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1. INTRODUCTION

Suppose that the joint distribution of two n-dimensional random vectors X

and Y follows a 2n dimensional multivariate normal vector with positive definite

covariance matrix, i.e.

(1.1)

(

X

Y

)

∼ N2n

(

µ =

(

µx

µy

)

,
∑

=

(
∑

xx

∑

xy
∑T

xy

∑

yy

)

)

where µx, µy are respectively the mean vectors and
∑

xx,
∑

yy are the positive

definite variance matrices of X and Y, while
∑

xy is their covariance matrix. Let

X(n) = (X1:n, X2:n, ..., Xn:n)T be the vector of order statistics obtained from X

and Y(n) = (Y1:n, Y2:n, ..., Yn:n)T be the vector of order statistics obtained from

Y. Further, let Y[n] = (Y[1:n], Y[2:n], ..., Y[n:n])
T be the vector of Y -variates paired

with the order statistics of X. The elements of Y[n] are called the concomitants

of the order statistics of X.

Nagaraja (1982) has obtained the distribution of a linear combination of

order statistics from a bivariate normal random vector where the variables are

exchangeable. Loperfido (2008a) has extended the results of Nagaraja (1982) to

elliptical distributions. Arellano-Valle and Genton (2007) have expressed the ex-

act distribution of linear combinations of order statistics from dependent random

variables. Sheikhi and Jamalizadeh (2011) have showed that for arbitrary vectors

a and b, the distribution of (X, aTY(2), bTY(2))
T is a singular skew-normal and

carried out a regression analysis. Yang (1981) has studied the linear combina-

tion of concomitants of order statistics. Tsukibayashi (1998) has obtained the

joint distribution of (Yi:n, Y[i:n]), while He and Nagaraja (2009) have obtained the

joint distribution of (Yi:n, Y[j:n]) for all i, j = 1, 2, ..., n. Goel and Hall (1994)

have discussed the difference between concomitants and order statistics using the

sum
∑n

i=1 h(Yi:n − Y[i:n]) for some smooth function h. Recently much attention

has been focused on the connection between order statistics and skew-normal

distributions (see e.g. Loperfido 2008a and 2008b and Sheikhi and Jamalizadeh

2011). In this article we shall obtain the joint distribution of aTY(n) and bTY[n],

where a = (a1, a2, ..., an)T and b = (b1, b2, ..., bn)T are arbitrary vectors in R
n.

Since we do not assume independence, our results are more general than those of

He and Nagaraja (2009). On the other hand, He and Nagaraja (2009) have not

assumed normality.

The concept of the skew-normal distribution was proposed independently

by Roberts (1966), Ainger et al. (1977), Andel et al. (1984) and Azzalini (1985).

The univariate random variable Y has a skew-normal distribution if its distribu-

tion can be written as

(1.2) fY (y) = 2ϕ
(

y; µ, σ2
)

Φ

(

λ
y − µ

σ

)

y ∈ R
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where ϕ
(

.; µ, σ2
)

is the normal density with mean µ and variance σ2 and Φ(.)

denotes the standard normal distribution function.

Following Arellano-Valle and Azzalini (2006), a d-dimensional random vec-

tor Y is said to have a unified multivariate skew-normal distribution (Y ∼

SUNd,m (ξ, δ, Ω, Γ, Λ)), if it has a density function of the form

(1.3)

fY (y) = ϕd (y; ξ, Ω)
Φm

(

δ + ΛTΩ−1 (y − ξ) ; Γ − ΛTΩ−1Λ
)

Φm (δ; Γ)
y ∈ R

d

where ϕd(., ξ, Ω) is the density function of a multivariate normal and Φm(.; Σ) is

the multivariate normal cumulative function with the covariance matrix Σ.

If Σ∗ =

(

Γ ΛT

Λ Ω

)

is a singular matrix we say that the distribution of X is

singular unified skew-normal and write SSUNd,m(ξ, δ,Ω, Γ, Λ). For more de-

tails see Arellano-Valle and Azzalini (2006) and Sheikhi and Jamalizadeh (2011).

In Section 2, we show that for two vectors a and b, the joint distribution of

aTY(n) and bTY[n] belongs to the unified multivariate skew-normal family. We

also discuss special cases of these distributions under the setting of independent

normal random variables. Finally, in section 3 we present a numerical application

of our results.

2. MAIN RESULTS

Define S(X) as the class of all permutation of components of the ran-

dom vector X, i.e. S(X) = {X(i) = PiX; i = 1, 2, ..., n!}, where Pi is an n × n

permutation matrix. Also, suppose ∆ is the difference matrix of dimension

(n − 1) × n such that the ith row of ∆ is eT
n, i+1− eT

n, i, i = 1, ..., n − 1, where

e1, e2, ..., en are n-dimensional unit basis vectors. Then ∆X = (X2 − X1, X3 −

X2, ..., Xn − Xn−1)
T . (See e.g. Crocetta and Loperfido 2005).

Further, let X(i) and Y(i) be the ith permutation of the random vectors X

and Y respectively. We write Gij(t, ξ,
∑

) = P
(

∆X(i) ≥ 0, ∆Y(j) ≥ 0
)

.

Theorem 2.1. Suppose the matrix





∆

aT

bT



 is of full rank. Then under

the assumption of model (1.1) the cdf of the random vector
(

aTY(n), bTY[n]

)T

is the mixture

FaT Y(n), bT Y[n]
( y1, y2) =

n!
∑

i=1

n!
∑

j=1

FSUN ( y1, y2 ; ξij , δij , Γij , Ωij , Λij)Gij(t, ξ,
∑

)
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where FSUN (. ; ξij , δij , Γij , Ωij , Λij) is the cdf of unified multivariate skew-

normal with

ξij=

(

aT µ
(i)
y

bT µ
(i)
y

)

, δij =

(

∆µ
(i)
x

∆µ
(j)
y

)

, Γij =

(

∆
∑(ii)

xx ∆T ∆
∑(ij)

xy ∆T

∆
∑(jj)

yy ∆T

)

,

Ωij =

(

aT
∑(ii)

yy a aT
∑(ij)

yy b

bT
∑(jj)

yy b

)

and Λij =

(

∆
∑(ii)

xy a ∆
∑(ij)

xy b

∆
∑(ij)

yy a ∆
∑(jj)

yy b

)T

where µ
(i)
x and µ

(j)
y are respectively the mean vectors of the ith permutation

of the random vector X and the jth permutation of the random vector Y and
∑(ii)

xx = V ar(X(i)),
∑(jj)

yy = V ar(Y(j)) and
∑(ij)

xy = Cov(X(i), Y(j)).

Proof: We have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY(n) ≤ y1, bTY[n] ≤ y2

)

=
n!
∑

i=1

n!
∑

j=1

P
(

aTY(i) ≤ y1, bTY(j) ≤ y2|A
(ij)
)

P
(

A(ij)
)

where A(ij) = {∆X(i) ≥ 0, ∆Y(j) ≥ 0}. Since

(2.1)









∆X(i)

∆Y(j)

aTY(i)

bTY(j)









2n×1

=









∆ 0 0

0 ∆ 0

0 0 aT

0 bT 0









2n×3n





X(i)

Y(j)

Y(i)





3n×1

,

the full rank assumption implies nonsingularity of the matrix on the right hand

side of (2.1). Furthermore,









∆X(i)

∆Y(j)

aTY(i)

bTY(j)









∼ N2n





















∆µ
(i)
x

∆µ
(j)
y

aT µ
(i)
y

bT µ
(j)
y











,











∆
∑(ii)

xx ∆T ∆
∑(ij)

xy ∆T ∆
∑(ii)

xy a ∆
∑(ij)

xy b

∆
∑(jj)

yy ∆T ∆
∑(ij)

yy a ∆
∑(jj)

yy b

aT
∑(ii)

yy a aT
∑(ij)

yy b

bT
∑(jj)

yy b





















.

Now, similar to Sheikhi and Jamalizadeh (2011), we immediately conclude

that

(

aTY(i), bTY(j)
)T

|∆X(i)≥0, ∆Y(j)≥0 ∼SUN2, 2(n−1)(ξij , δij , Γij , Ωij , Λij) .

This proves the Theorem.
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Remark 2.1. If the rank of the matrix
(

∆, aT ,bT
)T

is at most n−1, the

joint distribution of
(

aTY(n), bTY[n]

)T
is a mixture of a unified skew-normals

and a singular unified skew-normals. In this section we assume that the matrix
(

∆, aT ,bT
)T

is of full rank. A special case will be investigated later in the paper.

Let (Xi, Yi), i = 1, 2, ..., n be a random sample of size n from a bivariate

normal N2

(

µx, µy, σ2
x, σ2

y , ρ
)

, then the model (1.1) reduces to the following:

(2.2)

(

X

Y

)

∼ N2n

(

µ =

(

µx1n

µy1n

)

,
∑

=

(∑

xx

∑

xy
∑

yy

))

where
∑

xx = σ2
xIn,

∑

yy = σ2
yIn and

∑

xy = ρσxσy1n1
T
n where ρ is the correla-

tion coefficient between X and Y.

The following corollary describes the joint distribution of a linear combi-

nation of concomitants of order statistics and a linear combination of their order

statistics under the independence assumption.

Corollary 2.1. Suppose the matrix
(

∆, aT , bT
)T

is of full rank. Then

under the assumption of model (2.2) the distribution of the random vector
(

aTY(n), bTY[n]

)T
is SUN2, 2(n−1) (ξ, 02n−2, Ω, Γ, Λ) where

ξ =

(

µxa
T1n

µyb
T1n

)

, Ω = σ2
y

(

aTa aTb

bTb

)

, Γ =

(

σ2
x∆∆T ρσxσy∆∆T

σ2
y∆∆T

)

,

Λ =

(

ρσxσy∆a ρσxσy∆b

σ2
y∆a σ2

y∆b

)

.

Proof: We have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY(n) ≤ y1, bTY[n] ≤ y2

)

=
n!
∑

i=1

n!
∑

j=1

P
(

aTY(i)≤ y1, b
TY(j)≤ y2|A

(ij)
)

P
(

A(ij)
)

.

Since P
(

∆X(i) ≥ 0,∆Y(j) ≥ 0
)

=
(

1
n!

)2
, i, j = 1, ..., n!, by independence

we have

FaT Y(n), bT Y[n]
(y1, y2) = P

(

aTY ≤ y1, bTY ≤ y2|∆X ≥ 0, ∆Y ≥ 0
)

.

Moreover,
(

∆X, ∆Y, aTY, bTY
)T

follows an 2n dimensional multivari-

ate normal distribution with µ =
(

0n−1, 0n−1, µya
T1n, µyb

T1n

)T
and

∑

=









σ2
x∆∆T ρσxσy∆∆T ρσxσy∆a ρσxσy∆b

σ2
y∆∆T σ2

y∆a σ2
y∆b

σ2
ya

Ta σ2
ya

Tb

σ2
yb

Tb









.
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So, as in Theorem 2.1 the proof is completed.

We easily find that Γ = [γij ], where

γij =







2σ2
x |i − j| = 0

−σ2
x |i − j| = 1

0 |i − j| = 2, ..., 2(n − 1)

and Λ =

[

Λ1 0

0 Λ2

]

with Λ1 =
(

λ11, ..., λ(n−1)1

)T
where λk1 = σ2

x {ak+1 − ak} ,

k = 1, ..., n − 1 and Λ2 =
(

λ12, ..., λ(n−1)2

)T
where λk2 = σ2

y {bk+1 − bk},

k = 1, ..., n − 1.

Let the difference matrix ∆1 of dimension n − 1 × n be such that its first

i − 1 rows are eT
n, 1− eT

n, k, k = 2, 3, ..., i − 1 and the last n − i rows are eT
n, k−

eT
n, 1, k = i, ... n− 1. Also, let the matrix ∆2 of dimension n− 1×n be such that

its first j − 1 rows are eT
n, 1− eT

n, k, k = 2, 3, ..., j − 1 and the last n − j rows are

eT
n, j− eT

n, 1, k = j, ... n − 1 and 1n,i be a n − 1 dimensional vector with the first

i elements equal to 1 and the rest −1. Further, let Xi be a permutation of the

random vector X, such that its ith element is located in the first place.

Theorem 2.2. For a random sample of size n from a bivariate normal

random vector (X, Y ), the joint distribution of Yi:n, Y[j:n] is

FYi:n, Y[j:n]
( y1, y2) = k1FSUN (min(y1, y2) ; µy, 02(n−1), σ2

y , Γ, Λ)

+ k2FSSUN ( y1, y2 ; µy12 ,02(n−1), σ2
yI2, Γ, Λ)

where FSUN (. ; µy, 02(n−1), σ2
y , Γ, Λ) is the cdf of a non-singular unified multi-

variate skew-normal distribution SUN1, 2n−2

(

µy, 0, σ2
y , Γ, Λ

)

with

Γ =

(

σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1

σ2
y∆1∆

T
1

)

, Λ =

(

ρσxσy1n,i

σ2
y1n,i

)

and FSSUN (. ; µy12, 02(n−1), σ2
yI2, Γ, Λ) is the cdf of a singular unified multi-

variate skew-normal distribution SSUN2, 2n−2(µy12 , 02(n−1), σ2
yI2, Γ, Λ) where

I2 is an identity matrix of dimension 2 and

Γ =

(

σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1

σ2
y∆1∆

T
1

)

, Λ =

(

−ρσxσyJn−1 ρσxσy1n,j

σ2
y1n,i −σ2

yJn−1

)

,

k1 = n!(1
4 + 1

2π
sin−1(−2ρ))n and k2 = n(n − 1)((n − 1)!)2(1

4 + 1
2π

sin−1(−2ρ))n.

Proof: Let Bij denote the event that Yi is the ith order statistic among

{Y1, Y2, ..., Yn} and Xj is the jth order statistic among {X1, X2, ..., Xn}. So,
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Bij = {∆1Yi> 0, ∆2Xj > 0} and we have

FYi:n, Y[j:n]
(u, v)

= P
(

Yi:n ≤ u, Y[j:n] ≤ v
)

=
n
∑

i=1

n
∑

j=1

P (Yi ≤ u, Yj ≤ v|Bij)P (Bij)

=
n
∑

i=1

P (Yi ≤ u, Yi ≤ v|Bii)P (Bii) +
n
∑

i=1

n
∑

j=1

i6=j

P (Yi ≤ u, Yj ≤ v|Bij)P (Bij)

= n!P (Y1 ≤ min(u, v)|B11) P (B11)

+(n2 − n)((n − 1)!)2P (Y1 ≤ u, Y2 ≤ v|B12)P (B12) .

The last equality holds by the independence assumption. Since the distribution

of Y1|B11 is identical to the distribution of Y1|{∆1Y1> 0, ∆1X1 > 0}, we have





∆1X1

∆1Y1

Y1



 ∼ N2n−1









0n−1

0n−1

µy



 ,





σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1 ρσxσy1n,i

σ2
y∆1∆

T
1 σ2

y1n,i

σ2
y







 .

So, Y1|B11 ∼ SUN1, 2n−2

(

µy, 02(n−1), σ2
y , Γ, Λ

)

where

Γ =

(

σ2
x∆1∆

T
1 ρσxσy∆1∆

T
1

σ2
y∆1∆

T
1

)

and Λ =

(

ρσxσy1n,i

σ2
y1n,i

)

.

Also, the conditional distribution of Y1 and Y2 given B12 is the same as

the distribution of (Y1, Y2)
T |{∆2X2> 0, ∆1Y1 > 0}. Moreover, (∆2X2, ∆1Y1,

Y1, Y2)
T follows a 2n multivariate singular normal distribution with rank 2n− 1,

µ =
(

0n−1, 0n−1, µy12

)T
and

∑

=









σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1 −ρσxσyJn−1 ρσxσy1n,j

σ2
y∆1∆

T
1 σ2

y1n,i −σ2
yJn−1

σ2
y 0

σ2
y









where Jn−1 = (1, 0n−2)
T .

We note that the matrix (∆2X2, ∆1Y1)
T is of full rank but (∆2X2, ∆1Y1,

Y1, Y2)
T is not. Hence, according to the case (3) of Arellano-Valle and Azzalini

(2006) we conclude that (Y1, Y2)
T |{∆2X2, ∆1Y1 > 0} ∼ SSUN2,2n−2(µy12,

02(n−1), σ2
yI2, Γ, Λ) where

Γ =

(

σ2
x∆2∆

T
2 ρσxσy∆2∆

T
1

σ2
y∆1∆

T
1

)

and Λ =

(

−ρσxσyJn−1 ρσxσy1n,j

σ2
y1n,i −σ2

yJn−1

)

.
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On the other hand, using the orthant probabilities (e.g. Kotz et al. 2000)

we easily obtain

P (B11) = P (X2 > X1, X3 > X1, ..., X3 > X1, Y2 > Y1, Y3 > Y1, ..., Yn > Y1)

= (P (X2 > X1, Y2 > Y1))
n

= (
1

4
+

1

2π
sin−1(−2ρ))n .

So, k1 = n!(1
4 + 1

2π
sin−1(−2ρ))n. Similarly, k2 = n(n − 1)((n − 1)!)2(1

4 +
1
2π

sin−1(−2ρ))n.

This completes the proof.

Remark 2.2. As a special case, we assume n = 2, (X, Y )T ∼ BN(0, 0,

1, 1, ρ), i = 1 and j = 2. Then the joint pdf of Y1:2 and Y[2:2] is obtained as

FY1:2, Y[2:2]
( y1, y2) = k1FSUN (min(y1, y2) ) + k2FSSUN ( y1, y2 )

where k1 and k2 are as in Theorem 2.2 with n = 2 and FSUN (.) and FSSUN (., .)

are the cdfs of

ϕ((min(y1, y2))
Φ2

(

(ρ, −1)T min(y1, y2); M1

)

Φ2

(

(0, 0)T ; M2

)

and

ϕ(y1)ϕ( y2)
Φ2

(

(ρ, 1)T (y1 − y2); M3

)

Φ2

(

(0, 0)T ; M4

)

respectively where

M1 =

(

2 − ρ2 ρ
ρ 1

)

, M2 = 2

(

1 −ρ
−ρ 1

)

,

M3 =

(

2 − ρ2 0
0 0

)

and M4 = 2

(

1 ρ
ρ 1

)

,

and their joint pdf is

(2.3)

fY1:2, Y[2:2]
( y1, y2) =











ϕ(y)
Φ2((ρ, −1)T y;M1)

Φ2((0,0)T ; M2)
if y1 = y2 = y

ϕ(y1)ϕ(y2)
Φ2(ρ(y2−y1), y2−y1; M3)

Φ2((0,0)T ; M4)
if y1 < y2 .
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Remark 2.3. When X and Y are independent, the joint density (2.3)

becomes

fY1:2, Y[2:2]
( y1, y2) =

{

2ϕ(y)(1 − Φ(y)) if y1 = y2 = y
2ϕ(y1)ϕ(y2) if y1 < y2

which is the same as the joint distribution (8) of He and Nagaraja (2009) under

these assumptions (see e.g. He, 2007, p. 35).

Furthermore, He and Nagaraja (2009) discussed some relations between Yi:n

and Y[j:n] in a bivariate setting. In particular, they showed that Corr(Yi:n, Y[j:n])=

Corr(Yn−i+1:n, Y[n−j+1:n]). The following remark shows that, in addition, the

joint distribution of Yi:n, Y[j:n] and Yn−i+1:n, Y[n−j+1:n] belong to a same family

and differ only in one parameter. The relation (24) of He and Nagaraja (2009) is

a direct consequence.

Remark 2.4. Let B́ij denote the event that Yi is the (n − i + 1)th order

statistic among {Y1, Y2, ..., Yn} and Xj is the (n− j + 1)th order statistic among

{X1, X2, ..., Xn}. Then B́ij = {∆1Yi< 0, ∆2Xj < 0} = {−∆1Yi> 0, −∆2Xj

> 0}. Hence, the joint distribution of Yn−i+1:n, Y[n−j+1:n] is

FYn−i+1:n, Y[n−j+1:n]
( y1, y2) = k1FSUN (min(y1, y2) ; µy, 0, σ2

y , Γ, Λ́ )

+k2FSSUN ( y1, y2 ; µy12 ,0, σ2
yI2, Γ, Λ́ )

where Λ́ = −Λ and the parameters as in Theorem 2.2.

3. NUMERICAL EXAMPLE

Loperfido (2008b), with the assumption of exchangeability, have estimated

the distribution of extreme values of vision of left eye (Y1) and vision of right eye

(Y2) and the conditional distribution of age (X), given these extreme values as a

skew-normal family. Johnson and Wichern (2002, p.24) provide data consisting

of mineral content measurements of three bones (radius, humerus, ulna) in two

arms (dominant and non dominant) for each of 25 old women. We consider the

following variables:

X1 : Dominant radius

X2 : Non dominant radius

Y1 : Dominant ulna

Y2 : Non dominant ulna
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The sample data is presented in Table 1. We apply model (1.1) to this data

and obtain the unbiased estimates of the parameters of these models as

ˆ
µx =

[

0.8438
0.8191

]

,
ˆ
µy =

[

0.7044
0.6938

]

, Σ̂2
x =

[

0.0130 0.0103
0.0103 0.0114

]

,

Σ̂2
y =

[

0.0115 0.0088
0.0088 0.0105

]

and Σ̂xy =

[

0.0091 0.0085
0.0085 0.0105

]

.

Table 1: Data of measurements of two bones in 25 old women.

Dominant radius Non dominant radius Dominant ulna Non dominant ulna

1.103 1.052 0.873 0.872

0.842 0.859 0.590 0.744

0.925 0.873 0.767 0.713

0.857 0.744 0.706 0.674

0.795 0.809 0.549 0.654

0.787 0.799 0.782 0.571

0.933 0.880 0.737 0.803

0.799 0.851 0.618 0.682

0.945 0.876 0.853 0.777

0.921 0.906 0.823 0.765

0.792 0.825 0.686 0.668

0.815 0.751 0.678 0.546

0.755 0.724 0.662 0.595

0.880 0.866 0.810 0.819

0.900 0.838 0.723 0.677

0.764 0.757 0.586 0.541

0.733 0.748 0.672 0.752

0.932 0.898 0.836 0.805

0.856 0.786 0.578 0.610

0.890 0.950 0.758 0.718

0.688 0.532 0.533 0.482

0.940 0.850 0.757 0.731

0.493 0.616 0.546 0.615

0.835 0.752 0.618 0.664

0.915 0.936 0.869 0.868

Yang (1981) has considered general linear functions of the form

L =
1

n

n
∑

i=1

J(
i

n
)Y[i:n]

where J is a smooth function. He has established that L is asymptotically normal

and may be used to construct consistent estimator of various conditional quanti-

ties such as E(Y |X = x), P (Y ∈ A|X = x) and V ar(Y |X = x). We assume that

J is a quadratic function and estimate the joint distribution of L and the sample

midrange of Y, i.e. T = 1
2

∑2
i=1 Yi:n . The joint distribution of T and L is as in

Theorem 2.1 with ∆ =
(

−1 1
)

, a =
(

1/2 1/2
)T

and b =
(

1/8 1/2
)T

.
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In particular,

ξ11=ξ21 =

(

0.6991
0.4345

)

and ξ12=ξ22 =

(

0.6991
0.4389

)

.

Also, if

Mn = n−1
n
∑

i=1

h(n)−1K(
(i/n) − Fn(x)

h(n)
)Y[i:n]

where Fn(x) is the proportion of the Xi less than or equal to x, K(x) is some

pdf on real line and h(n) → 0 as n → ∞, then Mn is a mean square consistent

estimator of the regression function E(Y |X = x). We assume that K(x) is the

pdf of the normal distribution with mean 0.8314 and variance 0.0108, i.e. K(x) is

the pdf of the radius. Moreover, we set h(n) = 1
n−1 . At x = 0.8, we obtain M2 =

0.012Y[1:2] + 0.515Y[2:2]. Again, the joint distribution of T and M2 is as in Theo-

rem 2.1 with ∆ =
(

−1 1
)

, a =
(

1/2 1/2
)T

and b =
(

0.012 0.515
)T

.

4. CONCLUSION

In this paper we model the joint distribution of a linear combination of con-

comitants of order statistics and linear combinations of their order statistics as

a unified skew-normal family assuming a multivariate normal distribution. How-

ever, there are many interesting further work which may be carried out. Viana

and Lee (2006) have studied the covariance structure of two random vectors X(n)

and Y[n] in the presence of a random variable Z. We may generalize their work

by extending our results in the presence of one or more covariates. The results

of this paper may be extended to elliptical distributions or using exchangeability

assumption. Other results such as the regression analysis of concomitants using

their order statistics are also of interest.
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