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Abstract:

• In the quality control of a production process (of goods or services), from a statistical
point of view, the focus is either on the process itself with application of Statistical
Process Control or on its frontiers, with application of Acceptance Sampling (AS) and
Experimental Design. AS is used to inspect either the process output (final product)
or the process input (raw material). The purpose of the design of a sampling plan is
to determine a course of action that, if applied to a series of lots of a given quality,
and based on sampling information, leads to a specified risk of accepting/rejecting
them. Thus AS yields quality assurance. The classic AS by variables is based on the
hypothesis that the observed quality characteristics follow the Gaussian distribution
(treated in classical standards). This is sometimes an abusive assumption that leads
to wrong decisions. AS for non-Gaussian variables, mainly for variables with asym-
metric and/or heavy tailed distributions, is a relevant topic. When we have a known
non-Gaussian distribution we can build specific AS plans associated with that distri-
bution. Alternatively, we can use the Gaussian classical plans with robust estimators
of location and scale — for example, the total median and the sample median as
location estimates, and the full range, the sample range and the interquartile range,
as scale estimates. In this work we will address the problem of determining AS plans
by variables for Extreme Value distributions (Weibull and Fréchet) with known shape
parameter. Classical plans, specific plans and plans using the robust estimates for
location are determined and compared.
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1. INTRODUCTION

Acceptance Sampling (AS) is used to inspect either the output process —

final product — or the input — initial product. On a lot-by-lot basis, a random

sample is taken from the lot and based on the information given by the sample a

decision is taken: to accept or to reject the lot. The purpose of AS is to determine

a course of action, not to estimate lot quality. It prescribes a procedure that, if

applied to a series of lots, will give a specified risk of accepting lots of given

quality. An AS plan indicates the rules for accepting or rejecting a lot that is

being inspected. Acceptance sampling is a compromise between no inspection

and 100% inspection. It is likely to be used under the following conditions:

• When 100% inspection is tiring the percentage of nonconforming items

passed may be higher than under a scientifically designed sampling plan.

• When the cost of inspection is high and the loss arising from the passing

of a nonconforming unit is not great. It is possible in some cases that

no inspection at all will be the cheapest plan.

• When inspection is destructive. In this case sampling must be employed.

There are two approaches to AS in the literature. The first approach is AS

by attributes, in which the product is specified as conforming or nonconforming

(defective) based on a certain criteria and the number of nonconforming units is

counted. The other approach is AS by variables, if the item inspection leads to

a continuous measurement. In comparison to sampling plans by attributes, sam-

pling plans by variables have the advantage of usually resulting in considerable

savings in sample size for comparable assurance. The main disadvantage of the

classical case of the acceptance sampling by variables is that it is based on the hy-

pothesis that the observed quality characteristic follows a Gaussian distribution.

References to this section are ([4]), ([12]), ([9]), ([13]).

In Acceptance Sampling there are two kinds of decisions based on the sam-

ple, to accept or to reject the lot, and two kinds of errors associated:

• Type I error: consists of incorrectly rejecting a lot that is really accept-

able. The probability of making a type I error is α, also called producer’s

risk.

• Type II error: consists of incorrectly accepting a lot that is really un-

acceptable. The probability of making a type II error is β, also called

consumer’s risk.

The producer wishes the acceptance of “good” lots with high probability (1 − α)

and the consumer wishes the acceptance of “bad” lots with small probability (β).
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In the determination of an AS plan the aim is to calculate the sample size, n, to

be taken from the lot and the acceptability constant, k, that satisfy the conditions

referred to as the producer’s risk and the consumer’s risk. There are two quality

values that we need to define ([14]):

• AQL — Acceptable Quality Level — the worst quality level that is still

considered acceptable. The AQL is a percent defective that is the base

line requirement for the quality of the producer’s product.

• LTPD — Lot Tolerance Percent Defective — the poorest quality in an

individual lot that should be accepted, the level of quality where it is

desirable to reject most lots. The LTPD is a designated high defect level

that would be unacceptable to the consumer.

To prevent “good” lots from being rejected and “bad” lots from being accepted,

we calculate the values of n and k by solving the system

(1.1)

{
Pac(ω = AQL) = 1 − α ,

Pac(ω = LTPD) = β ,

where Pac(ω) = P(accept the lot | ω) designates the acceptance probability (func-

tion of n and k) and ω the non conforming proportion. If we let ω vary in [0, 1],

we can establish the operating characteristic curve, OC-curve, Pac(ω). This curve

shows the lot acceptance probability in accordance with its quality, given by the

nonconforming proportion. This is the most used way of determining an AS plan:

to specify 2 desired points on the OC-curve and solve for the (n, k) that uniquely

determines the OC-curve going through these points (AQL, 1−α) and (LTPD , β)

([8]). Alternatively the above system can be solved for k and LTPD , as will be

used later for comparison purposes.

In AS, sampling plans can be built up with a single specification limit (the

upper or lower) or with two specification limits (the upper and the lower). This

latter situation is theoretically more complex since the two previous procedures

have to be added into one. For more details see ([3]).

Let X denote the random variable that represents the quality character-

istic inspected. For simplicity, in the next sections we will assume that there

is a single specification limit, the upper limit U , so the nonconforming propor-

tion is given by ω = P (X ≥U). In section 2 we will review the classical case

where X is assumed to follow a Gaussian distribution. In section 3 we will derive

AS plans when X follows an Extreme Value distribution (Weibull and Fréchet).

As a particular case of Weibull distribution we obtain the results for the expo-

nential distribution studied in ([2]) and ([11]). In the section 4 robust estimators

for location are presented. In section 5, classical plans, specific plans and plans

using the robust estimates for location are compared by means of the OC-curve.

The main conclusions are driven in section 6.
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2. ACCEPTANCE SAMPLING FOR GAUSSIAN VARIABLES

The acceptance sampling by variables in the Gaussian case was solved in

theory and for application in American Standard, MIL-STD 414 (updated several

times in details). The most recent international version is ([1]).

Consider that the quality characteristic of interest, X, follows a Gaussian

distribution, with mean µ and standard deviation σ, X ⌢ N(µ, σ) and that a sam-

ple of size n is taken from the lot for AS purposes. The nonconforming proportion

is given by ω = P (X ≥U) = 1 − Φ
(

U−µ
σ

)
. The lot is accepted if the estimated

nonconforming proportion based on the sample is “small” or an associated quality

index Q is “big”. The definition of Q depends on the standard deviation of X

being known or unknown, as follows.

2.1. σ known

If σ is known the quality index Q is defined as Q = U−X
σ

and the criterion

of acceptance is Q = U−X
σ

≥ k. The values of n and k are the solution of the

system {
P

(
Q≥ k |ω = AQL

)
= 1 − α ,

P
(
Q≥ k |ω = LTPD

)
= β ,

and are given by 



k =
z1−α zLTPD − zβ zAQL

zβ − z1−α
,

n =

(
z1−α − zβ

zLTPD − zAQL

)2

,

where zp denotes the p-probability quantile of the standard Gaussian distribution.

For details see ([4]) and ([12]).

2.2. σ unknown

If σ is unknown the criterion of acceptance is Q = U−X
S

≥ k, with S2 =
∑n

i=1
(Xi−X)2

n−1 the unbiased estimator of σ2. The values of n and k result from

the resolution of the system{
Pac

(
Q≥ k |ω = AQL

)
= 1 − α ,

Pac

(
Q≥ k |ω = LTPD

)
= β ,

or from the equivalent{
Ft,ν=n−1,δ=

√

n zAQL

(
−k

√
n
)

= 1 − α ,

Ft,ν=n−1,δ=
√

n zLTPD

(
−k

√
n
)

= β ,

where Ft,ν,δ(·) represents the distribution function of the non-central t variable

with ν degrees of freedom and non-centrality parameter δ ([4]) and ([12]).
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3. ACCEPTANCE SAMPLING FOR NON-GAUSSIAN

VARIABLES

At this point, we will take a closer look at two specific distributions that

are widely used in Statistical Quality Control, namely the Weibull and Fréchet

distributions.

The procedure to be used for non-Gaussian variables is analogous to that

used for the Gaussian case. We start by defining the quality index for each case

and compare its observed value with the constant k of acceptance, considering

the situations of known and unknown parameters. To define the AS plan for each

case, we must solve system (1.1).

Let us consider the Weibull distribution, Weibull(θ, δ), with probability

density function (pdf) fX(x) = θ
δ

(
x
δ

)θ−1
e−

(
x

δ

)θ

, x > 0, δ > 0, θ > 0, and the Fréchet

distribution, Fréchet(θ, δ), with pdf fX(x) = θ
δ

(
x
δ

)
−θ−1

e−
(

x

δ

)
−θ

, x > 0, δ > 0, θ > 0,

and let θ̂ and δ̂ represent the maximum likelihood estimators of their respective

dispersion and shape parameters based on a random sample of size n. Consider-

ing that Y = 2nδ̂θ

δθ ⌢ χ2
2n, in the Weibull case, and that Y = 2nδ̂−θ

δ−θ ⌢ χ2
2n, in the

Fréchet case, the results of Table 1 are obtained (for details see ([3])).

Table 1: Non-Conforming proportion, Criterion of acceptance and
Acceptance Sampling plans for the Weibull and Fréchet cases.

Distribution Weibull(θ, δ) Fréchet(θ, δ)

Non-Conforming Proportion
e−(U

δ)θ

1 − e−(U

δ)−θ

ω = P
�
X > U

�
Criterion of
acceptance

θ known QU =

�
Ubδ �θ

≥ k QU =

�
Ubδ �−θ

≤ k

θ unknown QU =

�
Ubδ �bθ≥ k QU =

�
Ubδ �−bθ

≤ k

AS plans:
values of k and n

θ known

8>>><>>>: n = −
k χ2

2n;β

2 ln(LTPD)

k = −
2n ln(AQL)

χ2
2n;1−α

∗

8>>><>>>: n = −
k χ2

2n;1−β

2 ln(1−LTPD)

k = −
2n ln(1−AQL)

χ2
2n;α

θ unknown ∗∗ ∗∗

* Note that, this system is equal to the exponential case, ([2]).

** Since the exact distribution of QU is unknown analytically, to determine the values
of n and k that satisfy the system (1.1) we have to proceed with simulation methods.
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4. ROBUST ESTIMATORS FOR LOCATION

As we referred previously, when we have a non-Gaussian distribution we

can build specific AS plans associated with that distributions.

As also mentioned, the classical plans (Gaussian case) assume normality

of the data and they use X as an estimator of µ. However, when data is Non-

Gaussian, X may not be the best estimator, mainly when the distribution is

asymmetric and/or has heavy tails.

Thus, alternatively, as robust estimators for µ, we suggest the sample me-

dian
(
X̃

)
and total median

(
X̃T

)
, respectively, given by

X̃ =





X(m) if n = 2m − 1 ,

Xm + Xm+1

2
if n = 2m,

m ≥ 1 and X̃T =
∑n

i=1 aiX(i), such that ai = an−i+1,∀ i = 1, ..., n, 0 < a1 < a2 <

... < a[n
2 ],

∑n
i=1 ai = 1.

Considering these estimators for the mean value, the quality index of clas-

sical plans is, respectively Q
′

N = U− eX
σ

and Q
′′

N = U− eXT

σ
, and the criterion of ac-

ceptance, for each case is Q
′

N = U− eX
σ

≥ k
′

n and Q
′′

N = U− eXT

σ
≥ k

′′

n. When we work

with Q
′

N , we use the distribution of X̃. When we work with Q
′′

N , we need to use

simulation methods, since its distribution is unknown.

For calculating the weight of the tails, we used the index, τ ,([10]),

τ(F ) =
1

2

(
F−1(0.99) − F−1(0.5)

F−1(0.75) − F−1(0.5)
+

F−1(0.5) − F−1(0.01)

F−1(0.5) − F−1(0.25)

)/ (
z0.99 − z0.5

z0.75 − z0.5

)
,

where F−1(p) represents the p-quantile of the distribution F and zp represents

de the p-quantile of the standard Gaussian distribution.

To assess the degree of skewness, Fisher’s skewness coefficient, c1, was used,

given by c1(F ) = µ3

σ3 , where F represents the distribution of the data, µ3 repre-

sents the third-order central moment of the distribution F and σ represents the

standard deviation of the distribution F .

According to ([7]), for asymmetric distributions, the best estimator for the

mean value is

• X, if c1 < 0.9 independently of the value of n or if n > 16 indepen-

dently of the value of c1;
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• X̃T , if 0.9 ≤ c1 ≤ 3.69 and n ≤ 16;

• X̃, if c1 > 3.69 and n = 3 or 4;

• X̃T , if c1 > 3.69 and 5 ≤ n ≤ 16.

For the tail weight index (τ), the best estimator for the mean value is

• X, if τ < 1.01 independently of the value of n;

• X̃T , if 1.01 ≤ τ ≤ 1.8 and n ≥ 5;

• X̃, if τ > 1.8 and n = 3 or 4;

• X̃T , if τ > 1.8 and n ≥ 5.

5. SOME RESULTS

Our main questions are: what miscalculations occur if X is Weibull and we

use a standard AS plan for Gaussian X instead? What alternatives can we use?

Can we use robust estimators for the location in the Gaussian case?

As we said before, the determination of the specific sampling plan is based

on the solution of the System (1.1). Usually α, β, AQL and LTPD are fixed

and the system is solved for n and k. For comparison of the plans it is more

convenient to fix n (taken from the standard) and solve the system to calculate

k and LTPD . The comparison of the results will, essentially, be based on LTPD

or/and the OC-curve.

To exemplify what we propose, we consider distributions with different

degrees of asymmetry and tail weight index. So we are going to compare the

Gaussian case with the Weibull (θ = 7 and θ = 1) and Fréchet (θ = 5) cases.

We will consider α = 5%, β = 10%, AQL = 1% and several values of n, taken

from the standard.

5.1. Comparisons of Gaussian and specific plans

If the quality characteristic is a non-Gaussian variable and if we use the

values of the standard (apply the classical plans), the producers risk (5%) is

miscalculated and misleading. We have, therefore, to carry out the adjustment

of the α’s for the OC-curves which pass in the point (AQL, 1−α), and so we can

compare the sampling plans. For more details see ([3]). Table 2 shows the results

for the exponential case.
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Table 2: Results of α’s adjustment, exponential case.

Sample size, n Adjusted α

10 0.036

15 0.038

20 0.039

30 0.041

35 0.041

50 0.043

75 0.044

100 0.045

150 0.046
200 0.046

Table 3 shows the comparison results of the Gaussian case (given by the

standard) versus the exponential case, based on LTPD and k.

Table 3: Comparison of LTPD and k, between Gaussian case (σ known)
and exponential case.

AQL = 1%

Sample
size,
n

Standard
(α is not 5%)
Gaussian data
Gaussian fit

Exponential data
Gaussian fit

Exponential data
Exponential fit

LTPDN (%) kN LTPDEN (%) kEN LTPDE(%) kE

10 8.06 1.81 16.13 1.76 16.13 2.93

15 5.81 1.90 11.45 1.87 11.45 3.16

20 4.73 1.96 9.08 1.93 9.08 3.30

30 3.66 2.03 6.68 2.01 6.68 3.49

35 3.35 2.05 5.99 2.03 5.99 3.56

50 2.79 2.09 4.73 2.08 4.73 3.70

75 2.34 2.14 3.73 2.13 3.73 3.85

100 2.10 2.16 3.20 2.16 3.20 3.94

150 1.84 2.19 2.65 2.19 2.65 4.05
200 1.70 2.21 2.36 2.21 2.36 4.12

Examining the results presented in Tables 2 and 3, it can be seen that

if the quality characteristic is an exponential variable and if we use the values

of the standard (classic case), the producer’s risk (as well as the consumer’s) is

miscalculated. For example, given AQL = 1%, n = 10 and if we want a producer’s

risk of 5%, standards give the values of k and LTPD , respectively, 1.81 and 8.06%.
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But in fact, with this k the real risk of the producer is 6.36% (the risk of 5%

is illusory and misleading) and the real consumer’s non-conforming fraction is

16.13% (instead of 8.06%). Therefore, to ensure a risk of 5% the standard shall

be calculated with a risk of 3.6%, yielding the acceptance constant, k, in the last

but one column of Table 3.

Tables 4 and 5 show the results of the Weibull case with θ = 7. These

results show, once again, that abusively using AS plans for Gaussian variables,

Table 4: Simulation results: estimated α for Gaussian case when α of Weibull
(θ = 7, δ = 10) case is 0.05 and 95% Confidence Interval for α.

Sample size, n Adjusted α
95% Confidence Interval for α

Lower limit Upper limit

10 0.055 0.042 0.069

15 0.053 0.041 0.068

20 0.053 0.040 0.067

30 0.053 0.041 0.067

35 0.052 0.039 0.066

50 0.052 0.040 0.066

75 0.052 0.040 0.065

100 0.051 0.039 0.065

150 0.051 0.039 0.066
200 0.051 0.038 0.066

Table 5: Comparison of LTPD and k, between the Gaussian case
and the Weibull (θ = 7, δ = 10) case.

AQL = 1%

Sample
size,
n

Standard
(α is not 5%)
Gaussian data
Gaussian fit

Weibull data
Gaussian fit

Weibull data
Weibull fit

LTPDN (%) kN LTPDWN (%) kWN LTPDW (%) kW

10 8.06 1.81 21.00 1.76 16.13 2.93

15 5.81 1.90 14.00 1.87 11.45 3.16

20 4.73 1.96 12.00 1.93 9.08 3.30

30 3.66 2.03 9.00 2.01 6.68 3.49

35 3.35 2.05 7.50 2.03 5.99 3.56

50 2.79 2.09 6.00 2.08 4.73 3.70

75 2.34 2.14 5.00 2.13 3.73 3.85

100 2.10 2.16 4.00 2.16 3.20 3.94

150 1.84 2.19 3.00 2.19 2.65 4.05
200 1.70 2.21 2.36 2.21 2.36 4.12
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when we have an exponential or Weibull variable, implies serious risks for the

consumer and/or the producer. Comparing the last column of Tables 3 and 5,

we can see that the results for the exponential and Weibull cases are equal, i.e.,

the plans are θ invariant.

The same kind of precautions has to be taken in the Fréchet distribution

for the calculation of the risks α and β, and the constants k and LTPD .

5.2. Comparisons of specific and robust AS plans

The plots in Figures 1 and 2 show, for n = 5, the operating characteristic

curves, OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 1) and total median

(Figure 2) (−�−) with Weibull data;

• Weibull case with θ = 7, δ = 10 (−•−). This distribution has c1 = −0.463

and τ = 0.990.

Observing the graphs of Figures 1 and 2, it appears that the mean sample

produces better results than the sample median or the total median. The OC-curve

of the Gaussian case with sample mean is closer to the specific case and is below

of the OC-curves of the Gaussian case with sample median and total median.

For other values of n, the results are similar. X is the best estimator for this type

of distribution.

Figure 1: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of non-conforming
proportion — between Weibull (simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and sample median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Weibull case with θ known.
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Figure 2: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of non-conforming
proportion — between Weibull (simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and total median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Weibull case with θ known.

The plots in Figures 3 and 4 show, for n = 5, the OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 3) and total median

(Figure 4) (−�−) with Weibull data;

• Weibull case with θ = 1, δ = 10 (exponential case) (−•−). This distri-

bution has c1 = 6.619 and τ = 2.260.

Figure 3: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of
non-conforming proportion — between Weibull (θ = 1)
(simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and sample median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Weibull case with θ known.
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Figure 4: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of
non-conforming proportion — between Weibull (θ = 1)
(simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and total median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Weibull case with θ known.

In this special case (exponential) X is the best estimator for this type of

distribution, it produces the best results. This is a special case, since it contra-

dicts the results obtained by ([7]). We can see that, after adjusting for the α’s, the

OC-curves of the specific case and the classic case with mean sample are coin-

cident, and there is, therefore no alternative to improve the results. For other

values of n, the results are similar.

The plots in Figures 5 and 6 show, for n = 5, the OC-curves, Pac(ω) for:

• the Gaussian case with sample mean (−◦−);

• the Gaussian case with sample median (Figure 5) and total median

(Figure 6) (−�−) with Fréchet data;

• Fréchet case with θ = 5, δ = 10 (−•−). This distribution has c1 = 3.535

and τ = 1.357.

In this case X̃T is the best estimator for this type of distribution, i.e., we

get the best results relatively to X̃ and X. For other values of n, the results are

similar.
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Figure 5: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of
non-conforming proportion — between Fréchet (θ = 1)
(simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and sample median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Fréchet case with θ known.

Figure 6: Comparison of OC-curves, Pac(p), p ∈ [0; 1] — range of
non-conforming proportion — between Fréchet (θ = 1)
(simulated values) and Gaussian case, n = 5:
(−�−) Gaussian case with σ known and total median;
(−◦−) Gaussian case with σ known and sample mean;
(−•−) Fréchet case with θ known.
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6. CONCLUSIONS

It is important to note that standard sampling plans by variables are not

to be used indiscriminately, when the normality assumption may be questioned.

Application of an incorrect sampling plan can cause damage to the producer and

to the consumer.

If data comes from the Weibull model with θ = 1, i.e., the exponential case,

and if we apply the standard k determined for the Gaussian case, the producer’s

risk (level) of the AS plan will no longer be 5%, but will be lower, what is con-

venient for the producer. The values of the LTPD , important for the consumer,

are also miscalculated when using the wrong model. However, after adjusting the

α’s, the AS plans are equal.

If data comes from the Weibull model with θ 6= 1 and we use the appropriate

AS plan (considering this distribution), as expected, we get better results than if

we use the standard AS plan (assuming Gaussian case), as the OC-curve for the

Weibull plan is below the one for the standard plan (Figure 1).

The results of using the statistics Q
′

N and Q
′′

N are (except in the exponential

case) in agreement with those obtained by ([7]), ([5]) and ([6]), i.e., the efficiency of

the robust estimators for location depends on the asymmetry and the tail weight

of the data distribution. When the distribution of the quality characteristic is

Weibull, θ = 7, so has a low skewness coefficient and a low tail weight index

(Figures 1 and 2), X produces better results than the X̃ and the X̃T , as expected.

When the distribution of the quality characteristic is Fréchet, θ = 5, so has a high

skewness coefficient and a high tail weight index (Figures 5 and 6), X̃T produces

better results than the X and the X̃.

So, when faced with the problem of determining AS plans for quality char-

acteristics with non-Gaussian variables but we are able to adequately model the

data and estimate its parameters, which usually is not easy, we can use specific AS

plans. Alternatively, mainly for variables with asymmetric and/or heavy tailed

distributions, robust AS plans are to be considered as a good alternative to the

classical plans.
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