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Abstract:

• The extreme-value index γ is an important parameter in extreme-value theory since
it controls the first order behavior of the distribution tail. In the literature, numerous
estimators of this parameter have been proposed especially in the case of heavy-tailed
distributions, which is the situation considered here. Most of these estimators depend
on the k largest observations of the underlying sample. Their bias is controlled by the
second order parameter ρ. In order to reduce the bias of γ’s estimators or to select the
best number k of observations to use, the knowledge of ρ is essential. In this paper,
we propose a simple approach to estimate the second order parameter ρ leading to
both existing and new estimators. We establish a general result that can be used to
easily prove the asymptotic normality of a large number of estimators proposed in the
literature or to compare different estimators within a given family. Some illustrations
on simulations are also provided.
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1. INTRODUCTION

Extreme-value theory establishes the asymptotic behavior of the largest ob-

servations in a sample. It provides methods for extending the empirical distribu-

tion function beyond the observed data. It is thus possible to estimate quantities

related to the tail of a distribution such as small exceedance probabilities or ex-

treme quantiles. We refer to [11, 25] for general accounts on extreme-value theory.

More specifically, let X1, ..., Xn be a sequence of random variables (rv), indepen-

dent and identically distributed from a cumulative distribution function (cdf) F .

Extreme-value theory establishes that the asymptotic distribution of the maxi-

mum Xn,n = max{X1, ..., Xn} properly rescaled is the extreme-value distribution

with cdf

Gγ(x) = exp
(
−(1 + γx)+

)−1/γ

where y+ = max(y, 0). The parameter γ ∈ R is referred to as the extreme-value

index. Here, we focus on the case where γ > 0. In such a situation, F is said to

belong to the maximum domain of attraction of the Fréchet distribution. In this

domain of attraction, a simple characterization of distributions is available: the

quantile function U(x) := F←(1 − 1/x) can be written as

U(x) = xγℓ(x) ,

where ℓ is a slowly varying function at infinity i.e. for all λ > 0,

(1.1) lim
x→∞

ℓ(λx)

ℓ(x)
= 1 .

The distribution F is said to be heavy tailed and the extreme-value parameter

γ governs the heaviness of the tail. The estimation of γ is a central topic in

the analysis of such distributions. Several estimators have thus been proposed

in the statistical literature and their asymptotic distributions established under

a second order condition: There exist a function A(x) → 0 of constant sign for

large values of x and a second order parameter ρ < 0 such that, for every λ > 0,

(1.2) lim
x→∞

1

A(x)
log

(
ℓ(λx)

ℓ(x)

)
= Kρ(λ) :=

∫ λ

1
uρ−1du .

Let us highlight that (1.2) implies that |A| is regularly varying with index ρ,

see [16]. Hence, as the second order parameter ρ decreases, the rate of convergence

in (1.1) increases. Thus, the knowledge of ρ can be of high interest in real

problems. For example, the second order parameter is of primordial importance

in the adaptive choice of the best number of upper order statistics to be considered

in the estimation of the extreme-value index [24]. The estimation of ρ can also

be used to propose bias reduced estimators of the extreme value index (see for

instance [4, 21, 23]) or of the Weibull tail-coefficient [9, 10], even though some

bias reduction can be achieved with the canonical choice ρ = −1 as suggested in
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[12, 22]. For the above mentioned reasons, the estimation of the second order

parameter ρ has received a lot of attention in the extreme-value literature, see

for instance [3, 6, 13, 14, 17, 19, 26, 30, 31].

In this paper, we propose a simple and general approach to estimate ρ.

Let I = t(1, ..., 1) ∈ Rd. The two main ingredients of our approach are a random

variable Tn = Tn(X1, ..., Xn) ∈ Rd verifying the following three assumptions:

(T1) There exists rvs ωn, χn and a function f : R− → Rd such that

ω−1
n (Tn − χnI)

P
−→ f(ρ),

and a function ψ : Rd → R such that

(Ψ1) ψ(x+ λI) = ψ(x) for all x ∈ Rd and λ ∈ R,

(Ψ2) ψ(λx) = ψ(x) for all λ ∈ R\{0}.

Note that (T1) imposes that Tn properly normalized converges in probability to

some function of ρ, while (Ψ1) and (Ψ2) mean that ψ is both location and shift

invariant. Starting from these three assumptions, we straightforwardly obtain

that

ψ
(
ω−1
n (Tn − χnI)

)
= ψ(Tn)

P
−→ ψ(f(ρ)) ,

under a continuity condition on ψ. Denoting by Zn := ψ(Tn) and by ϕ := ψ ◦ f :

R− → R, we obtain Zn
P

−→ ϕ(ρ). It is thus clear that, under an additional reg-

ularity assumption and assuming that both Zn and ϕ are known, ρ can be con-

sistently estimated thanks to ϕ−1(Zn). This estimation principle is described

more precisely in Section 2. The consistency and asymptotic normality of the

proposed estimator is also established. Examples of Tn random variables are pre-

sented in Section 3. Some functions ψ are proposed in Section 4 and it is shown

that the above mentioned estimators [6, 13, 14, 17, 19] can be read as particular

cases of our approach. As a consequence, this remark permits to establish their

asymptotic properties in a simple and unified way. We illustrate how several

asymptotically Gaussian estimators can be derived from this framework. Finally,

some estimators are compared in Section 5 both from the asymptotic and finite

sample size performances points of view.

2. MAIN RESULTS

Recall that Tn is a Rd- random vector verifying (T1) and ψ is a function

Rd → R verifying (Ψ1) and (Ψ2). We further assume that:

(Ψ3) There exist J0 ⊆ R− and an open interval J ⊂ R such that ϕ = ψ ◦f

is a bijection J0 → J .
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Under this assumption, the following estimator of ρ may be considered:

(2.1) ρ̂n =

∣∣∣∣∣
ϕ−1(Zn) if Zn ∈ J ,

0 otherwise .

To derive the consistency of ρ̂n, an additional regularity assumption is introduced:

(Ψ4) ψ is continuous in a neighborhood of f(ρ) and f is continuous in a

neighborhood of ρ.

The proof of the next result is based on the heuristic consideration of Sec-

tion 1 and is detailed in Section 6.

Theorem 2.1. If (T1) and (Ψ1)–(Ψ4) hold then ρ̂n
P

−→ ρ as n→ ∞.

The asymptotic normality of ρ̂n can be established under a stronger version

of (Ψ4):

(Ψ5) ψ is continuously differentiable in a neighborhood of f(ρ) and f is

continuously differentiable in a neighborhood of ρ,

and the assumption that a normalized version of Tn is itself asymptotically Gaus-

sian:

(T2) There exists two rvs ωn, χn, a sequence vn → ∞, two functions

f, m : R− → Rd and a d×d matrix Σ such that vn
(
ω−1
n (Tn − χnI)−

f(ρ)
) d
−→ Nd

(
m(ρ), γ2Σ

)
.

Theorem 2.2. Suppose (T2), (Ψ1)–(Ψ3) and (Ψ5) hold. If ρ ∈ J0 and

ϕ′(ρ) 6= 0, then

vn(ρ̂n − ρ)
d

−→ N

(
mψ(ρ)

ϕ′(ρ)
,
γ2σ2

ψ(ρ)

(ϕ′(ρ))2

)
,

with ϕ′(ρ) = tf ′(ρ)∇ψ(f(ρ)) and where we have defined

mψ(ρ) := tm(ρ) ∇ψ(f(ρ)) ,

σ2
ψ(ρ) := t∇ψ(f(ρ)) Σ ∇ψ(f(ρ)) .

3. EXAMPLES OF Tn RANDOM VARIABLES

Let X1,n ≤ ... ≤ Xn,n be the sample of ascending order statistics and k = kn
be an intermediate sequence i.e. such that k → ∞ and k/n→ 0 as n→ ∞. Most

extreme-value estimators are based either on the log-excesses (logXn−j+1,n −
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logXn−k,n) or on the rescaled log-spacings j(logXn−j+1,n − logXn−j,n) defined

for j = 1, ..., k. In the following, two examples of Tn random variables are pre-

sented based on weighted means of the log-excesses and of the rescaled log-

spacings.

The first example is based on

(3.1) Rk(τ) =
1

k

k∑

j=1

Hτ

(
j

k + 1

)
j
(
logXn−j+1,n − logXn−j,n

)
,

where Hτ : [0, 1] → R is a weight function indexed by a parameter τ ∈ (0,∞).

Without loss of generality, one can assume that Hτ integrates to one. This

random variable is used for instance in [1] to estimate the extreme-value index γ,

in [17, 26, 30] to estimate the second order parameter ρ and in [18] to estimate

the third order parameter, see condition (C2) below. It is a particular case of

the kernel statistic introduced in [7]. Let us also note that, in the case where

Hτ (u) = 1 for all u ∈ [0, 1], Rk(τ) reduces to the well-known Hill estimator [27].

The asymptotic properties of Rk(τ) require some technical condition (denoted by

(C1)) on the weight function Hτ . It has been first introduced in [1] and it is

recalled hereafter. Introducing the operator

µ : h ∈ L2([0, 1]) −→ µ(h) =

∫ 1

0
h(u)du ∈ R

and It(u) = u−t for t ≤ 0 and u ∈ (0, 1], the condition can be written as

(C1) Hτ ∈ L2([0, 1]), µ(|Hτ |Iρ+1+ε) <∞ and

Hτ (t) =
1

t

∫ t

0
u(ν) dν

for some ε > 0 and for some function u satisfying for all j = 1, ..., k
∣∣∣∣∣(k+1)

∫ j/(k+1)

(j−1)/(k+1)
u(t) dt

∣∣∣∣∣ ≤ g

(
j

k + 1

)
,

where g is a positive continuous and integrable function defined on

(0, 1). Furthermore, for η ∈ {0, 1}, and k → ∞:

1

k

k∑

j=1

Hτ

(
j

k + 1

)(
j

k + 1

)−ηρ
= µ(HτIηρ) + o(k−1/2) ,

max
j∈{1,...,k}

∣∣∣∣Hτ

(
j

k + 1

)∣∣∣∣ = o(k1/2) .

It is then possible to define T
(R)
n on the basis of Rk(τ), given in (3.1), as

(3.2) T (R)
n =

(
T

(R)
n,i =

(
Rk(τi)/γ

)θi , i= 1, ..., d
)
,
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where θi, i= 1, ..., d are positive parameters. In the next lemma, it is proved that

T
(R)
n satisfies condition (T2) under a third order condition, which is a refinement

of (1.2):

(C2) There exist functions A(x) → 0 and B(x) → 0 both of constant sign

for large values of x, a second order parameter ρ < 0 and a third

order parameter β < 0 such that, for every λ > 0,

lim
x→∞

(
log ℓ(λx) − log ℓ(x)

)
/A(x) −Kρ(λ)

B(x)
= L(ρ,β)(λ)

where

L(ρ,β)(λ) :=

∫ λ

1
sρ−1

∫ s

1
uβ−1 du ds ,

and the functions |A| and |B| are regularly varying functions with

index ρ and β respectively.

This condition is the cornerstone for establishing the asymptotic normality of

estimators of ρ. Let us denote by Yn−k,n the n− k largest order statistics from a

n-sample of standard Pareto rv.

Lemma 3.1. Suppose (C1), (C2) hold and let k = kn be an intermediate

sequence k such that

(3.3)
k → ∞ , n/k → ∞ , k1/2A(n/k) → ∞ ,

k1/2A2(n/k) → λA , k1/2A(n/k)B(n/k) → λB ,

for λA ∈ R and λB ∈ R. Then, the random vector T
(R)
n satisfies (T2) with ω

(R)
n =

A(Yn−k,n)/γ, χ
(R)
n = 1, vn = k1/2A(n/k),

f (R)(ρ) =
(
θiµ(HτiIρ), i= 1, ..., d

)
,

m(R)(ρ) =

(
λA

θi(θi − 1)

2γ
µ2(HτiIρ) − λB θi µ(HτiIρK−β); i= 1, ..., d

)
,

and, for (i, j) ∈ {1, ..., d}2, Σ
(R)
i,j = θi θj µ(HτiHτj ).

The proof is a straightforward consequence of Theorem 2 and Appendix A.5

in [17].

The second example requires some additional notations. Let us consider

the operator ϑ : L2([0, 1])×L2([0, 1]) −→ R defined by

ϑ(h1, h2) =

∫ 1

0

∫ 1

0
h1(u)h2(v) (u ∧ v − uv) du dv
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and the two functions Īt(u) = (1− u)−t and Jt(u) = (− log u)−t defined for t ≤ 0

and u ∈ (0, 1]. The random variables of interest are

(3.4) Sk(τ, α) =
1

k

k∑

j=1

Gτ,α

(
j

k + 1

)(
logXn−j+1,n − logXn−k,n

)α
,

where Gτ,α is a positive function indexed by two positive parameters α and τ .

Without loss of generality, it can be assumed that µ(Gτ,αJ−α) = 1. In [8, 20, 29]

several estimators of γ based on Sk(τ, α) are introduced in the particular case

where G is constant. Most recently, in [6, 14, 26, 28], Sk(τ, α) is used to esti-

mate the parameters γ and ρ. The asymptotic distribution of these estimators is

obtained under the following assumption on the function Gτ,α.

(C3) The functionGτ,α is positive, non-increasing and integrable on (0, 1).

Furthermore, there exists δ > 1/2 such that 0 < µ(Gτ,αIδ) <∞ and

0 < µ(Gτ,αĪδ) <∞.

It is then possible to define T
(S)
n on the basis of Sk(τ, α), see (3.4), as

(3.5) T (S)
n =

(
T

(S)
n,i =

(
Sk(τi, αi)/γ

αi
)θi , i= 1, ..., d

)
.

The following result is the analogous of Lemma 3.1 for the above random

variables.

Lemma 3.2. Suppose (C2), (C3) hold. If the intermediate sequence k

satisfy (3.3) then the random vector T
(S)
n satisfies (T2) with ω

(S)
n = A(n/k)/γ,

χ
(S)
n = 1, vn = k1/2A(n/k),

f (S)(ρ) =
(
−θiαiµ

(
Gτi,αi

J1−αi
K−ρ

)
; i= 1, ..., d

)
,

m(S)(ρ) =

(
λA

θiαi(αi−1)

2γ
µ
(
Gτiαi

J2−αi
K2
−ρ

)
+ λBαiθiµ

(
Gτi,αi

J1−αi
L(−ρ,−β)

)
;

i = 1, ..., d

)
,

and, for (i, j) ∈ {1, ..., d}2, Σ
(S)
i,j = θiθjαiαj ϑ

(
Gτi,αi

J1−αi
, Gτj ,αj

J1−αj

)
.

The proof is a straightforward consequence of Proposition 3 and Lemma 1

in [6]. In the next section, we illustrate how the combination of T
(R)
n or T

(S)
n with

some function ψ following (2.1) can lead to existing or new estimators of ρ.

4. APPLICATIONS

In this section, we propose estimators of ρ based on the random variable

T
(R)
n (subsection 4.1) and T

(S)
n (subsection 4.2). In both cases, d = 8 and the
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following function ψδ : D 7→ R\{0} is considered

(4.1) ψδ(x1, ..., x8) = ψ̃δ(x1 − x2, x3 − x4, x5 − x6, x7 − x8) ,

where δ ≥ 0, D =
{
(x1, ..., x8) ∈ R8; x1 6= x2, x3 6= x4, and (x5−x6)(x7−x8)> 0

}
,

and ψ̃δ : R4 7→ R is given by:

ψ̃δ(y1, ..., y4) =
y1

y2

(
y4

y3

)δ
.

Let us highlight that ψδ verifies the invariance properties (Ψ1) and (Ψ2).

4.1. Estimators based on the random variable Rk(τ)

Since d = 8, the random variable T
(R)
n defined in (3.2) depends on 16 pa-

rameters:
{
(θi, τi) ∈ (0,∞)2, i = 1, ..., 8

}
. The following condition on these pa-

rameters is introduced. Let θ̃ = (θ̃1, ..., θ̃4) ∈ (0,∞)4 with θ̃3 6= θ̃4.

(C4)
{
θi = θ̃⌈i/2⌉, i= 1, ..., 8

}
with δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4). Furthermore,

τ1 < τ2 ≤ τ3 < τ4, τ5 < τ6 ≤ τ7 < τ8 ,

where ⌈x⌉ = inf{n∈N | x≤n}. Under this condition, T
(R)
n involves 12 free param-

eters. We also introduce the following notations: Z
(R)
n =ψδ(T

(R)
n ) andϕ

(R)
δ =ψδ◦f

(R)

where f (R) is given in Lemma 3.1. Note that, since δ = (θ̃1 − θ̃2)/(θ̃3 − θ̃4), it is

easy to check that Z
(R)
n does not depend on the unknown parameter γ. We now

establish the asymptotic normality of the estimator ρ̂
(R)
n defined by (2.1) when

T
(R)
n and the function ψδ are used:

(4.2) ρ̂(R)
n =

∣∣∣∣∣
(ϕ

(R)
δ )−1 (Z

(R)
n ) if Z

(R)
n ∈J ,

0 otherwise .

The following additional condition is required:

(C5) The function νρ(τ) = µ(HτIρ) is differentiable with, for all ρ < 0

and all τ ∈ R, ν ′ρ(τ) > 0.

Let us denote for i ∈ {1, ..., 4},

m
(R,i)
A = exp

{
(θ̃i − 1)

(
νρ(τ2i−1) + νρ(τ2i)

)}
,

m
(R,i)
B = exp

{
µ
(
(Hτ2i−1

−Hτ2i
) IρK−β

)

νρ(τ2i−1) − νρ(τ2i)

}
,

and for u ∈ [0, 1],

v(R,i)(u) = exp

{
Hτ2i−1

(u) −Hτ2i
(u)

νρ(τ2i−1) − νρ(τ2i)

}
.
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For the sake of simplicity, we also introduce m
(R)
A =

(
m

(R,i)
A , i= 1, ..., 4

)
, m

(R)
B =(

m
(R,i)
B , i= 1, ..., 4

)
and v(R) =

(
v(R,i), i= 1, ..., 4

)
.

Corollary 4.1. Suppose (C1), (C2), (C4) and (C5) hold. There exist

two intervals J and J0 such that for all ρ ∈ J0 and for a sequence k satisfying (3.3),

k1/2A(n/k) (ρ̂(R)
n −ρ)

d
−→ N

(
λA
2γ

AB
(R)
1 (δ, ρ) − λBAB

(R)
2 (δ, ρ, β) , γ2AV(R)(δ, ρ)

)

where

AB
(R)
1 (δ, ρ) =

ϕ
(R)
δ (ρ)

[
ϕ

(R)
δ

]′
(ρ)

log ψ̃δ
(
m

(R)
A

)
,

AB
(R)
2 (δ, ρ, β) =

ϕ
(R)
δ (ρ)

[
ϕ

(R)
δ

]′
(ρ)

log ψ̃δ
(
m

(R)
B

)
,

AV(R)(δ, ρ) =

(
ϕ

(R)
δ (ρ)

[
ϕ

(R)
δ

]′
(ρ)

)2

µ
(
log2 ψ̃δ

(
v(R)

))
.

Note that this result can be read as an extension of [17], Proposition 3, in

two ways. First, we do not limit ourselves to the case δ = 1. Second, we do not

assume that the function ϕ
(R)
δ is a bijection, but it is shown to be a consequence

of (C4). Besides, the proof of Corollary 4.1 is very simple based on Theorem 2.2

and Lemma 3.1, see Section 6 for details.

As an example, the function Hτ : u ∈ [0, 1] 7→ τuτ−1, τ ≥ 1 satisfies condi-

tions (C1) and (C5) since νρ(τ) = τ/(τ − ρ). Letting τ1 ≤ τ5, τ2 = τ3, τ4 = τ8

and τ6 = τ7 leads to a simple expression of ϕ
(R)
δ :

(4.3) ϕ
(R)
δ (ρ) = ω(δ, θ̃)

(
τ4 − ρ

τ1 − ρ

)(
τ5 − ρ

τ4 − ρ

)δ

where

ω(δ, θ̃) =

(
θ̃1(τ1 − τ2)

θ̃2(τ2 − τ4)

)(
θ̃4(τ6 − τ4)

θ̃3(τ5 − τ6)

)δ
.

Moreover, one also has explicit forms for J0 and J in two situations:

(i) If 0≤ δ≤ δ0 := (τ4−τ1)/(τ4−τ5) then ϕ
(R)
δ is increasing from J0 = R−

to J = ω(δ, θ̃) • (1, ψ̃δ(τ4, τ1, τ4, τ5)).

(ii) If δ ≥ δ1 := δ0τ5/τ1 then ϕ
(R)
δ is decreasing from J0 = R− to J =

ω(δ, θ̃) • (ψ̃δ(τ4, τ1, τ4, τ5), 1).

Here, • denotes the scaling operator. The case δ ∈ (δ0, δ1) is not considered here,

since one can show that, in this situation, J0 ( R− and thus the condition ρ ∈ J0
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of Corollary 4.1 is not necessarily satisfied. Let us now list some particular cases

where the inverse function of ϕ
(R)
δ is explicit.

Example 4.1. Let δ = 1 i.e. θ̃1 − θ̃2 = θ̃3 − θ̃4. The rv Z
(R)
n is denoted

by Z
(R)
n,1 . Since δ0 > 1, we are in situation (i) and

ρ̂
(R)
n,1 =

τ5ω(1, θ̃) − τ1Z
(R)
n,1

ω(1, θ̃) − Z
(R)
n,1

I
{
Z

(R)
n,1 ∈ ω(1, θ̃) •

(
1, ψ̃1(τ4, τ1, τ4, τ5)

)}
.

Remark that this estimator coincides with the one proposed in [17], Lemma 1.

Example 4.2. Let δ= 0 i.e. θ̃1= θ̃2. The rv Z
(R)
n is thus denoted by Z

(R)
n,2 .

Again, we are in situation (i) and a new estimator of ρ is obtained

ρ̂
(R)
n,2 =

τ4ω(0, θ̃) − τ1Z
(R)
n,2

ω(0, θ̃) − Z
(R)
n,2

I
{
Z

(R)
n,2 ∈ ω(0, θ̃) •

(
1, ψ̃0(τ4, τ1, τ4, τ5)

)}
.

Example 4.3. Let τ1 = τ5. In this case δ0 = δ1 = 1 and thus, we are in

situation (i) if δ < 1 and in situation (ii) otherwise. In this case, the rv Z
(R)
n is

denoted by Z
(R)
n,3 . A new estimator of ρ is obtained:

ρ̂
(R)
n,3 =

τ4
(
Z

(R)
n,3 /ω(δ, θ̃)

)1/(δ−1)
− τ1

(
Z

(R)
n,3 /ω(δ, θ̃)

)1/(δ−1)
− 1

I
{
Z

(R)
n,3 ∈ J

}
.

4.2. Estimators based on the random variable Sk(τ, α)

The random variable T
(S)
n defined in (3.5) depends on 24 parameters:{

(θi, τi, αi) ∈ (0,∞)3, i= 1, ..., 8
}
. Let (ζ1, ..., ζ4) ∈ (0,∞)4 with ζ3 6= ζ4. In the

following, we assume that

(C6)
{
θiαi = ζ⌈i/2⌉, i= 1, ..., 8

}
with δ = (ζ1 − ζ2)/(ζ3 − ζ4). Further-

more, (τ2i−1, α2i−1) 6= (τ2i, α2i), for i= 1, ..., 4 and, for i = 3, 4,

(τ2i−1, α2i−1) < (τ2i, α2i) ,

where (x, y) 6= (s, t) means that x 6= s and/or y 6= t and (x, y) < (s, t) means that

x < s and y ≤ t or x = s and y < t. We introduce the notations: Z
(S)
n = ψδ(T

(S)
n )

and ϕ
(S)
δ = ψδ ◦ f

(S) where f (S) is given in Lemma 3.2. Under this condition, T
(S)
n

involves 20 free parameters. Besides, since δ = (ζ1 − ζ2)/(ζ3 − ζ4), it is easy to

check that Z
(S)
n does not depend on the unknown parameter γ. To establish the

asymptotic distribution of the estimator ρ̂
(S)
n , the following condition is required:
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(C7) For all ρ < 0, the function νρ(τ, α) = µ(Gτ,αJ1−αK−ρ) is differen-

tiable with ∂
∂τ νρ(τ, α) > 0 and ∂

∂ανρ(τ, α) > 0 for all α > 0 and all

τ ∈ R.

For i = 1, ..., 4, let logm
(S,i)
A and logm

(S,i)
B denote respectively

{
(α2i−1 − 1)µ

(
Gτ2i−1,α2i−1

J2−α2i−1
K2
−ρ

)
− (α2i − 1)µ

(
Gτ2i,α2i

J2−α2i
K2
−ρ

)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)

}
,

{
µ
(
Gτ2i−1,α2i−1

J1−α2i−1
L(−ρ,−β)

)
− µ

(
Gτ2i,α2i

J1−α2i
L(−ρ,−β)

)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)

}
,

and for u ∈ [0, 1],

v(S,i)(u) =
Gτ2i−1,α2i−1

(u)J1−α2i−1
(u) −Gτ2i,α2i

(u)J1−α2i
(u)

νρ(τ2i, α2i) − νρ(τ2i−1, α2i−1)
.

Let us also consider m
(S)
A =

(
m

(S,i)
A , i= 1, ..., 4

)
and m

(S)
B =

(
m

(S,i)
B , i= 1, ..., 4

)
.

The next result is a direct consequence of Theorem 2.2 and Lemma 3.2, see

Section 6 for a short proof.

Corollary 4.2. Suppose (C2), (C3), (C6) and (C7) hold. There exist

two intervals J and J0 such that for all ρ ∈ J0 and for a sequence k satisfying (3.3),

k1/2A(n/k)
(
ρ̂(S)
n − ρ

) d
−→ N

(
λA
2γ

AB
(S)
1 (δ, ρ) + λBAB

(S)
2 (δ, ρ, β), γ2AV(S)(δ, ρ)

)

where

AB
(S)
1 (δ, ρ) =

ϕ
(S)
δ (ρ)

[
ϕ

(S)
δ

]′
(ρ)

log ψ̃δ
(
m

(S)
A

)
,

AB
(S)
2 (δ, ρ, β) =

ϕ
(S)
δ (ρ)

[
ϕ

(S)
δ

]′
(ρ)

log ψ̃δ
(
m

(S)
B

)
,

AV(S)(δ, ρ) =

(
ϕ

(S)
δ (ρ)

[
ϕ

(S)
δ

]′
(ρ)

)2

× ϑ
(
v(S,1)−v(S,2)−δ

(
v(S,3)−v(S,4)

)
, v(S,1)−v(S,2)−δ

(
v(S,3)−v(S,4)

))
.

Let us highlight that Proposition 5, Proposition 7 and Proposition 9 of [6]

are particular cases of Corollary 4.2 for three different value of δ (δ = 2, δ = 1

and δ = 0 respectively). The asymptotic normality of the estimators proposed

in [19] and in [14] can also be easily established with Corollary 4.2.

As an example of function Gτ,α, one can consider the function defined on

[0, 1] by:

Gτ,α(u) =
gτ−1(u)∫ 1

0 gτ−1(x)J−α(x)dx
for τ ≥ 1 and α > 0 ,
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where the function gτ is given by

g0(x) = 1 , gτ−1(x) =
τ

τ − 1
(1 − xτ−1), ∀ τ >1 .

Clearly, the function Gτ,α satisfies condition (C7) and, under (C6), the expres-

sion of ϕ
(S)
ρ is

ϕ
(S)
δ (ρ) =

ζ1
ζ2

(
ζ4
ζ3

)δ νρ(τ1, α1) − νρ(τ2, α2)

νρ(τ3, α3) − νρ(τ4, α4)

[
νρ(τ7, α7) − νρ(τ8, α8)

νρ(τ5, α5) − νρ(τ6, α6)

]δ

with

νρ(τ, α) =
1 − (1−ρ)−α + (τ −ρ)−α − τ−α

αρ(1 − τ−α−1)
if τ 6= 1 ,

and

νρ(1, α) =
1

αρ

(1 − ρ)α − 1

(1 − ρ)α
.

Even if Corollary 4.2 ensures the existence of intervals J0 and J , they are im-

possible to specify in the general case. In the following, we consider several sets

of parameters where these intervals can be easily exhibited and for which the

inverse function ϕ
(S)
δ admits an explicit form. To this end, it is assumed that

τ2 = τ3 = τ5 = τ6 = τ7 = τ8 = α7 = 1, α6 = 3, α8 = 2 and the following notation

is introduced:

ω∗(δ, ζ) =
ζ1
ζ2

(
3 ζ4
ζ3

)δ
.

In all the examples below, J0 = R− and thus the condition ρ ∈ J0 is always

satisfied. The first three examples correspond to existing estimators of the second

order parameter while the three last examples give rise to new estimators.

Example 4.4. Let δ = 0 (i.e. ζ1 = ζ2), α1 = α2 = α3 = α4 = 1, τ1 = 2 and

τ4 = 3. Denoting by Z
(S)
n,4 the rv Z

(S)
n , the estimator of ρ is given by:

ρ̂
(S)
n,4 =

6
(
Z

(S)
n,4 + 2

)

3Z
(S)
n,4 + 4

I
{
Z

(S)
n,4 ∈ (−2,−4/3)

}
.

Note that this estimator corresponds to the estimator ρ̂
[2]
n,k defined in [6], Sec-

tion 5.2.

Example 4.5. Let δ = 0, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = 2.

Denoting by Z
(S)
n,5 the rv Z

(S)
n , we find back the estimator ρ̂

[3]
n,k proposed in [6],

Section 5.2:

ρ̂
(S)
n,5 =

2
(
Z

(S)
n,5 − 2

)

2Z
(S)
n,5 − 1

I
{
Z

(S)
n,5 ∈ (1/2, 2)

}
.
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Example 4.6. Let α1 = ζ1 = 4, α3 = ζ2 = ζ4 = 2, ζ3 = 3 and α2 = α4 =

α5 = τ1 = τ4 = 1. These choices entail δ = 2. Denoting by Z
(S)
n,6 the rv Z

(S)
n , the

estimator of ρ given by:

ρ̂
(S)
n,6 =

6Z
(S)
n,6 − 4 +

(
3Z

(S)
n,6 − 2

)1/2

4Z
(S)
n,6 − 3

I
{
Z

(S)
n,6 ∈ (2/3, 3/4)

}
.

corresponds to the one proposed in [19], equation (12).

Example 4.7. Consider the case δ = 1 (i.e. ζ1 − ζ2 = ζ3 − ζ4), α1 = α2 =

α3 = α4 = 1, τ1 = α5 = 2 and τ4 = 3. Denoting by Z
(S)
n,7 the rv Z

(S)
n , a new esti-

mator of ρ is given by:

ρ̂
(S)
n,7 =

6Z
(S)
n,7 + 4ω∗(1, ζ)

3Z
(S)
n,7 + 4ω∗(1, ζ)

I
{
Z

(S)
n,7 ∈ ω∗(1, ζ) • (−4/3,−2/3)

}
.

Example 4.8. Let δ = 1, α1 = α3 = α4 = 1 and τ1 = τ4 = α2 = α5 = 2.

Denoting by Z
(S)
n,8 the rv Z

(S)
n , we obtain a new estimator of ρ:

ρ̂
(S)
n,8 =

6Z
(S)
n,8 − 4ω∗(1, ζ)

2Z
(S)
n,8 − ω∗(1, ζ)

I
{
Z

(S)
n,8 ∈ ω∗(1, ζ) • (1/2, 2/3)

}
.

Example 4.9. Let τ1 = τ4 = α1 = 1, α2 = α3 = α5 = 2 and α4 = 3. De-

noting by Z
(S)
n,9 the rv Z

(S)
n , the estimator of ρ is given by:

ρ̂
(S)
n,9 =

3
(
Z

(S)
n,9 /

(
3ω∗(δ, ζ)

))1/(δ+1)
− 1

(
Z

(S)
n,9 /

(
3ω∗(δ, ζ)

))1/(δ+1)
− 1

I
{
Z

(S)
n,9 ∈ ω∗(δ, ζ) • (3−δ, 3)

}
.

In the particular case where δ = 0, this estimator corresponds to the one proposed

in [13].

To summarize, we have illustrated how Theorem 2.2 may be used to prove

the asymptotic normality of estimators built on T
(R)
n or T

(S)
n : Corollary 4.1 and

Corollary 4.2 cover a large number of estimators proposed in the literature. Five

new estimators of ρ have been introduced: ρ̂
(R)
n,2 , ρ̂

(R)
n,3 , ρ̂

(S)
n,7 , ρ̂

(S)
n,8 and ρ̂

(S)
n,9 . All

of them are explicit and are asymptotically Gaussian. The comparison of their

finite sample properties is a huge task since they may depend on their parameters

(θi, τi, αi) as well as on the simulated distribution. We conclude this study by

proposing a method for selecting some “asymptotic optimal” parameters within

a family of estimators. The performances and the limits of this technique are

illustrated by comparing several estimators on simulated data.
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5. COMPARISON OF SOME ESTIMATORS

Some estimators of ρ are now compared on a specific Pareto-type model,

namely the Burr distribution with cdf F (x) = 1− (ζ/(ζ+ xη))λ, x> 0, ζ, λ, η > 0,

considered for instance in [2], equation (3). The associated extreme-value index

is γ = 1/(λη) and this model satisfies the third order condition (C2) with ρ =

β = −1/λ, A(x) = γxρ/(1 − xρ) and B(x) = ρxρ/(1 − xρ). We limit ourselves to

the case ζ = 1 and λ = 1/η so that γ = 1.

5.1. Estimators based on the random variable Rk(τ)

Let us first focus on the estimators of ρ based on the random variables

Rk(τi) considered in Section 4.1 with kernel functions Hτi(u) = τiu
τi−1, for i =

1, ..., 8. The values of the parameters τ1, ..., τ8, θ̃1, θ̃3 and θ̃4 are taken as in [17, 30]:

τ1 = 1.25, τ2 = τ3 = 1.75, τ4 = τ8 = 2, τ5 = 1.5, τ6 = τ7 = 1.75, θ̃1 = 0.01,

θ̃3 = 0.02 and θ̃4 = 0.04. According to the authors, these values yield good re-

sults for distributions satisfying the third order condition (C2) with β = ρ. For

these parameters, a simple expression of ϕ
(R)
δ is obtained, see (4.3), and we have

δ0 = 1.5 and δ1 = 1.8. Recall that θ̃2 = θ̃1 + δ(θ̃4 − θ̃3) for δ ≥ 0. In the following,

we propose to choose the remaining parameter δ using a method similar to the one

proposed in [15]. It consists in minimizing with respect to δ an upper bound on

the asymptotic mean-squared error. The method is described in Paragraph 5.1.1

and an example of application is presented in Paragraph 5.1.2.

5.1.1. Controlling the asymptotic mean-squared error

As in [17], we assume that ρ = β. Following Corollary 4.1, the asymp-

totic bias components of ρ̂
(R)
n are respectively proportional to AB

(R)
1 (δ, ρ) and

AB
(R)
2 (δ, ρ, ρ) while its asymptotic variance is proportional to AV(R)(δ, ρ). The

asymptotic mean-squared error AMSE(δ, γ, ρ) of ρ̂
(R)
n can be defined as

(5.1)
1

kA2(n/k)

((
λA
2γ

AB
(R)
1 (δ, ρ) − λB AB

(R)
2 (δ, ρ, ρ)

)2
+ γ2AV(R)(δ, ρ)

)
.

One way to choose the parameter δ could be to minimize the above asymptotic

mean-squared error. In practice, the parameters γ, ρ as well as the functions

A and B are unknown and thus the asymptotic mean-squared error cannot

be evaluated. To overcome this problem, it is possible to introduce an upper

bound on AMSE(δ, γ, ρ). Assuming that δ ∈ [0, δ0)∪ (δ1,∞) and ρ ∈ [ρmin, ρmax],
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it is easy to check that |AB
(R)
1 (δ, ρ)| ≥ |AB

(R)
1 (δ1, ρmax)|, |AB

(R)
2 (δ, ρ, ρ)| ≥

|AB
(R)
2 (δ0, ρmin, ρmin)|. Besides, numerically, one can observe that AV(R)(δ, ρ) ≥

AV(R)(1.32,−0.46). We thus have:

AMSE(δ, γ, ρ) ≤
Cπ(δ, ρ)

kA2(n/k)
,

with π(δ, ρ) = (AB
(R)
1 (δ, ρ)AB

(R)
2 (δ, ρ, ρ))2 AV(R)(δ, ρ) and where the constant C

does not depend on δ and ρ. We thus consider for ρ < 0 the parameter δ min-

imizing the function π(δ, ρ). For instance, when ρ is in the neighborhood of 0,

one can show that the optimal value is δ = δ0 = 1.5.

5.1.2. Illustration on the Burr distribution

Three estimators are compared:

• the estimator ρ̂
(R)
n,1 proposed in [17], and which corresponds to the case

δ = 1, see Example 4.1,

• the new explicit estimator ρ̂
(R)
n,2 introduced in Example 4.2 which corre-

sponds to the case δ = 0,

• the new implicit estimator defined by ρ̂
(R)
n,0 := ρ̂

(R)
n with δ = δ0 = 1.5, see

equation (4.2).

First, the estimators are compared on the basis of their asymptotic mean-

squared errors. Taking λA = k1/2A2(n/k) and λB = ρλA/γ, the asymptotic mean-

squared errors are plotted on the left panel of Figure 1 as a function of k ∈

{1500, ..., 4999} with n = 5000 and for ρ ∈ {−1,−0.25}. It appears that ρ̂
(R)
n,0

yields the best results for ρ = −1. This is in accordance with the results from

the previous paragraph: δ = 1.5 is the “optimal” when ρ is close to 0. As a pre-

liminary conclusion, the criterion π(·) seems to be well-adapted for tuning the

estimator parameters. At the opposite, when ρ = −0.25, the best estimator from

the asymptotic mean-squared error point of view is ρ̂
(R)
n,2 .

Second, the estimators are compared on their finite sample size perfor-

mances. For each estimator, and for each value of k ∈ {1500, ..., 4999}, the

empirical mean-squared error is computed on 500 replications of the sample of

size n = 5000. The results are displayed on the right panel of Figure 1. The

conclusions are qualitatively the same: ρ̂
(R)
n,0 yields the best results in the case

ρ ≥ −1 where as ρ̂
(R)
n,2 yields the best results in the case ρ < −1. Let us note that,

consequently, ρ̂
(R)
n,1 is never the best estimator in the situation considered here.

In practice, the case ρ ≥ −1 is the more interesting one, since it corresponds to

a strong bias. For this reason, it seems to us that ρ̂
(R)
n,0 should be preferred.
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Figure 1: Asymptotic mean-squared errors (left) and empirical mean-

squared errors (right) of ρ̂
(R)
n,0 , ρ̂

(R)
n,1 and ρ̂

(R)
n,2 as a function of k

for a Burr distribution.

5.2. Estimators based on the random variable Sk(τ, α)

Let us now consider the estimators of ρ based on the random variables

Sk(τi, αi) for i = 1, ..., 8 considered in Section 4.2 in the case where (τ1, α1) =

(τ7, α7), (τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5) and (τ4, α4) = (τ6, α6). In Para-

graph 5.2.1, we show that the asymptotic mean-squared error is independent

of δ. In contrast, Paragraph 5.2.2 illustrates the finite sample behavior of the

estimators when δ varies.
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5.2.1. Comparison in terms of asymptotic mean-squared error

From Corollary 4.2, the asymptotic bias and variance components of ρ̂
(S)
n

are respectively proportional to

AB
(S)
1 (δ, ρ) =

g(S)(ρ)
(
g(S)

)′
(ρ)

(
logm

(S,1)
A − logm

(S,2)
A

)
,

AB
(S)
2 (δ, ρ) =

g(S)(ρ)
(
g(S)

)′
(ρ)

(
logm

(S,1)
B − logm

(S,2)
B

)
,

AV(S)(δ, ρ) =

(
g(S)(ρ)
(
g(S)

)′
(ρ)

)2

ϑ
(
v(S,1) − v(S,2), v(S,1) − v(S,2)

)
,

where

g(S)(ρ) =
ζ1
ζ2

µ(Gτ1,α1
J1−α1

K−ρ) − µ(Gτ2,α2
J1−α2

K−ρ)

µ(Gτ3,α3
J1−α3

K−ρ) − µ(Gτ4,α4
J1−α4

K−ρ)
.

It thus appears that the asymptotic mean-squared error (defined similarly to (5.1))

does not depend on δ. From the asymptotic point of view, all the estima-

tors ρ̂
(S)
n such that (τ1, α1) = (τ7, α7), (τ2, α2) = (τ8, α8), (τ3, α3) = (τ5, α5) and

(τ4, α4) = (τ6, α6) are thus equivalent.

5.2.2. Comparison on the simulated Burr distribution

For the sake of simplicity, we fix α1 = α7 = θ5 = θ7 = τ1 = ... = τ8 = 1,

α2 = α3 = α5 = α8 = 2, α4 = α6 = 3, θ3 = θ8 = 1/2, θ4 = 1/3, θ6 = 2/3, θ1 =

δ + 1 and θ2 = (δ + 1)/2 so that δ is the unique free parameter. The resulting

estimator is ρ̂
(S)
n,9 , it coincides with the one proposed in [13] when δ = 0. For each

value of k ∈ {500, ..., 4999}, the empirical mean-squared error associated to ρ̂
(S)
n,9

is computed on 500 replications of the sample of size n = 5000 for δ ∈ {0, 1, 2}

and for ρ ∈ {−0.25,−1}. The results are displayed on Figure 2. It appears that

δ = 0 yields the best results for both values of ρ: the empirical mean-squared

error is smaller than these associated to δ = 1 or δ = 2. This hierarchy cannot

be observed on the asymptotic mean-squared error.
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Figure 2: Empirical mean-squared errors of ρ̂
(S)
n,9 as a function of k for a

Burr distribution.

5.3. Tentative conclusion

The families of estimators of the second order parameter usually depend on

a large set, say Θ, of parameters (12 parameters for estimators based on the ran-

dom variables Rk(τ) and 20 parameters for Sk(τ, α)). The methodology proposed

in Paragraph 5.1.1 permits to compute an upper bound π(·) on the asymptotic

mean-squared error AMSE associated to the estimators. This requires to show

that the quantities AB1, AB2 and AV are lower bounded when Θ varies in some

region RΘ. Thus, it may be possible, for some well chosen region RΘ, to find

an “optimal” set of parameters minimizing π(·). Unfortunately, the AMSE may

not depend on all the parameters in Θ (see Paragraph 5.2.1) whereas the finite

sample performances of the estimator does (see Paragraph 5.2.2). In such a case,

the definition of a criterion for selecting an optimal Θ is an open question.

6. PROOFS

Proof of Theorem2.1: Clearly, (Ψ1) and (Ψ2) entailZn=ψ(ω−1
n (Tn−χnI)).

Moreover, (T1) and (Ψ4) yield Zn
P

−→ ψ(f(ρ)) = ϕ(ρ). For all ε > 0, we have

P
(
|ρ̂n− ρ|> ε

)
= P

(
{|ρ̂n− ρ|> ε} ∩ {Zn ∈ J}

)
+ P

(
{|ρ̂n− ρ|> ε} ∩ {Zn /∈ J}

)

≤ P
(
{|ρ̂n− ρ|> ε} ∩ {Zn ∈ J}

)
+ P

(
{Zn /∈ J}

)

= P
(
{|ϕ−1(Zn)− ρ|> ε} ∩ {Zn ∈ J}

)
+ P

(
{Zn /∈ J}

)
.



296 El hadji Deme, Laurent Gardes and Stéphane Girard

From (Ψ3) and (Ψ4), ϕ−1 is also continuous in a neighborhood of ϕ(ρ). Since

Zn
P

−→ ϕ(ρ), it follows that P
(
{|ϕ−1(Zn)− ρ|> ε} ∩ {Zn ∈ J}

)
→ 0 as n→ ∞.

Besides, ρ ∈ J0 yields ϕ(ρ) ∈ J and thus

(6.1) P
(
{Zn /∈ J}

)
→ 0 as n→ ∞ .

As a conclusion, P
(
|ρ̂n − ρ| > ε

)
→ 0 as n→ ∞ and the result is proved.

Proof of Theorem 2.2: Recalling that Zn = ψ(ω−1
n (Tn − χnI)), a first

order Taylor expansion shows that there exists ε ∈ (0, 1) such that

vn
(
Zn − ϕ(ρ)

)
= t(vnξn) ∇ψ

(
f(ρ) + εξn

)
,

where we have defined ξn = ω−1
n (Tn−χnI)− f(ρ). Therefore, ξn

P
−→ 0 and (Ψ5)

entail that ∇ψ(f(ρ) + εξn)
P

−→ ∇ψ(f(ρ)). Thus, taking account of (T2), we

obtain that

(6.2) vn
(
Zn − ϕ(ρ)

) d
−→ N

(
mψ(ρ), γ2σ2

ψ(ρ)
)
.

Now, Pn(x) := P
(
{vn(ρ̂n − ρ) ≤ x}

)
can be rewritten as

Pn(x) = P
(
{vn(ρ̂n− ρ)≤ x} ∩ {Zn ∈ J}

)
+ P

(
{vn(ρ̂n−ρ)≤ x} ∩ {Zn /∈ J}

)

= P
(
{vn(ϕ

−1(Zn)−ρ)≤ x} ∩ {Zn ∈ J}
)

+ P
(
{vn(ρ̂n−ρ)≤ x} ∩ {Zn /∈ J}

)

=: P1,n(x) + P2,n(x) .

Let us first note that

(6.3) 0 ≤ P2,n(x) ≤ P
(
{Zn /∈ J}

)
→ 0 as n→ ∞ ,

in view of (6.1) in the proof of Theorem 2.1. Focusing on P1,n(x), since ϕ is

continuously differentiable in a neighborhood of ρ and ϕ′(ρ) 6= 0, it follows that

ϕ is monotone in a neighborhood of ρ. Let us consider the case where ϕ is

decreasing, the case ϕ increasing being similar. Writing J = (a, b), it follows that

P1,n(x) = P
({
a ∨ ϕ(ρ+ x/vn) ≤ Zn ≤ b

})

= P
({
vn
(
a ∨ ϕ(ρ+ x/vn) − ϕ(ρ)

)
< vn

(
Zn − ϕ(ρ)

)
≤ vn

(
b− ϕ(ρ)

)})
.

Introducing Gn the cumulative distribution function of vn(Zn − ϕ(ρ)), we have

1 − P1,n(x) = 1 −Gn

(
vn
(
b− ϕ(ρ)

))
+Gn

(
vn
(
a ∨ ϕ(ρ+ x/vn) − ϕ(ρ)

))

= 1 −Gn

(
vn
(
b− ϕ(ρ)

))

+ Gn

(
vn
(
a− ϕ(ρ)

))
∨Gn

(
vn
(
ϕ(ρ+ x/vn) − ϕ(ρ)

))

=: P1,1,n + P1,2,n ∨ P1,3,n(x) .
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Let G denote the cumulative distribution function of the N
(
mψ(ρ), γ2σ2

ψ(ρ)
)

distribution. It is straightforward that

P1,1,n ≤ 1 −G
(
vn
(
b− ϕ(ρ)

))
+ sup

t∈R

∣∣Gn(t) −G(t)
∣∣ .

Since ρ ∈ J0, we have ϕ(ρ) ∈ J = (a, b). In particular, b > ϕ(ρ) yields 1−G
(
vn(b−

ϕ(ρ))
)
→ 0 as n→ ∞. Besides, (6.2) shows that Gn(t) → G(t) for all t ∈ R and

thus Gn(t) → G(t) uniformly, see for instance [11], p. 552. As a preliminary con-

clusion P1,1,n→ 0 and, similarly, P1,2,n→ 0 as n→ ∞. Finally,
∣∣∣P1,3,n(x) −G

(
xϕ′(ρ)

)∣∣∣ ≤
∣∣∣G
(
vn
(
ϕ(ρ+ x/vn) − ϕ(ρ)

))
−G

(
xϕ′(ρ)

)∣∣∣

+ sup
t∈R

∣∣Gn(t) −G(t)
∣∣

and, in view of (Ψ5), vn
(
ϕ(ρ+ x/vn) − ϕ(ρ)

)
→ xϕ′(ρ) as n→ ∞, which leads

to P1,3,n(x) → G(xϕ′(ρ)) as n→ ∞. We thus have shown that

(6.4) P1,n(x) → 1 −G
(
xϕ′(ρ)

)
= G(x|ϕ′(ρ)|) as n→ ∞ .

Collecting (6.3) and (6.4) yields

P
({
vn(ρ̂n − ρ) ≤ x

})
→ G

(
x |ϕ′(ρ)|

)
as n→ ∞

and concludes the proof.

Proof of Corollary 4.1: Clearly, ψδ given in (4.1) satisfies (Ψ1) and (Ψ2).

Moreover, Lemma 3.1 shows that (T2) holds. To apply Theorem 2.2 it only

remains to prove that (Ψ3) and (Ψ5) are satisfied. First remark that under (C4)

and (C5), ϕ
(R)
δ (ρ) is well defined for all ρ ≤ 0 since f (R)(ρ) ∈ D. Furthermore,

from Lemma 3.1, we have for i = 1, ..., 4,

T
(R)
n,2i−1− T

(R)
n,2i =

θ̃iA(Yn−k,n)

γ

(
νρ(τ2i−1) − νρ(τ2i)

) (
1 + oP (1)

)
,

as n goes to infinity. Hence, conditions (C4) and (C5) imply that T
(R)
n ∈ D.

Finally, using Lerch’s Theorem (see [5], page 345), condition (C4) implies that

there exists ρ0 < 0 such that the first derivative of ϕ
(R)
δ is non zero at ρ0. Thus,

the inverse function theorem insures the existence of intervals J0 and J for

which the function ϕ
(R)
δ is a continuously differentiable bijection from J0 to J .

In conclusion, conditions (Ψ3) and (Ψ5) are satisfied and Theorem 2.2 applies.

Proof of Corollary 4.2: The proof follows the same lines as the one of

Corollary 4.1. It consists in remarking that, under (C6) and (C7), one has

f (S)(ρ) ∈ D and T
(S)
n ∈ D since,

T
(S)
n,2i−1− T

(S)
n,2i =

ζiA(n/k)

γ

(
νρ(τ2i, α2i

)
− νρ

(
τ2i−1, α2i−1)

) (
1 + oP (1)

)
,

in view of Lemma 3.2.



298 El hadji Deme, Laurent Gardes and Stéphane Girard
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