5[j] = (n2 ∗ (n2− 1)) ∗ (d[j]/sqrt(s1[j]))

a6[j] = (n1 ∗ (n1− 1) ∗ (s2[j]/s1[j])) + (n2 ∗ (n2− 1))

PsiGD[j] = a5[j]/a6[j]

Psi1[j] = (n2/(n1 + n2)) ∗min((d[j]/sqrt(s1[j])), 0)

Psi2[j] = (n2/(n1 + n2)) ∗max((d[j]/sqrt(s1[j])), 0)

if(PsiGD[j] < Psi1[j])

{a7[j] = Psi1[j]}
elseif(PsiGD[j] > Psi2[j])

{a7[j] = Psi2[j]}
else{a7[j] = PsiGD[j]}
a8[j] = m1[j] + (sqrt(s1[j]) ∗ a7[j]) GDA[j] = ((a8[j]−mu)/sqrt(sd1))2

beta2[j] = (n2 ∗ (n2− 3) ∗ s1[j])/((n2 ∗ (n2− 3) ∗ s1[j]) + (n1 ∗ (n1− 3) ∗ s2[j]))
a9[j] = (beta2[j] ∗m2[j]) + ((1− beta2[j]) ∗m1[j])

KS[j] = ((a9[j]−mu)/sqrt(sd1))2

a10[j] = s1[j]/(n1− 3)

a11[j] = s2[j]/(n2− 3)

if(a10[j] <= a11[j])

{a12[j] = a9[j]}
else{a12[j] = (beta2[j] ∗m1[j]) + ((1− beta2[j]) ∗m2[j])}
KSI[j] = ((a12[j]−mu)/sqrt(sd1))2

a13[j] = (n2 ∗ (n2− 3)) ∗ (d[j]/sqrt(s1[j]))

a14[j] = (n1 ∗ (n1− 3) ∗ (s2[j]/s1[j])) + (n2 ∗ (n2− 3))

PsiKS[j] = a13[j]/a14[j]

if(PsiKS[j] < Psi1[j])

{a15[j] = Psi1[j]}
elseif(PsiKS[j] > Psi2[j])

{a15[j] = Psi2[j]}
else{a15[j] = PsiKS[j]}
a16[j] = m1[j] + (sqrt(s1[j]) ∗ a15[j])

KSA[j] = ((a16[j]−mu)/sqrt(sd1))2

beta3[j] = sqrt(n2 ∗ (n2− 1) ∗ s1[j])/(sqrt(n2 ∗ (n2− 1) ∗ s1[j]) + sqrt(n1 ∗ (n1− 1) ∗ s2[j]))
b1[j] = ((1− beta3[j]) ∗m1[j]) + (beta3[j] ∗m2[j])

MK[j] = ((b1[j]−mu)/sqrt(sd1))2

b2[j] = sqrt(n1/(n1− 1)) ∗ sqrt(s1[j])

b3[j] = sqrt(n2/(n2− 1)) ∗ sqrt(s2[j])

if(b2[j] <= b3[j])

{b4[j] = b1[j]}
else{b4[j] = (beta3[j] ∗m1[j]) + ((1− beta3[j]) ∗m2[j])}
MKI[j] = ((b4[j]−mu)/sqrt(sd1))2

b5[j] = sqrt(n2 ∗ (n2− 1)) ∗ (d[j]/sqrt(s1[j]))

b6[j] = (sqrt(n1 ∗ (n1− 1)) ∗ sqrt(s2[j]/s1[j])) + (sqrt(n2 ∗ (n2− 1)))

PsiMK[j] = b5[j]/b6[j]

if(PsiMK[j] < Psi1[j])

{b7[j] = Psi1[j]}
elseif(PsiMK[j] > Psi2[j])

{b7[j] = Psi2[j]}
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else{b7[j] = PsiMK[j]}
b8[j] = m1[j] + (sqrt(s1[j]) ∗ b7[j])

MKA[j] = ((b8[j]−mu)/sqrt(sd1))2

beta4[j] = (sqrt(n2 ∗ s1[j]) ∗ cm)/((sqrt(n2 ∗ s1[j]) ∗ cm) + (sqrt(n1 ∗ s2[j]) ∗ cn))

b9[j] = ((1− beta4[j]) ∗m1[j]) + (beta4[j] ∗m2[j])

TK[j] = ((b9[j]−mu)/sqrt(sd1))2

b10[j] = cm ∗ sqrt(s1[j]) ∗ sqrt(n1)

b11[j] = cn ∗ sqrt(s2[j]) ∗ sqrt(n2)

if(b10[j] <= b11[j])

{b12[j] = b9[j]}
else{b12[j] = (beta4[j] ∗m1[j]) + ((1− beta4[j]) ∗m2[j])}
TKI[j] = ((b12[j]−mu)/sqrt(sd1))2

b13[j] = sqrt(n2) ∗ cm ∗ (d[j]/sqrt(s1[j]))

b14[j] = (sqrt(n1) ∗ cn ∗ sqrt(s2[j]/s1[j])) + (sqrt(n2) ∗ cm)

PsiTK[j] = b13[j]/b14[j]

if(PsiTK[j] < Psi1[j])

{b15[j] = Psi1[j]}
elseif(PsiTK[j] > Psi2[j])

{b15[j] = Psi2[j]}
else{b15[j] = PsiTK[j]}
b16[j] = m1[j] + (sqrt(s1[j]) ∗ b15[j])

TKA[j] = ((b16[j]−mu)/sqrt(sd1))2

c1[j] = (d[j] ∗ b ∗ s1[j])/(n1 ∗ (n1− 1))

c2[j] = (s1[j]/(n1 ∗ (n1− 1))) + (s2[j]/(n2 ∗ (n2 + 2))) + ((d[j] ∗ d[j])/(n2 + 2))

c3[j] = c1[j]/c2[j]

c4[j] = m1[j] + c3[j]

BC1[j] = ((c4[j]−mu)/sqrt(sd1))2

c5[j] = (d[j] ∗ b)/(n1 ∗ (n1− 1) ∗ sqrt(s1[j]))

c6[j] = 1/(n1 ∗ (n1− 1))

c7[j] = s2[j]/(s1[j] ∗ n2 ∗ (n2 + 2))

c8[j] = ((d[j]/sqrt(s1[j]))2)/(n2 + 2)

PsiBC1[j] = c5[j]/(c6[j] + c7[j] + c8[j])

c9[j] = m1[j] + (sqrt(s1[j]) ∗ PsiBC1[j])

if(PsiBC1[j] < Psi1[j])

{c10[j] = Psi1[j]}
elseif(PsiBC1[j] > Psi2[j])

{c10[j] = Psi2[j]}
else{c10[j] = PsiBC1[j]}
c11[j] = m1[j] + (sqrt(s1[j]) ∗ c10[j])

BC1A[j] = ((c11[j]−mu)/sqrt(sd1))2

c12[j] = d[j] ∗ c ∗ s1[j] ∗ (n2 ∗ (n2− 1))

c13[j] = (n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j])
c14[j] = c12[j]/c13[j]

c15[j] = m1[j] + c14[j]

BC2[j] = ((c15[j]−mu)/sqrt(sd1))2

c16[j] = (d[j]/sqrt(s1[j])) ∗ c ∗ n2 ∗ (n2− 1)

c17[j] = (n2 ∗ (n2− 1)) + (n1 ∗ (n1− 1) ∗ (s2[j]/s1[j]))

PsiBC2[j] = c16[j]/c17[j]

if(PsiBC2[j] < Psi1[j])

{c18[j] = Psi1[j]}
elseif(PsiBC2[j] > Psi2[j])

{c18[j] = Psi2[j]}
else{c18[j] = PsiBC2[j]}
c19[j] = m1[j] + (sqrt(s1[j]) ∗ c18[j])

BC2A[j] = ((c19[j]−mu)/sqrt(sd1))2

beta5[j] = (c ∗ n2 ∗ (n2− 1) ∗ s1[j])/((n2 ∗ (n2− 1) ∗ s1[j]) + (n1 ∗ (n1− 1) ∗ s2[j]))
if((2 ∗ c) <= (1 + (s2[j]/s1[j])))

{c20[j] = ((1− beta5[j]) ∗m1[j]) + (beta5[j] ∗m2[j])}
else{c20[j] = (beta5[j] ∗m1[j]) + ((1− beta5[j]) ∗m2[j])}
BC2I[j] = ((c20[j]−mu)/sqrt(sd1))2

fnewton < −function(x)

{y < −numeric(3)

d11 = n2 ∗ x[1] ∗ d[j]
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d22 = n1 ∗ d[j] ∗ x[2]

d33 = (n2 ∗ x[1]) + (n1 ∗ x[2])

d44 = (n1 ∗m1[j]/x[1]) + (n2 ∗m2[j]/x[2])

d55 = (n1/x[1]) + (n2/x[2])

y[1] < −x[1]− (s1[j]/n1)− (d11/d33)2

y[2] < −x[2]− (s2[j]/n2)− (d22/d33)2

y[3] < −x[3]− (d44/d55)

y}
xstart < −c(s1[j]/(n1− 1), s2[j]/(n2− 1),m1[j])

T1[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[1]

T2[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[2]

T3[j] = nleqslv(xstart, fnewton, control = list(btol = 0.0001),method = ”Newton”)x[3]

ML[j] = ((T3[j]−mu)/sqrt(sd1))2

V 1R[j] = min(T1[j], ((n1 ∗ T1[j]) + (n2 ∗ T2[j]))/(n1 + n2))

V 2R[j] = max(T2[j], ((n1 ∗ T1[j]) + (n2 ∗ T2[j]))/(n1 + n2))

g1[j] = (n1 ∗ V 2R[j] ∗m1[j]) + (n2 ∗ V 1R[j] ∗m2[j])

g2[j] = (n1 ∗ V 2R[j]) + (n2 ∗ V 1R[j])

g3[j] = g1[j]/g2[j]

MLR[j] = ((g3[j]−mu)/sqrt(sd1))2

if(T1[j] <= T2[j])

{g4[j] = T3[j]}
else{g4[j] = ((n1 ∗m1[j]) + (n2 ∗m2[j]))/(n1 + n2)}
RML[j] = ((g4[j]−mu)/sqrt(sd1))2

PsiML[j] = (n2 ∗ T1[j] ∗ t1[j])/((n1 ∗ T2[j]) + (n2 ∗ T1[j]))

if(PsiML[j] < Psi1[j])

{e1[j] = Psi1[j]}
elseif(PsiML[j] > Psi2[j])

{e1[j] = Psi2[j]}
else{e1[j] = PsiML[j]}
e2[j] = m1[j] + (sqrt(s1[j]) ∗ e1[j])

MLA[j] = ((e2[j]−mu)/sqrt(sd1))2

} tau = sd1/sd2

R1 = sum(GD)/M

R2 = sum(GDI)/M

R3 = sum(GDA)/M

R4 = sum(KS)/M

R5=sum(KSI)/M

R6=sum(KSA)/M

R7=sum(MK)/M

R8=sum(MKI)/M

R9=sum(MKA)/M

R10=sum(TK)/M

R11=sum(TKI)/M

R12=sum(TKA)/M

R13=sum(BC1)/M

R14=sum(BC1A)/M

R15=sum(BC2)/M

R16=sum(BC2A)/M

R222=sum(BC2I)/M

R17=sum(ML)/M

R18=sum(MLR)/M

R19=sum(RML)/M

R20=sum(MLA)/M

P1=round(((R1-R2)/R1)*100,2)

P2=round(((R1-R3)/R1)*100,2)

P3=round(((R4-R5)/R4)*100,2)

P4=round(((R4-R6)/R4)*100,2)

P5=round(((R7-R8)/R7)*100,2)

P6=round(((R7-R9)/R7)*100,2)

P7=round(((R10-R11)/R10)*100,2)

P8=round(((R10-R12)/R10)*100,2)

P9=round(((R13-R14)/R13)*100,2)

P10=round(((R15-R16)/R15)*100,2)
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P11=round(((R17-R18)/R17)*100,2)

P12=round(((R17-R19)/R17)*100,2)

P13=round(((R15-R222)/R15)*100,2)

P14=round(((R17-R20)/R17)*100,2)

PR1=round(((R1-R2)/R1)*100,2)

PR2=round(((R1-R3)/R1)*100,2)

PR3=round(((R1-R8)/R1)*100,2)

PR4=round(((R1-R9)/R1)*100,2)

PR5=round(((R1-R14)/R1)*100,2)

PR6=round(((R1-R16)/R1)*100,2)

PR7=round(((R1-R222)/R1)*100,2)

PR8=round(((R1-R19)/R1)*100,2)

PR9=round(((R1-R20)/R1)*100,2)

}}
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