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Abstract:

e The mean residual life function L(t) can be written based on the vitality function V' (¢).
In this article we propose two methods to estimate V' (¢). The two methods are based
on both the kernel density estimation and the empirical function. In addition, we
evaluate the mean square error of the two estimators and we study the consistency
for both of them.
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1. INTRODUCTION

The mean residual life MRL is the expected remaining life, T' — ¢, given
that the item has survived to time ¢. The unconditional mean of the distribution,
E(T), is a special case given by L(0). To determine a formula for this expectation,
the conditional probability density function is needed

) )
PT>t] R(t)’

(1.1) frirse(T) =

This conditional probability density function is actually a family of probability
density functions (one for each value of t), each of which has an associated mean

o0 oo

E[T|T > t] = /TfTTZt(T) dr =

t t

f(7)
7% dr

Thus, in life testing situations, the expected additional lifetime given that a
component has survived until time ¢ is called the MRL. Since the MRL function
is the expected remaining life, t must be subtracted, yielding

1 o0
(1.2) L(t) = E[T —t|T > t] = R/ T)dr —t.

Thus L(t) can be written as

L(t) = V() —t,
where
?sf(s) ds
(1.3) V(t) =1 R ]\é((;))

We study the vitality function estimator when R(t) > 0, since the vitality
function estimator generates the mean residual life function estimator directly by
the above equation.

Ratio functions for which nonparametric estimators have been considered
include the MRL function and hazard rate among others. One estimation method
involves individual estimates of the numerator and denominator. An alternative
estimator is to estimate the entire function not the separate pieces. For a discus-
sion of ratio functions estimates see Patil et al. [13]. In many reliability studies,
the MRL function (corresponding to a lifetime distribution with density f(¢), and
survival function R(t)), is of prime importance. A problem of considerable inter-
est, therefore, is the estimation of mean residual life function. The kernel density
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estimation is the most popular technique to estimate the probability density func-
tion, which is basically can be define as follow: Let X7, ..., X,, be a random sample
from unknown continuous probability density function f(x). The kernel density
estimate with appropriate kernel function k(t) and smoothing parameter h is

(1.4) fula) = nlhzn;k(”” _hX)

Kernel type estimators of ratio functions, such as the density under random
censoring and the hazard rate have been studied by several authors (e.g. Watson
and Leadbetter [18], [19], Marron and Padgett [10], Lo et al. [9], Sarda and Vieu
[16], and Hollander and Proschan [8]).

The basic estimator for L(t) is L(t) = Vi (t) — t, where Vo (t) = ]g:((f)) R.(t)=
LS, Lix,>t) and M(t) = LS, Xil(x,>t), but Abdous and Berred[1] dis-

cussed that Vo(t) does not take into account the smoothness of V(t). Guillamon
o0

et al. [6] studied the estimator V3(t) = AI%[:((:)) for V (t), where M, (t) = [ sfn(s)ds,
t

fn(t) is the kernel density estimation defined in (1.4) and V,,(¢) is the kernel re-

liability estimator (see Section 3). Other estimators or cases proposed by Mitra

and Basu [11], Ruiz and Guillamon [14], Chaubey and Sen [3], and Abdous and

Berred [1]. In this paper we propose and study two new estimators for the MRL

both based on the kernel estimator and the empirical function. Also, we propose

new techniques to select the bandwidth for the estimators. From the simulations,
we can conclude that the new estimator is competitive with the basic one but we
can’t say it is a better one.

2. THE FIRST ESTIMATOR Vi (t)

In the first propose estimator we use kernel estimate for the numerator
function and empirical estimator of the survival function in the denominator.
Thus,

~ Tsfn(s) ds )
(2.1) Vi(t) = - O R:(t) :
where
2.2 falt) = = 3 halt = X0)
i=1
and

(2.3) M(t) = / sha(s) ds
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is the kernel estimate of the numerator, and
1 n
(24) Re®) = = > 1ixon
i=1
is the frequency count of a set divided by n. Thus, we can estimate the MRL
L(t) by:

(2.5) Li(t) = Vi(t) —t .

2.1. Properties of V;(t)

In this section, we evaluate the Bias, the variance and the Mean Square
Error (MSE) of Vi (t). In addition, we derive the optimal bandwidth that mini-
mizes the Asymptotic Mean Square Error (AMSE) and we study the consistency
of Vi(t).

Proposition 2.1. For any t with R(t) > 0,

(2.6) Vi(t)—V(t) = an(t) (Z (/skh(s—Xi) ds — V(t)l(XPt))) (1+o(1)) .

=1
Proof
) - V) = R~ VD)
M, (1) — V(1) Re(t) R(t) - Re(t)
B < R(0) ) <” Ro(t) >

Lemma 2.1. Let Vi(t) be as (2.1), then

o~ 2 7
B(7i) = v + 22@) o (k) / sf"(s)ds + o(h?) ,

t

Var (7)) = gy (P2l + ha(0)a(®)) +o(12) + (1)

2
MSE(Vi(1) = ;23((?) h”( )Ja (S“) + b 4“}332 ( / f"(s) ds>+o(h4+h+h),
where T';( f’yz Yds, vi(t) =t f(t), pa(k) :,f s?k(s)ds, and

k) = f 2sW(s)k(s)ds < oc.
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Proof: Using (2.6)

E(ffl(t) - V(t)) = Rtt) (E (/ skn(s — X) d8> — V() E(l(X>t))>

(t) /
2 oo
= 22@) 1o (k) /sf”(s) ds + o(h?) .

Thus,
2

2R(t)

B(Ti0) = Vi) + 5 ma(k) [5(s)ds + o1

t

Also, from (2.6), and after some reduction,

Var (Vl(t) - V(t)) -

00 2
1
= nRZ(t) (E (/skh(s — X) dS)

t

- 2V(t)E <1X>t 751%(3 -X) ds) + V2(t) E<1X>t)> - O(Z>

T nRA(t) (PQ(t) +hya(t) alk) —2V({) A+ V@Wl(ﬂ) + 0<h> :

n

But
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So that
var(ﬂ(t) - V(t)) -

= anQ(t) <F2(t) + hya(t) a(k) =T (t)V(t) — 2hV (t / s)ds T'q(t )
0
+ o h? + Z)

Thus,
var(7i(1) = anQ(t) (m(t) +h72(t)a(k)) T o(h?) —i—0<h> |

n

Therefore,

MSE <171(t)> — Bias® (ﬂ(t))wmn(?l(t))

%) 2
1T k k " h
=~ R22((?) hwn(};(() ) h4f]§§(2) (/sf (s) ds) + 0(h2+h4+ n>

t

O]

The following corollaries can be obtained directly from the above Lemma.

Corollary 2.1. The asymptotic mean integrated square error (AMISE) of
Vi(t) is

AMISE(Vi() = % ]1:;((?) it + %a<k> ]7%22((?)

4 i 2
+ hz,u,%(k:) /RQl(t) (/sf”(s) ds> dt

Corollary 2.2. The optimal bandwidth that minimizes the AMISE(V;(t))

dt
(2.7)

is

3

—a(k) f 72(t) dt

[ ( s ds>2dt
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Corollary 2.3. The estimator 171(75) is a asymptotically consistent estima-
tor of the vitality function V (t). That is

(2.8) o 2 v .

3. THE SECOND ESTIMATOR V,(t)

In this section we use empirical estimate for the numerator and kernel
estimate of the survival function in the denominator. Thus,

n
% Zl Xil(Xi>t)
1=

~ M (t
3.1 V t = =
(3.1) (0) = — s = F
where R,,(t) is the kernel reliability estimator
1 — t—X;
3.2 Ry(t)y ==>» W
(3:2) 0= 2w(57)

(see Nadaraya [12], Azzalini [2] and Swanepoel [17]), k(x) is a class-2 symmetric
kernel, kp(z) = 3 k(%), W(t)= [ k(s)ds, and h is a bandwidth (or smoothing
t

parameter) verifying h — 0 and nh — oo when n — oo; and
1 n
(3.3) Me(t) = > Xilix,s) s
i=1

where

1 if T is true,
1r = )
0 otherwise,

is the empirical estimate of the numerator in the definition of V.

In this case, the MRL estimator is

~

(3.4) Lo(t) = Va(t) —t .

3.1. Properties of Vs(t)

In this section we evaluate the MSE and the AMISE of Va(t). Also, we
derive the optimal bandwidth and study the consistency of Va(t).
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Proposition 3.1. For any t with R(t) > 0,

(3.5) Va(t) = V(t) = nP}(t) Z(Xil(xm)—v(t)W<t—hX,-)> (1—|—0(1)>
=1
where W (t) Tk(s) ds
Proof
Talt) = Vit) = i) — VO
_(Me(t) = V(t) Ra(2) R(t) — Ra(t)
- < ) ()
( e (t)W(t‘hXi» (1+00). o
=1

Lemma 3.1. Let Va(t), T(t), 7i(t), pa(k), and a(k) be as defined earlier,
then

B(T0) = vt +3 QZEgm 2(k) + o(h?) .
Var(Va(t)) = 1( 5 T2(0) + nRZ(t) V2(t)f(t)a(k)+o(h)+o<z>7
VR .

= (f< ) 1308) + s Talt) + s VA0 F0) (b
Proof: Using the result in Proposition (3.1)

B(Va(t) - V(1)) = Rtt) (E(@/I<y>t)) —V) E[W<t _hXiﬂ)

1
4

2
— S I 0 )+ o).
Thus
(36) B(Ta(0) = V(O + 5 1] £ malh) + ofh?)



310 Abdel-Razzaq Mugdadi and Amanuel Teweldemedhin

Now, we want to evaluate the variance.

Var(120) - V0) = s (Var(yl(y>t)) V() Wﬁy))

= R12 0 (F2(t) - %h V(t) 2 (k) / sf"(s)ds + hV?(t) f(t)a(k:))
e
Thus,
Therefore,
~ 2
MSE(VQ(t)> - % 4;28 (F0) 220 + an2 20+ an;(t) V2 £ k)
+ O<h + Z> . ]

Corollary 3.1.

/ 2
AMISE(%(t)) = ih‘lug(k)/‘w :L/Fz(t) gt

hak) [V
S

(3.7)

Corollary 3.2. The optimal bandwidth that minimizes the AMISE (Vy(t))

1
V2(t) £() 3
—a(k) / w

2
i (k V2(t) (f(1))?
2( ) / Rg(t) ) dt

is

Corollary 3.3. The estimator ‘72(75) is a asymptotically consistent estima-
tor of the vitality function V(t). That is

(3.8) () 2= V() .

n—oo
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From Corollaries 2.2 and 3.2, we can conclude that the optimal bandwidths
1
decrease at rate O(n~3), which is the same of rate of convergence for bandwidth
for the kernel distribution function estimator.

4. BANDWIDTH SELECTIONS

4.1. Likelihood Cross-Validation

The original cross-validation criterion, proposed by Habbema et al. [7] and
Duin [4] to select the bandwidth ~ by minimizing the score function

LCV(h) = —% ilog fi(X3)
=1

over possible values of h. f,i(Xi) is the “leave-one-out” kernel density estimator
defined using the data with X; removed. That is

fri(Xi) = (n—ll)h :;k(J(’;)(j) .

The method of likelihood cross-validation is a natural development of the idea of
using likelihood to judge the adequacy of fit of a statistical model. It is of general
applicability beyond choosing h in kernel density estimation, having been used
for both parameter estimation and model selection (e.g. Geisser [5]).

Analogous to this we propose this kind of technique to our estimators. That
is we will minimize the following function:

1 — .
4.1 L == logV; _;(X;
(4.1) CV(h) ngong, (Xi)

where f/j,,i(Xi), j=1,2, is the “leave-one-out” vitality function estimators de-
fined using the data with X; removed. That is

X, (X - Xi— X,
42)  TVii(X) = B L;X W( g J>+hjZ#Nk< D J)]

n
nil Z 1Xj>X7;
J#i
and
1 n
o1 2 X lxsx;
JF#i
1 & Xi—X;\
n—1 ZW( zh J)
J#i

(4.3) Vo _i(Xi) =
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4.2. Simulation

We have conducted a numerical study to asses the performance of the esti-
mators that introduced earlier. We simulated repeated samples of size n = 20, 40,
60, 80, and 100 from exponential distribution with different means. Thus, the
true value being estimated is L(t), when the f(t) is the exponential distribution.
The results obtained are based on 1000 repetitions at the sample sizes. We used
Epanechnikov kernel, and the likelihood cross-validation for bandwidth selections.
The Bias, Variance, and MSE are calculated by repeating the samples 1000 times
for each case. Epanechnikov kernel is used for the estimators ﬁl,ﬁg, and ﬁg.

Note that Lo(t) = ]‘E{((f)) —t and Lg(t) = %Z((f)) -t

Table 1: Simulation from exponential distribution of different means
and sample size 20.

’ n ‘ Mean ‘ Estimators ‘ Bias ‘ Variance ‘ MSE ‘
20 0.5 Z:/o —0.2900 0.3222 0.4063
20 0.5 Ly 0.3644 0.3034 0.4362
20 0.5 Lo 0.2643 0.2792 0.3490
20 0.5 Ls 0.6002 0.2358 0.5960
20 1 I:/o 0.1253 0.0842 0.0999
20 1 L, —0.7525 0.0379 0.6083
20 1 .@2 —0.2110 0.0575 0.1020
20 1 L3 0.0473 0.0542 0.0564
20 5 [:/o 0.1939 0.0478 0.0854
20 5 L, —0.0125 0.0024 0.0026
20 5 Lo 0.0634 0.0150 0.0191
20 5 Ls —-0.0714 0.0040 0.0091

Table 2: Simulation from exponential distribution of different means
and sample size 40.

’ n ‘ Mean ‘ Estimators ‘ Bias ‘ Variance ‘ MSE ‘
40 0.5 Z:/o —0.0546 0.3402 0.3432
40 0.5 Ly 0.1494 0.0834 0.1057
40 0.5 Lo —0.9094 0.2316 1.0586
40 0.5 Ls 0.0260 0.1623 0.1630
40 1 I:/o 0.2041 0.1025 0.1442
40 1 Ijl 0.2277 0.0857 0.1375
40 1 .@2 —0.1786 0.0370 0.0688
40 1 L3 —0.0282 0.0311 0.0319
40 5 [:/o —0.0406 0.0014 0.0031
40 5 L, 0.0632 0.0016 0.0056
40 5 Lo —0.0115 0.0036 0.0037
40 5 Ls 0.0073 0.0019 0.0020
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The original purpose of this study was to provide kernel based estimators of
mean residual life function. We have found kernel estimation to be a useful tool
for nonparametric estimations of reliability functions such as MRL. However, the
use of this tool in practice can be hampered by the lack of a suitable bandwidth
selection procedure. The likelihood cross-validation proposed in this paper is a
suitable technique to select the bandwidth but we can not say it is the optimal one.
Also, we can not conclude in the MRL estimators that the smoothing technique

is better than the non smoothing technique.

Table 3: Simulation from exponential distribution of different means
and sample size 60.

’ n ‘ Mean ‘ Estimators ‘ Bias ‘ Variance ‘ MSE ‘
60 0.5 i/o 0.2186 0.1971 0.2449
60 0.5 [:1 0.1788 0.1156 0.1476
60 0.5 ﬁz 0.5544 0.1545 0.4619
60 0.5 .2/3 —0.2967 0.3261 0.4141
60 1 f/o —0.0105 0.0309 0.0310
60 1 f/1 —0.0600 0.0535 0.0571
60 1 ﬁz —0.1795 0.0174 0.0497
60 1 Ls —0.0730 0.0450 0.0512
60 5 ﬁo —0.0195 0.0013 0.0017
60 5 L4 0.0443 0.0010 0.0030
60 5 Lo —0.0215 0.0006 0.0011
60 5 Ls —0.0309 0.0022 0.0032

Table 4: Simulation from exponential distribution of different means
and sample size 80.

’ n ‘ Mean ‘ Estimators ‘ Bias ‘ Variance ‘ MSE
80 0.5 i/o 0.0833 0.0600 0.0669
80 0.5 ﬁl 0.0319 0.0597 0.0607
80 0.5 ﬁz 0.1759 0.2009 0.2317
80 0.5 f/g —0.0866 0.1025 0.1100
80 1 f/o 0.0392 0.0606 0.0622
80 1 f/l 0.0536 0.0478 0.0507
80 1 Lo 0.2112 0.0465 0.0910
80 1 Ls —0.1948 0.0242 0.0622
80 5 I;o 0.0013 0.0011 0.0012
80 5 I —0.0130 0.0011 0.0013
80 5 Lo —0.0516 0.0016 0.0043
80 5 Ls —0.0677 0.0018 0.0064
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Table 5: Simulation from exponential distribution of different means
and sample size 100.

’ n ‘ Mean ‘ Estimators ‘ Bias ‘ Variance ‘ MSE ‘
100 0.5 Lo 0.2901 0.0980 0.1822
100 0.5 Is —0.0888 0.2403 0.2482
100 0.5 Lo —0.1093 0.1291 0.1411
100 0.5 L3 —0.1420 0.1204 0.1405
100 1 Lo —0.0415 0.0293 0.0310
100 1 Ly —0.0794 0.0119 0.0182
100 1 Lo —0.0278 0.0246 0.0253
100 1 L3 0.0736 0.0165 0.0220
100 5 Lo 0.0131 0.0005 0.0006
100 5 L1 —0.0217 0.0020 0.0025
100 5 Ly —0.0324 | 0.0012 | 0.0022
100 5 Ls 0.0147 0.0005 0.0007

The MRL estimators proposed in this paper seem natural, reasonable, and
intuitively appealing. It is shown that the MRL estimators are asymptotically
unbiased and consistent. Note also that the simulation study seem to indicate that
the MRL estimators have small variance and MSE. The optimal bandwidth using
mean integrated squared error criterion in each MRL estimators is h = cn~/3.
It is also proven that the choice of a kernel function is less sensitive to the MRL

estimators.
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