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1. INTRODUCTION

In several fields of the experiments, specially in the theory of spectroscopy,

metrology, dynamical system theory, computational mechanics and 2n fractional

factorial designs we determine unknown measurements of p objects using n opera-

tions according to the linear model

(1.1) y = Xw + e ,

where y is an n×1 random vector of the observations. The design matrix

X = (xij) usually called weighing matrix belongs to the class Φn×p(0, 1), which

denotes the class of n×p matrices of known elements xij = 0 or 1 according as

in the ith weighing operation the j th object is not placed on the pan or is placed.

w is a p×1 vector of unknown weights of objects and e is an n×1 random vector

of errors. We assume, that there are no systematic errors, the variances of errors

are not equal and the errors are uncorrelated, i.e. E(e) = 0n and Var(e) = σ2 G,

where 0n denotes the n×1 vector with zero elements everywhere, G is the known

n×n diagonal positive definite matrix.

For the estimation of individual unknown weights of objects we use normal

equations X′G−1Xw = X′G−1y. Any spring balance weighing design is said to

be singular or nonsingular, depending on whether the matrix X′G−1X is singular

or nonsingular, respectively. It is obvious, that if G is the known positive definite

matrix then the matrix X′G−1X is nonsingular if and only if the matrix X′X

is nonsingular, i.e. if and only if X is full column rank r(X) = p. However, if

X′G−1X is nonsingular, then the generalized least squares estimator of w is

given by ŵ = (X′G−1X)−1X′G−1y and the variance matrix of ŵ is Var(ŵ) =

σ2(X′G−1X)−1. A more complete theory may be obtained in literature1.

In many problems cases the weighing designs, the A-optimal design is con-

sidered. For given variance matrix of the errors σ2G, the A-optimal design is the

design X for which, the sum of variances of estimators for unknown parameters

is minimal, i.e. tr(X′G−1X)−1 is minimal in Φn×p(0, 1). Moreover, the design for

which the sum of variances of estimators for parameters attains the lowest bound

in Φn×p(0, 1) is called the regular A-optimal design. Let note, in the set of de-

sign matrices Φn×p(0, 1), the regular A-optimal design may not exist, whereas

A-optimal design always exists. The concept of the A-optimality was shown in

many papers2.

1See, for instance, Raghavarao ([12]) and Banerjee ([1]).
2See, Jacroux and Notz ([8]), Shah and Sinha ([14]), Pukelsheim ([11]), Ceranka and Graczyk

([2]), Ceranka et al. ([3], [4]), Masaro and Wong ([10]) and Graczyk ([6], [7]).
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2. REGULAR A-OPTIMAL DESIGNS

For any experimental setting, i.e. for fixed n, p and G, there is always a

number of designs available for using. In each class of available designs, the reg-

ular A-optimal design is considered. Furthermore, the main difficulty in carrying

out the construction is that each form of G requires the specific investigations.

That’s why we consider the experimental situation we determine unknown mea-

surements of p objects in n =
∑h

i=1 ns measurement operations under model 1.1.

It is assumed that ns measurements are taken in different h conditions or at

different h installations. So, the variance matrix of errors σ2G is given by the

matrix G

(2.1) G =











g−1
1 In1

0n1
0′

n2
··· 0n1

0′

nh

0n1
0′

n1
g−1
2 In2

··· 0n2
0′

nh

··· ··· ··· ···

0nh
0′

n1
0nh

0′

n2
··· g−1

h Inh











,

where gs > 0 denotes the factor of precision, s = 1, 2, ..., h. Consequently, accord-

ing to the form of G we write the design matrix X ∈ Φn×p(0, 1) as

(2.2) X =









X1

X2

···

Xh









where Xs is ns×p design matrix of any spring balance weighing design.

The Lemma given below presented in [9] is required for determining the

regular A-optimal design.

Lemma 2.1. Let Π be the the set of all p×p permutation matrices and

let M be a p×p matrix. If M̄ = 1
p!

∑

P∈Π
P′MP then M̄ =

(

tr(M)
p

−
Q(M)
p(p−1)

)

Ip +

Q(M)
p(p−1)1p1

′

p, where tr(M) is the trace of M, Q(M) denotes the sum of the off-

diagonal elements of M and 1p is the vector of ones. Moreover, tr(M) = tr(M̄)

and Q(M) = Q(M̄).

From now on, we assume thatG is taken into consideration in the form(2.1).

Theorem 2.1. In any nonsingular spring balance weighing design X ∈

Φn×p(0, 1) in (2.2) with the variance matrix of errors σ2G

(2.3) tr(X′G−1X)−1 ≥



















4(p2 − 2p + 2)

p tr(G−1)
if p is even ,

4p3

(p + 1)2 tr(G−1)
if p is odd .
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Proof: For X in (2.2) and G in (2.1), we obtain X′G−1X =
∑h

s=1 gsX
′

sXs

and moreover tr(X′G−1X)−1 =
∑p

z=1
1
µz

, where µz is the eigenvalue of X′G−1X.

Next, we consider the matrix M̄ = α Ip + β 1p1
′

p. From [8], M̄ has eigenvalues

α with the multiplicity p − 1 and α + pβ with the multiplicity 1. Based on

Lemma 2.1, M̄ =
p tr(M)−1′

pM1p

p(p−1) Ip +
1′

pM1p−tr(M)

p(p−1) 1p1
′

p. The eigenvalues of M̄

are µ1 = 1
p(p−1)

(

p tr(M)−1′

pM1p

)

with the multiplicity p−1 and µ2 = 1
p
1′

pM1p

with the multiplicity 1. Taking M = X′G−1X we have tr(M) =
∑h

s=1 gsk
′

s1ns

and 1′

pM1p =
∑h

s=1 gsk
′

sks so we obtain

tr(X′G−1X)−1 =
p

1′
pM1p

+
p(p − 1)2

p tr(M) − 1′
pM1p

=
p

∑h
s=1 gsk′

sks

+
p(p − 1)2

∑h
s=1 gs(p1ns− ks)

′

ks

,

(2.4)

where ks = Xs1p, s = 1, 2, ..., h. For even p, minimum of (2.4) is attained if

and only if ks = p
2 1ns . For odd p, minimum of (2.4) is attained if and only if

ks = p+1
2 1ns , s = 1, 2, ..., h. Hence, we obtain (2.3).

Definition 2.1. Any X ∈ Φn×p(0, 1) given in (2.2) with the variance

matrix of errors σ2G is said to be the regular A-optimal if the equality in (2.3)

is satisfied.

Theorem 2.2. Any X ∈ Φn×p(0, 1) in (2.2) with the variance matrix of

errors σ2G is the regular A-optimal spring balance weighing design if and only if

a) for even p, X′G−1X = p
4(p−1) tr(G−1) Ip + p−2

4(p−1) tr(G−1)1p1
′

p,
or

b) for odd p, X′G−1X = p+1
4p

tr(G−1) (Ip + 1p1
′

p).

Proof: The proof follows naturally into two parts. If p be odd, then from

the Theorem2.1, tr(X′G−1X)−1 takes minimum if and only if ks = p
2 1ns for each s.

Then it is easy to see that tr(M) = p
2 tr(G−1) and 1′

pM1p = p2

4 tr(G−1). So

we have α = p tr(G−1)
4(p−1) and β = (p−2) tr(G−1)

4(p−1) and we obtain a). The analogous

consideration for odd p, imply that α = β = (p+1) tr(G−1)
4p

and b) is true that

finishes the proof.

If X ∈ Φn×p(0, 1) satisfies the equalities given in Theorem 2.2 then X is the

regular A-optimal design for any G in (2.1). Hence X is the regular A-optimal

design in the special case when G = In and

(2.5) tr(X′X)−1 ≥















4(p2 − 2p + 2)

np
if p is even ,

4p3

n(p + 1)2
if p is odd .
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(2.5) is equivalent to the lowest bound of tr(X′X)−1 which follows from theorems

given in [8]. On the other hand, we assume that X ∈ Φn×p(0, 1) is the regular

A-optimal design for G = In. Then we can compare two traces tr(X′G−1X)−1

tr(X′X)−1 =Ph
s=1

gsns

n
. We obtain the following Corollary.

Corollary 2.1. Let X ∈ Φn×p(0, 1) and G be of the form (2.1).

a) If
∑h

s=1 gsns = n, then tr(X′G−1X)−1 = tr(X′X)−1,

b) If
∑h

s=1 gsns > n, then tr(X′G−1X)−1 < tr(X′X)−1,

c) If
∑h

s=1 gsns < n, then tr(X′G−1X)−1 > tr(X′X)−1.

3. CONSTRUCTION OF THE REGULAR A-OPTIMAL DESIGNS

It is worth pointing out that the incidence matrices of the block designs may

be used for the construction of the design matrix X ∈ Φn×p(0, 1), then we take

n = b and p = v. From all possible block designs, in this paper the construction

of the regular A-optimal spring balance weighing design based on the incidence

matrices of the balanced incomplete block designs is chosen.

Theorem 3.1. Let v be even and let N be the incidence matrix of

balanced incomplete block design with the parameters v = 2t, b = 2(2t − 1),

r = 2t − 1, k = t, λ = t − 1, t = 2, 3, ... . Then any X ∈ Φhb×2t(0, 1) in the form

X = 1h ⊗ N′ is the regular A-optimal spring balance weighing design with the

variance matrix of errors σ2G.

Proof: An easy computation shows that the matrix X = 1h ⊗N′ satisfies

a) of Theorem 2.2.

Theorem 3.2. Let v be odd and let N be the incidence matrix of balanced

incomplete block design with the parameters

a) v = 2t + 1, b = 2(2t + 1), r = 2(t + 1), k = t + 1, λ = t + 1,
or

b) v = 4t − 1, b = 4t − 1, r = 2t, k = 2t, λ = t,

t = 1, 2, ... . Then any X ∈ Φhb×v(0, 1) in the form X = 1h ⊗ N′ is the regular

A-optimal spring balance weighing design with the variance matrix of errors σ2G.

Proof: This is proved by checking that the matrix X = 1h ⊗ N′ satisfies

b) of Theorem 2.2.
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For an even v, we give the construction of the regular A-optimal spring

balance weighing design based on the incidence matrices of group divisible design.

Hence, we get

(3.1) Xs =

[

N′

1s

N′

2s

]

, s = 1, 2, ..., h ,

where Nuh is the incidence matrix of group divisible design with the parameters

v, bus, rus, kus, λ1us, λ2us, u = 1, 2, see [13]. Furthermore, let the condition

(3.2) λ11s + λ12s = λ21s + λ22s = λs , u = 1, 2, s = 1, 2, ..., h ,

be satisfied. Below, we show the parameters of group divisible design which

satisfy (3.1). Next, for n =
∑h

s=1

∑2
u=1 bus bus measurements and v objects,

based on the incidence matrices of the group divisible designs will be constructed

X ∈ Φn×v(0, 1). For the t, q, u given in Lemmas 3.1–3.5, some restrictions derive

from the ones given in [5]: r, k ≤ 10.

Lemma 3.1. Let v = 4. If the parameters of group divisible designs are

equal to

a) b1s = 2(3t+1), r1s = 3t+1, k1s = 2, λ11s = t+1, λ21s = t, t = 1, 2, 3 and

b2s = 2(3q +2), r2s = 3q +2, k2s = 2, λ12s = q, λ22s = q +1, q = 0, 1, 2,

b) b1s = 2(3t+2), r1s = 3t+2, k1s = 2, λ11s = t+2, λ21s = t, t = 1, 2 and

b2s = 2(3q +4), r2s = 3q +4, k2s = 2, λ12s = q, λ22s = q +2, q = 0, 1, 2,

c) b1s = 2(u + 3), r1s = u + 3, k1s = 2, λ11s = u + 1, λ21s = 1 and

b2s = 4u, r2s = 2u, k2s = 2, λ12s = 0, λ22s = u, u = 1, 2, 3, 4, 5,

d) b1s = 16, r1s = 8, k1s = 2, λ11s = 0, λ21s = 4 and b2s = 2(3u + 4),

r2s = 3u + 4, k2s = 2, λ12s = u + 4, λ22s = u, u = 1, 2,

e) b1s = 18, r1s = 9, k1s = 2, λ11s = 5, λ21s = 2 and b2s = 6(u + 2),

r2s = 3(u + 2), k2s = 2, λ12s = u, λ22s = u + 3, u = 0, 1,

then for any matrix in (3.1), the condition (3.2) is satisfied.

Lemma 3.2. Let v = 6. If the parameters of group divisible designs are

equal to

a) b1s = 4t, r1s = 2t, k1s = 3, λ11s = 0, λ21s = t and b2s = 6t, r2s = 3t,

k2s = 3, λ12s = 2t, λ22s = t, t = 1, 2, 3,

b) b1s = 2(2t + 5), r1s = 2t + 5, k1s = 3, λ11s = t + 1, λ21s = t + 2 and

b2s = 6t, r2s = 3t, k2s = 3, λ12s = t + 1, λ22s = t, t = 1, 2,

c) b1s = 12, r1s = 6, k1s = 3, λ11s = 4, λ21s = 2 and b2s = 2(5t+4), r2s =

5t + 4, k2s = 3, λ12s = 2t, λ22s = 2(t + 1), t = 0, 1,
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d) b1s = 16, r1s = 8, k1s = 3, λ11s = 4, λ21s = 3 and b2s = 2(5t+2), r2s =

5t + 2, k2s = 3, λ12s = t + 2, λ22s = 2t + 1, t = 0, 1,

then for any matrix in (3.1), the condition (3.2) is satisfied.

Lemma 3.3. Let v = 8. If the parameters of group divisible designs are

equal to

a) b1s = 4(t + 1), r1s = 2(t + 1), k1s = 4, λ11s = 0, λ21s = t + 1 and

b2s = 4(6− t), r2s = 2(6− t), k2s = 4, λ12s = 6, λ22s = 5− t, t = 1, 2, 3,

b) b1s = 2(3t + 2), r1s = 3t + 2, k1s = 4, λ11s = t + 1, λ21s = t + 2 and

b2s = 6(4− t), r2s = 3(4− t), k2s = 4, λ12s = 4− t, λ22s = 5− t, t = 1, 2,

then for any matrix in (3.1), the condition (3.2) is satisfied.

Lemma 3.4. Let v = 10. If the parameters of group divisible designs are

equal to b1s = 8t, r1s = 4t, k1s = 5, λ11s = 0, λ21s = 2t and b2s = 10t, r2s = 5t,

k2s = 5, λ12s = 4t, λ22s = 2t, t = 1, 2, then for any matrix in (3.1), the condition

(3.2) is fulfilled.

Lemma 3.5. If the parameters of group divisible designs are equal to

a) v = 2(2u + 1), b1 = 4u, r1 = 2u, k1 = 2u + 1, λ11 = 0, λ21 = u and

v = b2 = 2(2u + 1), r2 = k2 = 2u + 1, λ12 = 2u, λ22 = u, u = 1, 2, 3, 4,

b) v = 4(u + 1), b1 = 2(2u + 1), r1 = 2u + 1, k1 = 2(u + 1), λ11 = 2u + 1,

λ21 = u and v = b2 = 4(u+1), r2 = k2 = 2(u+1), λ12 = 0, λ22 = u+1,

u = 1, 2, 3, 4,

then for a matrix X = Xs in (3.1), the condition (3.2) is true.

Lemmas given above are essential to construct the design X. For a given

number of objects p = v and n =
∑h

s=1(b1s + b2s) measurements, we choose ap-

propriate number h of matrices Xs satisfying conditions in Lemmas 3.1–3.5 and

in the result we form the design matrix X ∈ Φn×p(0, 1). Thus we obtain the

theorem.

Theorem 3.3. Any X ∈ Φn×p(0, 1) in (2.2) for Xs in (3.1), where Nuh

is the incidence matrix of group divisible design with the parameters given in

Lemmas 3.1–3.5, u = 1, 2, with the variance matrix of errors σ2G is the regular

A-optimal spring balance weighing design.

Proof: It is easy to verify that for the matrix X the condition a) of

Theorem 2.2 is satisfied.
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Note 3.1. The criterion of A-optimality is interpreted as minimizing the

sum of the variances of estimators of unknown measurements of objects. Some

design matrices are better than others in the sense that the sum of the variances

of estimators of unknown measurements of objects is smaller. The design X

for which tr(X′G−1X)−1 attains the lower bound is called regular A-optimal.

In any class Φn×p(0, 1), regular A-optimal spring balance weighing design XR

may exist, whereas A-optimal spring balance weighing design X exists always.

From statistical point of view, the sum of variances in regular A-optimal spring

balance weighing design XR is so small if it is possible and in this sense design

XR is the best one. Moreover, if in the class Φn×p(0, 1), the regular A-optimal

spring balance weighing design does not exist then determined lower bound of

the variance of the sum of estimators may be used for indicating the design which

is the closest to the best one XR.

4. EXAMPLES

Example 4.1. To present theory given above, let us considerX∈Φn×p(0, 1)

and let p be even. Among all possible variance matrices σ2G we take matrix G

in the form

a) G1 =





aIn
2

0n
2

0′
n
2

0n
2

0′
n
2

1
a
In

2



, a > 0. We have tr(X′G−1
1 X)−1 = 8a(p2

−2p+2)
np(a2+1)

and tr(X′X)−1−tr(X′G−1X)−1 = 4(p2
−2p+2)(a−1)2

np(a2+1)
≥0. Hence, for a 6= 1,

X∈Φn×p(0,1) with the variance matrix σ2G is regular A-optimal spring

balance weighing design, whereas X∈Φn×p(0,1) with σ2In is A-optimal

design. For a = 1, X ∈ Φn×p(0, 1) is regular A-optimal spring balance

weighing design with the variance matrix σ2G1 and σ2In.

b) G2 =





1
a
In

2

0n
2

0′
n
2

0n
2

0′
n
2

1
b
In

2



, a, b > 0. We have tr(X′G−1
2 X)−1 = 8(p2

−2p+2)
np(a+b)

and

(4.1) tr(X′X)−1 − tr(X′G−1X)−1 =
4(p2 − 2p + 2)(a + b − 2)

np(a + b)
.

If a + b − 2 > 0 then X∈Φn×p(0,1) with the variance matrix σ2G2 is

regularA-optimal spring balance weighing design, whereas X∈Φn×p(0,1)

with σ2In is A-optimal design. If a + b − 2 = 0 then X∈Φn×p(0,1)

with the variance matrix σ2G2 and with σ2In is regular A-optimal

design. If a + b − 2 < 0 then X ∈ Φn×p(0, 1) with the variance matrix

σ2In is regular A-optimal spring balance weighing design, whereas X ∈

Φn×p(0, 1) with σ2G2 is A-optimal design.
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Example 4.2. As numerical example, let us consider X ∈ Φ12×4(0, 1).

From Theorem 3.1, we construct the incidence matrix N of balanced incom-

plete block design with the parameters v = 4, b = 6, r = 3, k = 2, λ = 1 as

N =









1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1









and next we form the design matrix X =











































1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1











































.

Hence tr(X′X)−1 = 5
6 . Next, we consider possible forms of the matrix G. For

example

if G =

[

2I6 060
′

6

060
′

6
1
2 I6

]

then tr(X′G−1X)−1 =
4

6
< tr(X′X)−1 ,

if G =

[

2I6 060
′

6

060
′

6
2
3 I6

]

then tr(X′G−1X)−1 =
5

6
= tr(X′X)−1 ,

if G =

[

1
3 I6 060

′

6

060
′

6
1
2 I6

]

then tr(X′G−1X)−1 =
2

6
< tr(X′X)−1 ,

if G =

[

2I6 060
′

6

060
′

6
3
2 I6

]

then tr(X′G−1X)−1 =
10

7
> tr(X′X)−1 .

As you can see, in some cases the sum of the variances of estimators is

smaller for the design X with G than for this design with In. In the other ones

it is inversely. Interestingly enough, it depends on the experimental conditions

and the assumptions related to the variances of the errors: are they equal and

Var(e) = σ2In or are they different and Var(e) = σ2G. Into practice, the choice

of the design X with Var(e) = σ2In or σ2G is conditional and depends on the

experimental conditions. We choose one of these ones. Next, we can assess for

which variance matrix of errors the sum of variances of errors is smaller. If the

experimental conditions require the design with greater sum of variances of errors

we can determine how far we are from the lowest bound considering the difference

(4.1).
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