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Abstract:

• Polynomials are one of the oldest and the most versatile classes of functions which
are fundamental in approximating highly complex, deterministic as well as random
nonlinear functions and systems. Their use has been acknowledged in every scientific
field from physics to ecology. Just to emphasize their great use in many fields, we
mention their fundamental role in linear and non-linear time series analysis. In this
paper, we give a review of some of the results related to polynomials with random
coefficients and highlight the Poisson character of high level upcrossings of certain
random coefficient trigonometric polynomials which are used in spectral analysis of
time series.
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1. INTRODUCTION

Polynomials form the backbone of mathematics in general and approxi-

mation of complex deterministic and random nonlinear functions and dynamic

processes in particular. Examples of their use are countless coming from diverse

areas such as quantum chaotic dynamics to ecology. Their use repeatedly appears

in asymptotic theory of statistics and in particular in time series analysis which

will be our primary interest.

In its simplest form, algebraic characteristics of polynomials are very much

used in statistics. The celebrated expansions related to central limit theorems

such as the Edgeworth expansions, Berry–Esseen type theorems and the delta

method all depend on polynomial expansions and form the basis of asymptotic

theory of statistics. Polynomials and their algebraic properties are also used in

constructing stationary, invertible finite parameter linear representations for time

series. Wold decomposition theorem says that under fairly general conditions any

stationary time series may be represented as a causal convergent sum

Xt =
∞
∑

j=0

ψj ǫt−j ,

with uncorrelated finite variance random variables {ǫt} and real values {ψj} such

that
∑

j ψ
2
j <∞. As a class of models, such a representation is not particularly

useful due to the infinite number of parameters, and finite parameter versions

called the class of stationary and invertible ARMA models are found by using

the backshift operator BjXt = Xt−j , then representing the series in the form

Xt =

[

∞
∑

j=0

ψjB
j

]

ǫt .

Under quite general conditions, the polynomial ψ(B) =
∑∞

j=0 ψjB
j can be writ-

ten as a ratio of two finite order polynomials Φp(B) and Θq(B) of orders p and q

respectively, thus permitting us to write Φp(B)Xt = Θq(B) ǫt. The conditions of

stationarity and invertibility of the process Xt are then given in terms of the roots

of the polynomials Φ(B) and Θ(B). In these examples, the well known algebraic

results on deterministic polynomials are used. However, in a more general set

up, random polynomials are used for very general representations for stationary

times series.

Let us start with a collection of standard Gaussian random variables {Xs,

s ≤ t} and consider the space of all measurable functions defined on this collection

with the usual inner product

(1.1) 〈f, g〉 =

∫ ∞

−∞
f(x) g(x)

1√
2π

exp(−x2/2) dx .
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This space together with this inner product is a Hilbert space, and (random)

Hermite polynomials form a closed and complete orthogonal system.

Hermite polynomials Hn(x) of degree n are defined as

(1.2)

∫ ∞

−∞
Hn(x)Hm(x)

1√
2π

exp(−x2/2) dx = n! δn,m , n,m = 0, 1, 2, ...

where

δn,m =

{

1 , n = m ;

0 , n 6= m .
(1.3)

Hence, every Borel measurable function g with finite variance (with respect

to the Gaussian density) such that
∫ ∞

−∞
g2(x)

1√
2π

exp(−x2/2) dx < ∞ ,

can be written as a linear combination (or as a limit) of these Hermite polynomials

(1.4) g(x) = lim
N→∞

N
∑

n=0

gn

n!
Hn(x) ,

where, the coefficients gn are given by

gn =

∫ ∞

−∞
g(x)Hn(x)

1√
2π

exp(−x2/2) dx .

The convergence of (1.4) is in the mean square sense

lim
N→∞

∫ ∞

−∞

(

g(x) −
N
∑

n=0

gn

n!
Hn(x)

)2 1√
2π

exp(−x2/2) dx = 0 .

Note that the inner product is a integral with respect to the standard

Gaussian density and hence the Hermite polynomials are orthogonal with respect

to the standard normal probability distribution. Instead of Hermite polynomials,

we can define Hermite functions

ψn(x) =
1

√

n! 2n
√

2π
exp(−x2/2)Hn(x) .

Hermite functions are normalized versions of the Hermite polynomials, therefore

they form an closed and complete orthonormal basis. The closed linear span of

Hermite polynomials is the space of all polynomials, and any element of this space

can be represented as sums of products of polynomials given in the form

(1.5)
∞
∑

p=1

∞
∑

i1=1

···
∞
∑

ip=1

ai1i2··· ip
p
∏

v=1

Xiv .
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Here we will not enter into further details, which can be found in Terdik

(1999).

The following remarkable result due to Nisio (1964) extends this polynomial

representation to any strictly stationary time series.

Let ǫt be independent, standard Gaussian random variables. The polyno-

mial representation

Y
(m)
t =

m
∑

p=1

∞
∑

i1=−∞

∞
∑

i2=−∞

···
∞
∑

im=−∞

gi1i2··· im
p
∏

v=1

ǫt−iv

=
∞
∑

i1=−∞

gi1 ǫt−i1

+
∞
∑

i1=−∞

∞
∑

i2=−∞

gi1i2 ǫt−i1 ǫt−i2

(1.6)

+
∞
∑

i1=−∞

∞
∑

i2=−∞

∞
∑

i3=−∞

gi1i2 i3 ǫt−i1 ǫt−i2 ǫt−i3

+ ···

+
∞
∑

i1=−∞

∞
∑

i2=−∞

···
∞
∑

im=−∞

gi1i2··· im ǫt−i1 ǫt−i2 ··· ǫt−im

is called a Volterra series of order m. We will call

(1.7) Yt =
∞
∑

p=1

∞
∑

i1=−∞

∞
∑

i2=−∞

···
∞
∑

ip=−∞

gi1i2··· ip
p
∏

v=1

ǫt−iv ,

the Volterra series expansion.

Theorem 1.1. Let Xt be any strictly stationary time series. Then there

exists a sequence of Volterra series Y
(m)
t such that

lim
m→∞

Y
(m)
t

d
= Xt ,

in the sense that for any n and for any θj , |j| ≤ n as m→ ∞,

∣

∣

∣
E exp

(

i θ−nX−n + ··· + i θnXn

)

(1.8)
− E exp

(

i θ−nY
(m)
−n + ··· + i θnY

(m)
n

)

∣

∣

∣
→ 0 .

If further Xt is Gaussian, then Xt can be represented by

Xt =
∞
∑

j=−∞

gj ǫt−j ,

for some real numbers {gj}, such that
∑∞

=−∞ g2
j <∞.
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Hence random polynomials are basic functions with which we construct

very general random processes. There is also a relationship between solutions of

random difference equations and random polynomials.

Consider a stochastic difference equation

(1.9) Xt = AtXt−1 +Bt ,

where {At, Bt} is a sequence of random variables. We will call (1.9) a stochastic

recurrence equation. It is possible to define (1.9) in a more general form

(1.10) Xt = AtXt−1 + Bt ,

where Xt and Bt are random vectors in Rd, At are d×d random matrices and

{At,Bt}∞n=0 is a strictly stationary ergodic process.

Many well known classes of nonlinear time series models such as bilin-

ear, ARCH, GARCH, random coefficient autoregressive models (RCA) as well as

threshold models can be represented in this form. Theorems due to Vervaat(1979)

and Brant(1986) show that under fairly general conditions on {At, Bt}, stochastic

difference equations of the form (1.9) have solutions given by

(1.11) R =
∞
∑

k=1

k−1
∏

j=1

AjBk .

It is clear that the solution (1.11) are algebraic polynomials of random variables.

Extremal behavior of these polynomial expansions have played important

role in understanding the oscillatory behavior of nonlinear processes, and many

results on the point processes of upcrossings or exceedances of such polynomial

expansions exist. See Turkman and Amaral Turkman(1997) and Scotto and Turk-

man(2002,2005) and de Haan et al.(1989).

Random polynomials of different nature given in the form

(1.12) Fn(ω, x) = a0(ω)F1(x) + a1(ω)F2(x) + ....+ an(ω)Fn(x) ,

where {ai(ω)}n
i= are a sequence of random variables defined on a probability space

(Ω,F , P ) and {Fi(x)}n
i=1 are deterministic functions of x, have found significant

applications in many fields involving the reliability of complex random physical

systems. When Fi(x) = xi, then the solution (1.12) is an algebraic polynomial

with random coefficients, taking the form

Fn(ω, x) =
n
∑

j=0

aj(ω)xj ,

whereas when Fi(x) are trigonometric functions then (1.12) is a trigonometric

polynomial of order n with random coefficients, often given in the form

Fn(ω, x) = a0(ω) +
n
∑

j=0

aj(ω) cos jx +
n
∑

j=1

bj(ω) sin jx .
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Here, contrary to polynomials given in (1.6), the type of polynomials we consider

in (1.12) are deterministic in its argument, having random coefficients. We refer

the reader to Bharucha-Reid and Sambandham(1986) and Farahmand(1998) for

the general treatment of such random polynomials. We also refer the reader to

Zygmund(2002) for a full account of developments on trigonometric polynomials.

Polynomials with random coefficients have many interesting characteristics,

but the level crossing properties are particularly important and useful. Describing

the reliability of a complex physical system subject to random inputs depends

on understanding the oscillatory behavior of its sample paths. Level crossing

problems of stochastic processes and the related random variable, the number of

times the trajectory of a stochastic process crosses an arbitrary level u during

the time interval [0, T ] has considerable importance and forms the basis of ex-

treme value theory for stochastic processes. We refer the reader to Cramer and

Leadbetter(1962), Leadbetter et al.(1983) and Albin(1990, 2001) for the gen-

eral treatment of extreme value theory for stochastic processes and level crossing

problems.

Let X(t), t ≥ 0 be a continuous time, strictly stationary stochastic process

with almost surely continuous sample paths x(t). x(t) is said to have an upcross-

ing of u at the point t0 > 0, if for some ǫ > 0, x(t) ≤ u in the interval (t0 − ǫ, t0)

and x(t) > u in (t0, t0 + ǫ). Here we assume that the sample paths are not iden-

tically equal to u in any subinterval with probability 1. Downcrossings of the

level u can similarly be defined with obvious changes. We denote by the random

variable Nu(I), the number of upcrossings of the level u by the process X(t) in

the time interval I. We will also write Nu(T ) = Nu((0, T ]), and in particular

Nu(1) = Nu((0, 1]). This random variable plays the fundamental role in studying

the level crossing problems of stochastic processes. Much is known on the random

variable Nu(I), particularly for Gaussian processes. For example, under general

conditions, the mean number of upcrossings of the level u in the unit interval

(0, 1] is given by

(1.13) E(Nu(1)) = lim
q→0

Jq(u) =

∫ ∞

0
z p(u, z) dz ,

where for arbitrarily small q > 0, Jq(u) = 1
q P
(

X(0)≤ u<X(q)
)

and gq(u, z) is

the joint density of X(0) and 1
q

(

X(q)−X(0)
)

such that p(u, z) = limq→0 gq(u, z).

In most cases the limiting density p(u, z) is the joint density of X(t) and its

derivative X ′(t) calculated at t = 0. In this case,

(1.14) E(Nu(1)) = p(u)

∫ ∞

0
z p(z|u) dz = p(u)E

(

max{0, X ′(0)}|X(0) = u
)

,

where p(u) and p(z|u) are respectively the density of X(t) and the conditional

density of the derivative X ′(t) given X(t) = u, again calculated at t = 0. Hence,

the expected number of upcrossings is given in terms of the density of X(0) and

the average positive slope of the sample path at u.
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The expected number of upcrossings of a Gaussian process is totally char-

acterized by the behavior of its covariance function at origin. If r(τ) is the

covariance function of the process X(t) such that as τ → 0,

r(τ) = 1 − λ2 τ
2

2
+ o(τ2) ,

then the expected number of upcrossings is given

(1.15) E(Nu(1)) =
1

2π
λ

1/2
2 exp

(

−u
2

2

)

.

Here, λ2 = r′′(0) is called the second spectral moment, assumed to be finite and

(1.15) is the well known Rice formula. We note that in extreme value theory, a

more general class of Gaussian processes with covariance function of the type

r(τ) = 1 − C|τ |α = O(|τ |α) , τ → 0 ,

where 0 < α ≤ 2 are considered. This class includes the Gaussian processes with

differentiable sample paths, that is, Gaussian process with finite second spectral

moments and consequently with finite number of upcrossings. In general, when

α < 2, the process is nondifferentiable and consequently, has infinitely many up-

crossings in any finite interval.

Although the expected number of upcrossings gives quite a lot of informa-

tion on the oscillatory behavior of the process, more can be learned from the

higher moments of upcrossings or indeed from its asymptotic probability distri-

bution. Second upcrossing moment given by

(1.16) E
(

Nu(I) (Nu(I) − 1)
)

=

∫ ∞

0

∫ ∞

0
z1z2 p(u, u, z1, z2) dz1 dz2 ,

where p(u, u, z1, z2) is the joint density of (X(t1), X(t2), X
′(t1), X

′(t2)) calculated

at X(t1) = u, X(t2) = u, plays particularly important role in obtaining limiting

results for the extremal behavior of the process. For example, as u→ ∞ it can

be shown that

1 − E
(

Nu(T )
)

+ o(1) ≤ P

(

max
t∈(0,T ]

X(t) ≤ u

)

≤ 1 − E
(

Nu(T )
)

+ E
(

Nu(T ) (Nu(T ) − 1)
)

,

from which one can obtain the asymptotic expression for the maximum of a

stochastic process over fixed and increasing intervals. See for example, Leadbet-

ter(1978) and Turkman and Walker(1984). It is possible to obtain more complete

results on upcrossing events other than their moments. For a given level u, let

µ(u) = E(Nu(1)) be the finite mean number of u-crossings per unit time by the

process X(t). If we look at the number of u-upcrossings of the process over an

interval [0, T ] as T → ∞, then almost surely this number would diverge to ∞.
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However, if we increase the level u as a function of the the increasing time interval

T in such a way that that Tµ(u) → τ , for some fixed 0 < τ <∞, as T → ∞, then

it may be possible to obtain many nice limiting properties. Indeed, Let NT (·) be

the time normalized point process of u-crossings defined by

NT (B) = Nu(TB) = ♯
{

u-crossings by X(t); t/T ∈ B
}

for any Borel set in [0, 1]. Thus, NT has a point at t, if X(t) has an u-upcrossing

at tT . Then it is known that under quite general conditions, this point process

converges to a homogeneous Poisson process with intensity τ . These results are

called complete convergence theorems, since one can obtain many interesting

asymptotic results from this basic convergence. For example, the asymptotic

distribution of the maximum of the process over increasing intervals as well as

the asymptotic distribution of the upper order statistics of the process can be

recovered from such basic results. See for example Leadbetter et al.(1983) and

Resnick(1987, 2007) for convergence of point processes related to exceedances and

upcrossings.

The corresponding results for Gaussian processes are well known. Let X(t)

be a stationary Gaussian process with covariance function r(τ) such that

1. as h→ 0, r(h) = 1 − λ2

2 h
2 + o(h2);

2. as h→ ∞, r(h) log h→ 0.

Let u and T tend to infinity in such a way that Tµ ∼ τ , where, µ =
1
2π λ

1/2
2 exp(−u2/2) is the expected number of upcrossings in the unit interval.

Then the time normalized point process NT of u-upcrossings converges in distri-

bution to a Poisson process with intensity τ on the positive real line. For processes

other than Gaussian processes, asymptotic results of similar type are very difficult

to obtain. We refer the reader to Albin(2001) on asymptotic results on upcross-

ings by many non-Gaussian processes such as Markov jump processes, α-stable

processes and quadratic functionals of Gaussian processes. For specific results on

streams of upcrossings by random coefficient polynomials, see Farahmand(1998).

See Scotto and Turkman( 2005) for similar weak convergence of point processes of

u-upcrossings of finite order Volterra series expansions, although such polynomi-

als are quite different in nature than the random coefficient polynomials defined

in (1.12).

In section 2, we will look at the point processes of u-upcrossings of cer-

tain types of trigonometric polynomials and show Poisson nature of the limiting

process.
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2. u-UPCROSSINGS OF RANDOM TRIGONOMETRIC POLY-

NOMIALS

Assume that xt, t= 1, 2, ...n are n consecutive observations generated by a

stationary time series Xt with 0 mean and finite variance. The periodogram of

the observations defined by

In,X(ω) =
2

n

∣

∣

∣

∣

∣

n
∑

t=1

xt e
iωt

∣

∣

∣

∣

∣

2

plays an important role in the inference for spectral distribution function. In

particular, crucial tests of hypotheses regarding jumps in the spectral distribution

function depend on the statistics

Mn,I = max
ω∈[0,π]

In,X(ω) ,

and

Mn,K = max
ω∈[0,π]

Kn,X(ω) ,

where,

Kn,X(ω) =
In,X

2π f̂(ω)
,

and f̂(ω) is a suitable estimator of the spectral density function. Hence the

asymptotic distribution of Mn,I and Mn,K have considerable interest. Since,

In,X = X2
n(ω) + Y 2

n (ω) ,

where

Xn(ω) =

√

n

2

n
∑

t=1

xt cosωt ,

and

Yn(ω) =

√

n

2

n
∑

t=1

xt sinωt ,

it is clear that the study of the asymptotic distribution of the maximum peri-

odogram ordinate in ω ∈ [0, π] can be done by studying similar asymptotic results

for Xn(ω) and Yn(ω). Both Xn(ω) and Yn(ω) are trigonometric polynomials with

random coefficients. Periodogram is also a trigonometric polynomial since it can

be written in the form

In,X(ω) = 2
n
∑

k=−n

ck e
ikω ,

where ck = 1
n

∑n−|k|
t=1 xt xt+|k|.
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The asymptotic distributions for Mn,X = maxω∈[0,π]Xn(ω) as well as of

Mn,Y = maxω∈[0,π] Yn(ω) and Mn,I are given in Turkman and Walker(1984), un-

der the assumption that xt are iid, normal random variables. These results are

then extended to Mn,K , when Xt is a stationary time series.

Note that if Xt is a Gaussian time series, then both Xn(ω) and Yn(ω) are

continuous parameter Gaussian processes defined over the fixed interval ω ∈ [0, π].

As such, it may be tempting to obtain all desired results on u-upcrossings based

on the well known theory for Gaussian processes. However, the second spectral

moments of the processes Xn(ω) and Yn(ω) are given by

r′′(0) = −n
2

3

(

1 +O(1/n)
)

,

and for finite n, both processes are differentiable having finite number of up-

crossings in ω ∈ [0, π]. However, as the sample size n increases, these processes

have sample paths that oscillate wildly, having infinitely many upcrossing of any

finite level u in any finite subset of ω ∈ [0, π] with probability one. This is the

fundamental reason why periodogram appears as an inconsistent estimator of the

spectral density function. Hence, known results on u-upcrossings for Gaussian

processes cannot be used in a straightforward fashion. In order to get mean-

ingful asymptotic results for the level crossings of the polynomials Xn(ω) and

Yn(ω) as n→ ∞, one has to study the u-upcrossings for levels u which increase

to infinity in a controlled fashion as n→ ∞. We refer the reader to Turkman

and Walker(1984, 1991) for details in obtaining the first two moments of the

u-crossings by such processes for appropriately chosen level u and the consequent

asymptotic distribution of the maxima of these polynomials in the interval [0, π].

Here, we will derive the asymptotic Poisson character of the u-upcrossings of these

trigonometric polynomials, for suitably increasing levels u = u(n), as n→ ∞.

2.1. Poisson character of u-upcrossings

Let

Xn(ω) =

√

n

2

n
∑

t=1

xt cosωt ,

and

Yn(ω) =

√

n

2

n
∑

t=1

xt sinωt ,

be trigonometric polynomials, where xt is a realization of iid standard Gaussian

random variables. Let NX(I) = Nun,X(I) and NY (I) = Nun,Y (I) be respectively

the number of upcrossings of a suitable chosen level un by the processesXn(ω) and

Yn(ω) in the interval I ⊂ [0, π]. In this section we prove the following theorem:
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Theorem 2.1. Let

un =
x√

2 log n
+
√

2 log n− log 12

2
√

2 logn
,

and let

τ = τ(x) = e−x .

Then

lim
n→∞

P
(

NX [0, π] = s
)

=
e−ττ s

s!
,(2.1)

lim
n→∞

P
(

NY [0, π] = s
)

=
e−ττ s

s!
.(2.2)

We will give the proof only for (2.1). The proof for (2.2) is similar. For

ease in notation, we write

N(I) = Nun,X(I) .

The proof of Theorem (2.1) is quite long and we give an outline of the

proof.

Let k > 0 be a fixed but arbitrarily large integer and divide the interval

[0, π] into subintervals Ij , j = 1, 2, ..., k such that

Ij =

[

π(j −1)

k
,
πj

k

)

, j = 1, 2, .., k−1 ,

and

Ik =

[

π(k−1)

k
, π

]

.

For any β ∈ (0, 1/2) arbitrarily small, for every j = 2, ..., k divide every Ij further

into two disjoint subintervals

Ij,1 =

[

π(j − 1)

k
,
πj

k

)

,

Ij,2 =

[

π(j − β)

k
,
πj

k

)

, 2 ≤ j ≤ k ,

Ik,2 =

[

π(k − β)

k
, π

]

, 2 ≤ j ≤ k .

Special attention is paid to the interval I1 and we divide I1 as

I1,0 =

[

0,
πβ

k

)

, I1,1 =

[

πβ

k
,
π(1 − β)

k

)

, I1,2 =

[

π(1 − β)

k
,
π

k

)

.
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The proof is based on first showing that number of upcrossings over the inter-

vals Ij1 are asymptotically independent and that number of upcrossings over the

intervals Ij,2 are asymptotically negligible. Thus the outline of the proof is as

follows:

1. For any s, approximate P
(

N [0, π] ≥ s
)

by P
(

N
(
⋃

j Ij,1
)

≥ s
)

.

2. Approximate P
(

N
(
⋃

j Ij,1
)

≥ s
)

by P (An,s), where An,s is the event

that N(Ij,1) ≥ 1 for at least s values of j = 1, ..., k.

3. Approximate P (An,s) by P (Dn,s) whereDn,s is the event that in exactly

s of the intervals Ij,1 we have Xn(ω) ≥ un for some ω ∈ Ij,1, so that

P
(

N [0, π] = s
)

is approximated by P (Dn,s).

4. Let

p = pk,β,τ = lim
n→∞

P
(

Mn(Ij,1) ≤ un

)

,

show that

p = exp

(

−(1 − β) τ

k

)

,

and then approximate P (Dn,s) by the binomial probability

(

k

s

)

(1 − p)s pk−s .

5. Let β → 0, then k → ∞ and use the Poisson approximation to the

binomial probability to obtain the desired result.

We now give proofs for these assertions in terms of series of Lemmas.

Lemma 2.1. For any s = 0, 1, 2, ..., as n→ ∞,

(2.3) 0 ≤ P
(

N [0, π] ≥ s
)

− P

(

N

(

k
⋃

j=1
Ij,1

)

≥ s

)

≤ βτ + on(1) .

Proof: The event
{

N [0, π] ≥ s
}

contains the event
{

N
(
⋃k

j=1 Ij,1
)

≥ s
}

and the difference is the event

{

k
⋃

j=1

(

N(Ij,2 ≥ 1)
)

∪
(

N(I1,0 ≥ 1)
)

}

.
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Hence

0 ≤ P
(

N [0, π] ≥ s
)

− P

(

N

(

k
⋃

j=1
Ij,1

)

≥ s

)

= P

[

k
⋃

j=1

(

N(Ij,2 ≥ 1)
)

∪
(

N(I1,0 ≥ 1)
)

]

(2.4)

≤
k
∑

j=1

P
(

N(Ij,2 ≥ 1)
)

+ P
(

N(I1,0 ≥ 1)
)

≤
k−1
∑

j=1

E
(

N(Ij,2)
)

+ E
(

N(I1,0)
)

+ E
(

N(Ik,2)
)

.

It can be shown that (see Turkman and Walker, 1984) as n→ ∞, for every

j = 1, ...., k − 1

E
(

N(Ij,2)
)

=
τβ

k
.

However, E(N(I1,0)) and E(N(Ik,2)) need special attention in calculations. The

reason for this extra complication is that the expected number of upcrossings

are calculated as an integral with respect to the joint density of the vector
(

Xn(ω), X ′(ω)
)

and this vector has a normal density with mean 0 and covari-

ance function given by

(

1 + rn(2ω) r′n(2ω)

r′n(2ω) n2

3 + r′′n(2ω)

)

,(2.5)

where rn(ω) = 1
n

∑n
j=1 cos jω and r′n(ω), r′′n(ω) are respectively first and second

order derivatives of rn(ω) respectively. This covariance matrix tends to be singu-

lar as ω gets arbitrarily close to 0 or π. Hence E(N(Ij,0)) needs to be calculated

separately over regions

Rn,1 =

{

ω ∈ I1,0 : ω ≥ log n

n

}

,

Rn,2 =

{

ω ∈ I1,0 :
1

nk
≤ ω ≤ logn

n

}

,

Rn,3 =

{

ω ∈ I1,0 : 0 ≤ ω ≤ 1

nk

}

.

It is shown in Turkman and Walker (1984) that

lim
n→∞

E
(

N(Ij,0)
)

=











τβ

k
, ω ∈ Rn,1 ,

0 , ω ∈ Rn,2 ∪Rn,3 .

(2.6)
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Similar expression can be found for E(N(Ik,2)) and hence from (2.4) for arbitrarily

large k and arbitrarily small β,

k
∑

j=1

E
(

N(Ij,2)
)

+ E
(

N(Ij,0)
)

= τ β

(

1 +
1

k

)

.

This proves the Lemma.

Define An,s to be the event that {N(Ij,1) ≥ 1} for at least s values of

j = 1, .., k. Then

Lemma 2.2. As n→ ∞,

0 ≤ P
(

N [0, π] ≥ s
)

− P
(

An,s

)

≤ β τ +
k
∑

j=1

P
(

N(Ij,1) ≥ 2
)

+ on(1) ,(2.7)

and

lim sup
n→∞

k
∑

j=1

P
(

N(Ij,1) ≥ 2
)

≤ (1− β)τ − k

(

1 − exp
(

−(1− β)
τ

k

)

)

.(2.8)

Proof:

0 ≤ P

(

N

(

k
⋃

j=1
Ij,1

)

≥ s

)

− P (An,s)

≤ P

(

k
⋃

j=1

(

N(Ij,1) ≥ 2
)

)

(2.9)

≤
k
∑

j=1

P
(

N(Ij,1) ≥ 2
)

.

Now combining this inequality with the inequality (2.4), we get (2.7). To prove

(2.8), we proceed as follows: First note that for any j = 1, ..., k

(2.10) P
(

N(Ij,1) ≥ 2
)

≤ E
(

N(Ij,1)
)

− P
(

N(Ij,1) ≥ 1
)

.

also

0 ≤ P
(

Mn(Ij,1)> un

)

− P
(

N(Ij,1) ≥ 1
)

≤ P

(

Xn

(π(j − 1)

k

)

≥ un

)

,

which implies that

P
(

Mn(Ij,1)> un

)

− P

(

Xn

(π(j − 1)

k

)

≥ un

)

≤ P
(

N(Ij,1) ≥ 1
)

,

so that from (2.10),

(2.11)

P
(

N(Ij,2)≥ 2
)

≤ (1−β)
τ

k
− P

(

Mn(Ij,1 >un)
)

+ P

(

Xn

(π(j−1)

k

)

≥ un

)

.
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Now, for any ω ∈ Ij,1, Xn(ω) ∼ N(0, 1 + rn(2ω)), thus as n→ ∞,

P

(

Xn

(π(j − 1)

k

)

≥ un

)

= on(1) ,

since, from Turkman and Walker(1984) we have

lim
n→∞

P
(

Mn(Ij,1)> un

)

= 1 − exp

(

−(1− β)τ

k

)

.

Now the proof is complete by combining (2.10) with (2.11).

Denote by Cn,s, the event that Xn(ω) > un in at least s = 1, ..., k of the

intervals Ij,1 for some ω ∈ Ij,1.

Then

Lemma 2.3. As n→ ∞,

(2.12) 0 ≤ P (Cn,s) − P (An,s) = on(1) .

Proof: The event

A =
{

N(Ij,1) ≥ 1
}

is contained in the event

B =
{

Xn(ω) ≥ un, for some ω ∈ Ij,1

}

and the difference of these events are given by

B −A = Ac ∩B =

{

Xn

(π(j − 1)

k

)

> un

}

.

Hence it follows from the definitions of the events Cn,s and An,s that as n→ ∞,

0 ≤ P (Cn,s) − P (An,s)

≤ P

(

k
⋃

k=1

(

Xn

(π(j − 1)

k

)

> un

)

)

(2.13)

≤
k
∑

k=1

P

(

Xn

(π(j − 1)

k

)

> un

)

= on(1) .

Clearly for any s < k, Cn,s+1 ⊂ Cn,s. Let Dn,s = Cn,s − Cn,s+1 = Cc
n,s+1 ∩ Cn,s.

Dn,s is the event that Xn(ω) > un in exactly s of the k intervals and

P (Dn,s) = P (Cn,s) − P (Cn,s+1) .
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Lemma 2.4.

(2.14) lim sup
n→∞

∣

∣

∣
P
(

N [0, π] = s
)

− P
(

Dn,s

)

∣

∣

∣
≤ τ − k

(

1 − exp
(

−(1− β)τ

k

)

)

.

Proof: From (2.12), for any s < k, 0 ≤ P (Cn,s) − P (An,s) = on(1), there-

fore, as n→ ∞,
∣

∣

∣
P (An,s) − P (An,s+1) − P (Dn,s)

∣

∣

∣
≤ on(1) .

Hence from (2.7), for any s < k,

(2.15) 0 ≤ P
(

N [0, π] ≥ s
)

− P
(

Dn,s

)

≤ βτ +
k
∑

j=1

P
(

N(Ij,1) ≥ 2
)

+ on(1) ,

and the lemma follows from (2.8).

Let Mj = {Mn(Ij,1) ≤ un} and M c
j be the compliment of Mj . Let

Pn,j = P
(

Mn(Ij,1) ≤ un

)

.

We know from Turkman and Walker(1984) that

lim
n→∞

Pn,j = exp

(

−(1− β)τ

k

)

= p , say .

Lemma 2.5.

(2.16) lim sup
n→∞

∣

∣

∣

∣

P (Dn,s) −
(

k

s

)

(1− p)s pk−s

∣

∣

∣

∣

= 0 .

Proof:

Dn,s =
⋃

(

M c
i1 .M

c
i2 ...M

c
is .Mis+1 ...Mik

)

,

where the union is taken over all combinations of distinct integers with i1 < i2 <

... < ik. Here, we omit the intersection signs, replacing them with “.”. We first

start by looking at the probability

(2.17) P
(

M c
i1 .M

c
i2 ...M

c
im .Mi1 ...Mit

)

,

where m and t are integers such that m+ t ≤ k. When m = 0, (2.17) is equal to

P
(

Mi1 ...Mit

)

= P

(

t
⋂

k=1

(

Mn(Ij,1) ≤ un

)

)

.

It follows from Lemma 2.6 of Turkman and Walker (1984) that for any t ≤ k

lim sup
n→∞

∣

∣

∣
P
(

Mi1 ...Mit

)

− pt
∣

∣

∣
= 0 .
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Now assume that for an m ≥ 1 and for all t ≤ k − (m− 1)

(2.18) lim sup
n→∞

∣

∣

∣
P
(

M c
i1 .M

c
i2 ...M

c
im−1

.Mi1 ...Mit

)

− (1− p)m−1pt
∣

∣

∣
= 0 .

We now show that

(2.19) lim sup
n→∞

∣

∣

∣
P
(

M c
i1 .M

c
i2 ...M

c
im .Mi1 ...Mit

)

− (1− p)mpt
∣

∣

∣
= 0 ,

and the proof will be complete by induction:
{

M c
i1 .M

c
i2 ...M

c
im−1

.Mi1 ...Mit

}

−
{

M c
i1 .M

c
i2 ...M

c
im .Mi1 ...Mit

}

=

=
{

M c
i1 .M

c
i2 ...M

c
im−1

.Mi1 ...Mit

}

∩
{

M c
i1 .M

c
i2 ...M

c
im .Mi1 ...Mit

}

=
{

M c
i1 .M

c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

}

.

Hence,

P
(

M c
i1 .M

c
i2 ...M

c
im .Mi1 ...Mit

)

=

= P
(

M c
i1 .M

c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)

− P
(

M c
i1 .M

c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)

From the assumption (2.18) we have

lim sup
n→∞

∣

∣

∣
P
(

M c
i1 .M

c
i2 ...M

c
im−1

.Mi1 ...Mit

)

− (1− p)m−1pt
∣

∣

∣
= 0 ,

and

lim sup
n→∞

∣

∣

∣
P
(

M c
i1 .M

c
i2 ...M

c
im−1

.Mim .Mi1 ...Mit

)

− (1− p)m−1pt+1
∣

∣

∣
= 0 ,

so that (2.19) follows immediately. Choosing t = m− k, we get

lim sup
n→∞

∣

∣

∣
P
(

M c
i1 .M

c
i2 ...M

c
im .Mim+1

.Mi1 ...Mik

)

− (1− p)mpk−m
∣

∣

∣
= 0

and the lemma follows immediately from induction.

The proof of the theorem 2.1 now follows from lemmas 1–5 by first letting

β → 0, then k → ∞. First note that

(2.20)

lim sup
n→∞

∣

∣

∣

∣

P
(

N [0, π] = s
)

−
(

k

s

)

(1−p)spk−s

∣

∣

∣

∣

≤ τ − k

(

1−exp
(

−(1−β)τ

k

)

)

,

where,

p = exp

(

−(1− β)τ

k

)

.

Thus,

(2.21)

lim sup
n→∞

P
(

N [0, π] = s
)

≤
(

k

s

)

(1 − p)s pk−s + τ − k

(

1 − exp
(

−(1− β)τ

k

)

)

,



On the Upcrossings of Trigonometric Polynomials with Random Coefficients 153

so that letting β → 0,

lim sup
n→∞

P
(

N [0, π] = s
)

≤
(2.22)

≤
(

k

s

)

(

1 − exp(−τ/k)
)s(

exp(−τ/k)
)k−s

+ τ − k

(

1 − exp
(

−(1 − β)τ

k

)

)

.

Now let k → ∞. Then k(1 − exp(−τ/k)) → τ , and by Poisson approximation to

binomial we get

lim sup
n→∞

P
(

N [0, π] = s
)

≤ e−ττ s

s!
.

Similarly we can show that

lim inf
n→∞

P
(

N [0, π] = s
)

≥ e−ττ s

s!
,

and this completes the proof.

It is possible to obtain the following similar asymptotic result for the peri-

odogram, although proofs are slightly more tedious and we omit the proof.

Theorem 2.2. Let un = 2(x+logn+ 1
2 log log n− 1

2 log 3
π ). Then the num-

ber of un-upcrossingsNun,I [0, π] of the periodogram in the interval [0, π] is asymp-

totically Poisson, in the sense that

lim
n→∞

P
(

Nun,I [0, π] = s
)

=
e−ττ s

s!
, s = 0, 1, ... ,

where τ = τ(x) = e−x.

Asymptotic results given in Theorems 2.1 and 2.2 are very useful and many

convergence results for upper order statistics can be recovered from these basic

results. For example, if

Mn[0, π] = max
ω∈[0,π]

Xn(ω) ,

then
{

Mn(0, π] ≤ un

}

=
{

NX [0, π] = 0
}

,

and consequently,

lim
n→∞

P

(

Mn ≤ x√
2 logn

+
√

2 logn− log 12

2
√

2 logn

)

= e−e−x

,

which was proved in Turkman and Walker(1984) based on calculating the first

two moments of the u-upcrossings.
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