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Abstract:

e In this paper, we introduce a generalized skew logistic distribution that contains the
usual skew logistic distribution as a special case. Several mathematical properties
of the distribution are discussed like the cumulative distribution function and mo-
ments. Furthermore, estimation using the method of maximum likelihood and the
Fisher information matrix are investigated. Two real data applications illustrate the
performance of the distribution.
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1. INTRODUCTION

Azzalini [2] introduced the skew normal distribution specified by the prob-
ability density function (pdf):

(1.1) fsn(z; ) = 2¢(x) P(Ax) —o0o <z <00,

where X € R is the skewness parameter, ¢(z) is the standard normal pdf, and
®(x) is the standard normal cumulative distribution function (cdf). Although,
Azzalini introduced the skew version (1.1) for the normal distribution, this idea
can be applied to any symmetric pdf. Along the same line, the skew logistic
distribution with the skewness parameter A can be proposed as follows. Consider
the standard logistic distribution specified by the cdf

1
H(x) = _
(x) T+ oxp(—a) ’ 00 <z <00,
and the pdf
exp(—)
h(z) = , —o0 <z <00 .

(1+ exp(—gc))2

Using the idea of Azzalini [2], the pdf of the usual skew logistic distribution is
given by

2exp(—x)

1.2 ;) = 2h(x) H(Ax) = 2
(1.2) fsi(@i ) (=) H(z) (1+exp(—z))” (1 + exp(—Az))

for —oo < x < 0o and A € R. The properties of this distribution have been studied
extensively in the literature. See, for example, Nadarajah [12] and Gupta and
Kundu [9]. The skew logistic distribution in (1.2) has also received applications;
for example, Koessler and Kumar [11] illustrate an application with respect to
an adaptive test for the two-sample scale problem based on U-statistics.

Because of the increasing popularity of (1.2), one would like to have gen-
eralizations that are more flexible. The aim of this paper is to construct a new
generalization of (1.2) using the type III generalized logistic distribution instead
of the standard logistic distribution. We study mathematical properties of this
new generalization and discuss real data applications.
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The type III generalized logistic distribution has the pdf (see Johnson et al.
[10])

1 exp(—ax)
B(a, a) (1+ exp(faz))m

go(z) =

for —oo < & < oo and a > 0. This distribution is symmetric for every . When
a = 1, the above pdf reduces to the standard logistic pdf. This distribution has
the cdf

where y = (1 + exp(—:v))_1 and

I(a) :/ 1L exp(—t)dt . Ba(a,b) :/ 11— )t gy
0 0

are the gamma function and the incomplete beta function, respectively.

Now, we define the new skew logistic distribution as follows. If a random
variable X has the following pdf

(1.3) f(z;0,A) = 2gq(x) Go(A2) —co<zr<oo, a>0, NeR,

then we say that X has a general skew logistic (GSL) distribution. We write X ~
GSL(a, ).

From (1.3), some basic properties of GSL(c, \) can be noted as follows:

) When o =1, (1.3) reduces to the usual skew logistic pdf;

) When A =0, (1.3) reduces to the type III generalized logistic pdf;
(iii) If X ~ GSL(a, A), then —X ~ GSL(a, —A);

) flxya, ) + f(z;a, =) = 2g4(x) for all z € R;

)

fz;a,\) = 2gq(x) I{z > 0} as A — +oo and f(z;a,A) — 2g4(x)
I{x <0} as A — —oo for all a;

(vi) f(z;0,A) — 0asx — +oo for all @« > 0 and \ € R.

Numerical investigations show that (1.3) has a single mode. The mode is
at xg, where x is the root of

A gale)  1-exp(-a)
a Go(z) 14 exp(—2)

=0.
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Figures 1 and 2 illustrate possible shapes of the pdf (1.3) for a = 2 and selected
values of .

— =0
— — =5
----- A=2
—-— =10

Figure 1: Plots of GSL(«, A) pdf for « = 2 and A > 0.

Figure 2: Plots of GSL(«, A) pdf for @« = 2 and X\ < 0.
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Simulation from (1.3) is straight-forward by using the following represen-
tation due to Azzalini [3]:

e X = SyU, where, conditionally on U = u, Sy = +1 with probability
Ga ()\u) and Sy = —1 with probability 1 — G4 (Au);

. = Sy|U|, where, conditionally on |U| = |u|, Sy = +1 with probability
( |u]) and Sy = —1 with probability 1 — G (A|ul).

Both these representations have physical meanings as explained in Azzalini [3].

In the sequel, we shall use the following functions:

i(j%) ol ()

T1(b,q) =
100 —0 (Q+j)b (Ab+q+5)°

; Ta(a,b,q, \)

and, the Gauss hypergeometric function defined by

o0

oFy(a,b;c;x) Z ,

k=0

a\v

where (z); = z(2 +1)--- (2 + k — 1) denotes the ascending factorial.

Throughout the rest of this paper (unless otherwise stated), we shall assume
that A > 0 since the corresponding results for A < 0 can be obtained using the
fact that —X has the pdf 2¢(z) Go(—Ax).

Some results of this paper require certain series representations of the gen-
eral skew logistic pdf (1.3), which we derive now. Using the Taylor series expan-
sion for [1 + exp(—Az)] ™!, we can obtain

e 22 () C)
(1)Z§}fi]/\x) 7 >0,
Ga(Ax) = o '
s 22 (1))
(—1) exp(Az(i + o+ j)) 0.
i+« ’

Substituting this into (1.3), a double series representation for the general skew
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logistic pdf can be obtained as

B(a,a)2(1jexp( 2 'Lz;j 0<a 1>< O;_H))
_(—1Vexp(—x(K7+-a»
i+« ’

B(a,a)z(ljexp( e Z%j 0<a 1)( TZ))

(—1)"exp(z(Ni + Aa + Aj — a))
1+«

x>0,
(14)  flzia,A) =

, z <0.

By expanding the terms in the denominators of (1.4), one can also obtain the
triple series representation

e 22 ()
(1) exp (o0 4+ ) v,
e
B(a,a)2;§§<i>< J ><k>
(—1)Zexp<x A(i+a+3)+k+a)) <0
ita ’

2. CUMULATIVE DISTRIBUTION FUNCTION

Using the double and triple series representations in (1.4) and (1.5), we
derive some formulas for the cdf corresponding to (1.3). First, we use the double
series representation in (1.4). If z > 0, then the cdf F'(x) can be written as

a— (i) i
(21) F(z):F(O)/ aaZZ < 1)( j+ >(—1)

=0 j=0 l + Oé) (1 + exp(it))Qa
cexp(—t(Aj+ a))dt =
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(2.2) = F(0) if} <a i 1) <_(aj+ i)> v

por i+ o
ex t(A @
/0 (lp—i(-expj+))
a—1\—(a+i)), .
(2.3) — F(0) aag;;}( ><z+i >( 1)

1 Z)\]-‘roz 1
/ — dz
exp(—z) (1+2)

o

2.4 =F )
(2.4) O+ oo ZO > - )
where
1 Aj+a—1 1 _ANj+a-—1 exp(—z) ,Ajt+a—1
I(;z;) :/ 7,2 35 dz :/ 72 o dz —/ 7Z o%a dz
exp(—a) (1+2) 0o (1+2) 0 (1+2)

=1L —1Ir.

By equation (3.194.1) in Gradshteyn and Ryzhik [8], the integrals I; and I can
be calculated as

Aj+a—1 1
0

and
exp(—x) Z)\jJrafl
IQ = / T a dz
0 (1+=2)

(2:6) _ exp(—(a+ Aj) y)

o F1 (2a,a +F Ao+ )+ 15— exp(—x)) .

a—+ Aj
Combining (2.5) and (2.6) and substituting into (2.4), the cdf F(z) for z >0
becomes
a—1\[(—(a+1i i
= (1))
F = F(0
(@) ©) (o, @) 2 Z i+«

=0 j=0

1
. Fi(2 A Aj+1;—1
{A]—FO&Q l( o, 4+ Aj; o+ j+ ’ )

_exp(—(a + \j) x)
o+ Aj

o F1 (2a, a+A,a+Aj+1;— exp(—x)) } .
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Repeating the above argument with x = 0 yields the form for F(0) as

Fo = [ s
a—1\ (—(a+i)), .,
B(a2,a)2§:;io< : )<z+iy )( ’

_ 2 vy <a;1> <_(aj+ i))“”i /1 Pitatirtat

B(a, o) = =0 1+« o (1+ 2)2
o azl —mfn(_w
Zﬂiafzo;%< >i+i) )

2F1<2a, AMi+ta+j)+a; ANi+a+7)+a+1; —1)
' Ni+a+j)+a

If < 0, then similar arguments by using equation (3.194.1) in Gradshteyn and
Ryzhik [8] yields

. /;f(t) L ii (a ; 1) (—(aj+ z’)) (—1) .

B(a,a)? poar e i+«

where

dz

x exp (t()\(] + o+ 7,) =+ Ct)) exp(z) Z)x(i+a+j)+oz—1
- | T
—o0 (1+ exp(t))2a 0 (14 2)*
exp(x()\(i +a+j)+ a))
Mi+a+j)+a
CoFi (20, A+ at )+ a3 i+ a+j)+a+1, —exp(a)),

and so the result

o1\ (~(a+i)),
F(z) 2 ii< 21>( j+ )H)

" Bla,a)? it+a

i—=0 j=0
exp(m()\(i +a+j)+ oz))
' Ai+a+j)+a

~2F1<2a, ANi+a+j)+aNi+a+j)+a+1, —exp(x)).
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Using the triple series representation, (1.5), the cdf F'(x) can be calculated as

a—1) (—(a+i) (=20\ |
. iii< )

(t+a)(N+k+a)

(a, i=0 j=0 k=0
-exp(— N +k+a)), x>0,
F(x) =
(x) o <a_1> (—(a+i)> (—2a)(_1)i
2 3 i j k
Bla,a)? Sy (i+a) Mita+i)+k+a)

-exp(a:()\(i+a+j)+k+a)>, x<0.

3. MOMENTS

Many of the interesting characteristics of the general skew logistic distri-
bution can be studied through its moments. Let X ~ GSL(«, ). In this section,
we derive the nth moment of X. It is easy to show that if X follows GSL(a, \)
then Y = | X| has the folded form of the type III generalized logistic distribution
specified by the pdf

2 exp(—ay)
B(a:0) (11 expl )™

9(y; o, N) =

for y > 0. Thus, the even order moments of X are obtained as

> exp(—ax ln% nzail
B = 5 m+exi >))2a = e /01<<1+>z>2“ *
(o @] 1 n .
s B

—2a
2n! <z> 2n!
= Z = Ti(n+1a),
0

B(a,a) & (a+i)"'  Bla,a)

where the penultimate step follows by using equation (4.272.6) in Gradshteyn
and Ryzhik [8].
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If n is odd then, using the triple series representation, (1.5), one obtains

N

B?(a, ) &= 4 i+«

E(X") =

-{/0 x”exp(:c()\(i+oz+j)+k+a))d$

+/Ooox” exp<fx()\j +k+ a)) dw}
e s ()

1+«

2n!
2
B, q) 5 iS5m0

1 1
{(M’JrkJrOé)"+1 (A(z‘+a+j)+k+a)”“}

a1\ (~(o+ D))
S ) [ S

2n!
B%(a, a) pr e i+ a

where A(n+ 1, a,\) =o(n+1,j,a,\) —e(n+ 1,i + a+ j,a, \).

Using these, the first four moments of X can be obtained as

RIS () (G v

B2(a,a) =0 im0 1+«
9 4
E(X?) = Blo, o) (3, ) ,

Py = 2SS () Ao

B*(a,a) par i+ T
and
48
E(X*) =
(X5 B(a, ) (5, a)

Using the above moments, we can calculate the four measures E(X),
Var(X), Skewness(X) and Kurtosis(X). Figures 3 to 6 illustrate the behavior

of the four measures for A = —10,...,10 and « = 1,2,5. From these figures, we
see that:

(i) E(X) increases with increasing \;

(ii) FE(X) decreases with increasing o

(iii) Var(X) decreases with increasing |Al;
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Var(X) decreases with increasing «;

Skewness(X) increases with increasing \;

)
)
(vi) |Skewness(X)| decreases with increasing «;
) Kurtosis(X) initially decreases before increasing with increasing |A|;
)

Kurtosis(X) decreases with increasing «.

EX)

Figure 3: Plot of F(X).

o=1
31 Y
2.54
24
VarianceX)
1.5
o= /\
11 /\
/ 0\
/ \
05— — " To=5 - ——
N
NERSRERE s . S
-10 -5 0 5 10
A

Figure 4: Plot of Variance(X).
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0.5
Skewness(X) 04

-0.54

Figure 5: Plot of Skewness(X).

Kurtosis(X)

Figure 6: Plot of Kurtosis(X).
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4. ESTIMATION

Let us first consider a version of (1.3) with the location parameter u € R
and scale parameter o > 0, i.e.,

(4.1) f@sp, o0, A) = 29a<x;M> G“[A<x;M>]

for —co <z < oo, @ >0 and XA € R. In this section, we consider estimation of

the parameters u, o, o and A and provide expressions for the Fisher information
matrix. The log-likelihood for a random sample z1, ..., z, from (4.1) is:

(4.2) ¢ =InL(p,o,a,\) = —nlno + Zlnga(yi) +ZCO(/\3/1') ,

where y; = = (x) = In{2G,(x)}. We also define the derivative ¢, (z) =
d™(o(x)/dx™, m =1,2,3,... and note that (i(z) = go(x)/Ga(x). All subse-
quent derivatives can be expressed as functions of (;(x); in particular, (2(x) =

—o (1223 i) - G (@)

By differentiating (4.2) with respect to u,o,a and A, and equating the
derivatives to zero, the maximum likelihood estimators are the simultaneous so-

lutions of
exp(
4. 20 ) =
(4.3) Zl—i—exp +/\;C1 Ayi) = na,
yi (1 — exp(—y;))
4.4 )\ 1 )\ 3 - b
(4.4) n+ Zy G(Ayi) = « Z T+ oxp(—51)

—8111{2G Cwi)} = 2n(¥(2a) — ¥(w))

Zy@+221n{l—|—exp —V; } Z

and
(4.6) > wiGi(wi) =0
i—1

where ¥(x) = InT'(z)/dz is the digamma function. In (4.5), we have

Ay
/ tga(t)dt

= 2(¥(2a) — ¥(a)) — —=

OIn{2G.(\y)}
Ga(My)

Oa

Ay
/_ In(1 + exp(—t)) ga(t) dt
- Ga(My) '
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The maximum likelihood estimators (i, 7, //\\, a) of (u, 0, A, ) are consistent
estimators, and /n(g — pu, 0 — o, A\ — A\, & — «) is asymptotically normal with zero
means and variance covariance matrix I=!, where

= () = (o) (o) # (5iam)
#(oon) () = (o) = (ac)
(avan) = (owe) = (55) = (5a0)
= (o) = () = (avan) # (32)

Now, we compute the Fisher information matrix based on the likelihood

AR

equations. These enable, for example, construction of confidence intervals based
on pivotal quantities using the limiting normal distribution. For simplicity, let
us consider interval estimation of (i, o, \) when « is known. In this case, the
elements of the Fisher information matrix can be written as

2 2
e (20) 2,
(o

o2y o2 2
%0 n 2na dna 2no n\?
() = et S B - S a
5%
_E((?Q)\) nagg()\) s
0% n nai nA
—E S A A A AP
<6,u8)\> 5 1o aiz(A) ,
9% na n
_E il RN
(awx) 6 a2(0)
%0 noa  2na 2no n n\’a n\?
E(gugs) =+ S = o=
%0
-F ) = 4n(\Il(1,a) — 2\11(1,204)) —nlg—4nly — 4nlqg
—nly+4nlis +4nlis
5% n 2nA nA nA
=) =——hr——hs+—lo+—1Ix,
dadu o o o o
9% n 2n\ nA\? 2n
B = "y — 2 (W) — U(2a)) 5 — 2 ap (V) — 22T
<6a80> o o ( (a) (a)) > o a21(A) o B

n\ 2nA
+ —Ipn+—1Ls,
o o

0
—E< > = 2n114—nI15—n116 5
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M) L =E(¢G(\2)), 13=E<m>’

=E(G(A2)),

Z(l—exp(—)\Z))Cl()\Z)> I7:E< Z exp(—2) )
’ {1+exp(-2)}* )"

}
bQ()\Z))’ 19:E<011(/\Z)>, I = < 02(A\Z ))

Ga(AZ) (AZ)

Ga
I :E<b%(AZ) ) 112:E<c%1(/\Z ) < /\Z 001 ))7
(

G%(\Z) G*(\Z
Iy = E(Z¢1(AZ) In(1 4 exp(— = ( AZ)
14 1 n(1+ exp( AZ) , s = 1(A2) Z) ;
N 001()\2) ( Z)
ho= e (2000 G07) e =2(15 o) z>>
118 = E(Cl()\Z) ln(l + exp(—AZ))), 119 =F <<1()\Z) 2a(();\ZZ))> ,

Iy =F <C1(>\Z) 2;823) , In=FE (Z gig:g; _T_ 1) ;

Ipg = E(Zgl()\Z) bl()\Z)>, I3 = E(Zgl(AZ) In(1+ exp(—Z))> ,

where Z = (X — p)/o,

mn

an(V) = BA{ZFCOD)Y . bi(e) :/_x Poa(t)dt,  U(n,z) = 1 w(a)

n
oo d"x

and

o) = [[ {150
—0o0

Note that ax1(A) =0 when k is odd, and that ag,(A) >0 when both k and h are

even. Also E(h(Z)(1(AZ)) =0 when h(z) is an odd function and E(h(Z)(1(AZ)) >0

when h(z) is a even function. In general, these expectations will have to be

computed numerically. However, closed-form expressions are possible in some

particular cases.
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5. REAL DATA APPLICATIONS

In this section, we fit the general skew logistic GSL(u, o, A, «) distribution to
two real data sets. We compare the fits with those of the usual logistic distribution
L(u, o), the type III generalized logistic distribution GL(u, o, a), the skew logistic
distribution SL(u, 0, A), Azzalini’s [2] skew normal distribution SN(u, o, \), and
Azzalini and Capitanio’s [5] skew ¢ distribution ST(u, 0, A, ). The parameter
A in the skew normal and skew t distributions is the skewness parameter. The
parameter « in the skew t distribution is the degree of freedom parameter. As
with Azzalini’s [2] skew normal distribution, Azzalini and Capitanio’s [5] skew
t distribution has been studied by many authors. Two most recent papers are
Arellano-Valle and Azzalini [1] and Azzalini and Arellano-Valle [4].

Example 1. The first data set represents the strength data originally
reported in Badar and Priest [6]. It represents the strength measured in GPA for
single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were
tested under tension at gauge length of 10mm. This data have been analyzed
previously by Ragab and Kundu [13] and Gupta and Kundu [9]. The data are as

follows:
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397
2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614
2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917
2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145
3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346
3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020.

We fitted all six distributions to the above data by the method of maxi-
mum likelihood. The GSL distribution was fitted by solving (4.3)—(4.6). Table 1
presents the parameter estimates, the log likelihoods (LL), the Kolmogorov—
Smirnov (K-S) statistics and respective p-values. Table 2 presents the chi-squared
statistics with observed and expected frequencies. Note that the last two columns
of Tables 1 and 2 appear identical. This can be explained by the well-known fact
that the ST distribution reduces to the SN distribution as « approaches infinity.

Note also that the & for the GSL distribution is very large. Some elementary
calculations show that

gr(x) — Wf{xzo}

and
Gi(z) — I{z>0}
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as o — 00. So, the pdf of the GSL distribution in (1.3) reduces to
1-2a

flz;o ) — Bla.a)

[{z =0} I{\z >0}

as @ — OQ.

Table 1: MLEs, log-likelihoods, Kolmogorov—Smirnov statistics
and corresponding p-values for Example 1.

Distribution | L(p,0) SL(p,0,\) GL(u,0,a) GSL(p,0,\ ) SN(p,0,X) ST(u, 0, @)

m 3.024 2.328 3.048 2.271 2.271 2.271
G 0.352 0.550 0.930 195.801 1.000 1.000
h) — 3.713 — 4.418 4.419 4.419
a — — 5.041879 76605.63 — 26491.46
Log-likelihood | —59.330 —56.794  —58.797 —55.902 —55.902  —55.902
KSS 0.094 0.084 0.097 0.073 0.075 0.075
p-value 0.606 0.754 0.571 0.880 0.877 0.877

Table 2: Observed and expected frequencies and chi-squared statistics
for Example 1.

’ Intervals ‘ Observed ‘ L(p,0) SL(u,0,A) GL(u,0,) GSL(p,0,\, ) SN(p,0,X) ST(p, 0, )

<25 12 11.61 11.88 11.48 12.28 12.28 12.28

2.5-3.0 20 18.80 22.53 18.00 21.35 21.35 21.35

3.0-3.5 17 19.61 15.25 19.22 15.55 15.55 15.55

3.5-4 9 9.26 7.61 10.51 8.53 8.53 8.53

>4 5 3.72 5.74 3.79 5.29 5.29 5.29
x2=0.8832 x2=0.8345 x2=1.1055 x2=0.2682 x2=0.2684 x2=0.2684

From Tables 1 and 2, we see that the GSL distribution provides a better
fit for the data than the other five distributions. The GSL distribution takes the
smallest chi-squared statistic, the smallest K-S statistic, and the largest p-value.
The SN and ST distributions take the second smallest chi-squared statistic, the
second smallest K-S statistic, and the second largest p-value. The largest log-
likelihood of -55.902 is shared by the GSL, SN and ST distributions. Because
of this, one can argue that the SN distribution is a competitor to the GSL dis-
tribution (or perhaps that the SN distribution is a better choice than the GSL
distribution) since the former has one less parameter.

Figure 7 plots the fitted pdfs on top of the empirical histogram of the data.
Figure 8 plots the fitted cdfs on top of the empirical cdf of the data. Both these
figures support conclusions based on Tables 1 and 2. In both these figures, the
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fitted pdfs for the GSL, SN and ST distributions appear almost indistinguishable.
Both figures suggest that the GSL distribution captures the tails of the data better
than most other distributions.

«©
S 7 ] i
— Logistic
—— Skew logistic
—— Gen logistic
© — GSL
S 7 Skew normal
] K Skew t
%]
L
a
o <
o © |
2
E - —

0.2
F

T T T T T T T
2.0 25 3.0 3.5 4.0 4.5 5.0

Figure 7: Histogram of the first data set and the fitted pdfs.
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Figure 8 Empirical cdf of the first data set and the fitted cdfs.
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Example 2. Here, we analyze the lean body mass of Australian athletes.
The data given in Cook and Weisberg [7] are as follows:

63.
68.
62.
52.
56.
54.
59.
63.
54.
56.

32
53
39
72
45
46
33
04
63
01

58
61
63

.55
.85
.05
61.29
53.11
57.2

61.63
63.03
46.31
46.52

55.36
48.32
56.05
59.59
54.41
54.38
63.39
66.85
49.13
51.75

57.
66.24
53.65
61.7

55.97
57.58
60.22
59.89
53.71
42.15

18 63.2

57.92
65.45
62.46
51.62
61.46
55.73
72.98
53.11

48.76

53.77
56.52
64.62
53.14
58.27
53.46
48.57
45.23
46.12
41.93

60.
54.
60.
4a7.
57.
54.11
51.99
55.06
53.41
42.95

17
78
05
09
28

48.
56.
56.
53.
57.
55.
51.17
46.96
51.48
38.3

33
31
48
44
3

35

54.
62.
41.
48.
54.
55.
57.
53.
53.
34.

57
96
54
78
18
39
54
54
2

36

53.42
56.68
52.78
56.05
42.96
52.23
68.86
47.57
56.58
39.03

We fitted all six distributions to the above data by the method of maximum
likelihood. Table 3 presents the parameter estimates, the log likelihoods, the Kolmo-
gorov—Smirnov statistics and respective p-values. The corresponding chi-squared
statistics with observed and expected frequencies are reported in Table 4.

Table 3: MLEs, log-likelihoods, Kolmogorov—Smirnov statistics
and corresponding p-values for Example 2.
Distribution | L(u,0) SL(p,0,\) GL(u,0,a) GSL(p, 0, ) SN(p,0,A) ST(u, 0, )
m 55.101 57.148 55.036 55.356 54.895 59.085
o 3.807 3.990 0.593 0.671 6.887 7.233
X — —0.389 — —0.057 8.706x107° —0.903
a — — 0.117 0.133 — 9.924
Log-likelihood | —334.013 —333.557 —333.333 —333.265 —334.865 —333.738
KSS 0.072 0.071 0.070 0.069 0.080 0.072
p-value 0.658 0.712 0.712 0.715 0.642 0.711

Table 4: Observed and expected frequencies and chi-squared statistics

for Example 2.

Intervals [Observed| L(i,0) SL(1,0,)) GL(10,0) GSL(,0.)a) SN(1,0,)) ST(10,) )

< 42.084 5 3.17 3.85 3.97 4.35 3.14 3.93
42.084-49.808 16 16.77 16.69 14.22 14.47 19.86 16.95
49.808-57.532 48 45.51 44.28 50.67 50.18 41.90 43.57
57.532-65.256 25 28.06 29.66 24.35 24.78 28.47 30.15

> 65.256 6 6.49 5.52 6.79 6.23 6.62 5.40

x2=1.5987 x?=1.4574 x%=0.7444 x2=0.3633 x2=3.2157 x32=1.7422

From Tables 3 and 4, we can see that the GSL distribution takes the largest
log likelihood, the smallest chi-squared statistic, the smallest K-S statistic, and
the largest p-value. The GL distribution takes the second largest log likelihood,
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the second smallest chi-squared statistic, the second smallest K-S statistic, and
the second largest p-value. The SN distribution takes the smallest log likelihood,
the largest chi-squared statistic, the largest K-S statistic, and the smallest p-value.

Figures 9 and 10 plot the fitted pdfs and fitted cdfs, respectively. Both
these figures support conclusions based on Tables 3 and 4. Both figures suggest
that the GSL distribution captures the middle part of the data better than most
other distributions.
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Figure 9: Histogram of the second data set and the fitted pdfs.
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Figure 10: Empirical cdf of the second data set and the fitted cdfs.
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