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1. INTRODUCTION

This paper reviews the key historical threshold estimation approaches for

extreme value applications, and the latest developments. The focus is on ap-

proaches which provide not only threshold estimation but also uncertainty quan-

tification for the threshold itself and subsequent inferences for quantities like

return levels, though we also discuss some exceptions for key developments which

provide threshold estimation, but not uncertainty quantification. There is a cer-

tain focus on recently developed mixture model type approaches, as these deal

naturally with both estimation and formal uncertainty quantification. The aim is

to be all encompassing, a near-impossible task, so we apologise for any omissions.

The classical asymptotically motivated model for excesses above a high

threshold is the generalised Pareto distribution (GPD). Pickands (1975) and

Balkema & de Haan (1974) showed that if there is a non-degenerate limiting

distribution for appropriately linearly rescaled excesses of a sequence of inde-

pendent and identically distributed observations X1, ..., Xn above a threshold u,

then the limiting distribution will be a GPD. In applications, the GPD is used

as a tail approximation to the population distribution from which a sample of

excesses x − u above some suitably high threshold u are observed. The GPD is

parameterised by scale and shape parameters σu > 0 and ξ, and can equivalently

be specified in terms of threshold excesses x − u or, as here, exceedances x > u,

as
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where y+ = max(y, 0). When ξ< 0 there is an upper end point, so u < x < u−σu/ξ.

Implicitly underlying the GPD is a third parameter required for estimation of

quantities like return levels, the proportion of threshold excesses φu = Pr(x > u),

used to calculate the unconditional survival probability:

Pr
(

X > x
)

= φu

[

1 − Pr
(

X < x | X > u
)

]

.(1.2)

This representation is often referred to as a Poisson-GPD, as it explicitly accounts

for the Poisson rate of excess events. Smith (1989) and Davison & Smith (1990)

consider statistical aspects of a Poisson point process (PPP) representation of the

classical extreme value models, details of which are not provided for brevity. The

principle benefits of the PPP representation is that it can be parameterised in

terms of location µ, scale σ and shape ξ which are independent of the threshold,

which can simplify extension to nonstationary or random effects type models, and

the excess rate φu is incorporated as a function of these parameters.
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The GPD satisfies a threshold stability property: for any higher threshold

v > u, the subsequent excesses also follow a GPD with the same shape but

shifted scale σv = σu + ξ(v − u). The subscript u on σu makes the threshold

dependence explicit, although in the limiting case ξ = 0 this disappears. The

‘modified scale’ reparameterisation σ∗ = σv−ξv is constant above u, i.e., once the

GPD provides an adequate tail approximation. The shape and scale parameter

can be orthogonalised following Cox & Reid (1987) with the preferred form usually

(σ̃u, ξ), where σ̃u = σu(1 + ξ), as the shape is often a key parameter of interest.

Traditionally, the threshold was chosen before fitting, giving the so-called

fixed threshold approach. Threshold choice involves balancing bias and variance.

The threshold must be sufficiently high to ensure that the asymptotics underly-

ing the GPD approximation are reliable, thus reducing the bias. However, the

reduced sample size for high thresholds increases the variance of the parameter es-

timates. Threshold choice is practically equivalent to estimation of the kth upper

order statistic X(n−k+1) from the ordered sequence X(1), ..., X(n), called the ‘tail

fraction’ below. Formally, to ensure tail convergence, as n →∞ the order k →∞
but at a reduced rate so that k/n → 0 (the so called intermediate sequence of

order statistics of Leadbetter et al. (1983)), i.e., as the sample size grows, the

quantile level of the threshold increases at a faster rate.

2. SUMMARY OF ESTIMATION APPROACHES

The classical fixed threshold modelling approach uses graphical diagnos-

tics, essentially assessing aspects of the model fit, to make an a priori threshold

choice. Some of the commonly used diagnostics and related statistics are de-

scribed in §2.1. A benefit of this approach is that it requires practitioners to

graphically inspect the data, comprehend their features and assess the model fit,

when choosing the threshold. A key drawback with these approaches is they can

require substantial expertise and can be rather subjective, as will be seen below.

Further, application of this approach when there are many datasets (e.g., different

stock returns series in finance applications) is time-consuming. In this situation,

it is common for practitioners to assume a constant quantile level across all se-

ries, determined by some assessment of fit across all or a subset of the datasets.

In some applications the threshold is pre-determined by physical considerations,

e.g., government target level for pollution concentrations. Some simple rules of

thumb for threshold selection are detailed in §3.

The drawback with fixed threshold approaches is that once the threshold

has been chosen it is treated as fixed, so the associated subjectivity and/or un-

certainty is ignored in subsequent inferences. Further, it is frequently observed in

applications that there is more than one suitable threshold with different inferred



A Review of Extreme Value Threshold Estimation and Uncertainty Quantification 37

tail behaviours, which will be ignored when fixing the threshold. An informal

approach to overcoming these problems is to evaluate the sensitivity of the in-

ferences (e.g., parameters or quantiles) to different threshold choices. There has

been a proliferation of new approaches to estimate the threshold more objectively

and/or formally account for the threshold uncertainty. In §4 we summarise the

large literature on tail fraction estimation including further graphical diagnostics,

which mostly use asymptotic optimality-based arguments under various popula-

tion distribution assumptions, and §5 outlines resampling based approaches which

typically require weaker assumptions.

Direct comparison of the GPD likelihood for different thresholds is com-

plicated by the varying sample sizes. Recently, various extreme value mixture

models have been developed to overcome this problem. These mixture models

typically approximate the entire distribution function, so have a fixed sample size

for each threshold considered. Traditionally, the ‘bulk’ of the distribution below

the threshold was ignored, as they were not supported by the tail asymptotics.

Further, from a practical viewpoint the extreme and non-extreme events are of-

ten caused by different driving forces, so the latter will provide little information

about the tails. These mixture models have a rather ad-hoc development, often

motivated by their applications or by the underlying properties of the population

distribution (e.g., bounds on the support, multi-modality). The guiding principle

in their development is to choose a physically sensible model for the bulk dis-

tribution, for the application at hand, along with an appropriate tail/threshold

model. The most widely applicable mixture models are carefully defined to en-

sure that the bulk and tail fits are not too influenced by each other. There are a

range of mixture models with different assumptions for bulk, tail and threshold

components, which have loosely been classified into parametric, semiparametric

and nonparametric estimators for the bulk distribution in §6.1–6.3 below.

§7 describes approaches outside these general categories, e.g., robust esti-

mation. A nice short review of a subset of the threshold estimation approaches

outlined below is provided by de Zea Bermudez & Kotz (2010).

2.1. Graphical diagnostics

Coles (2001) outlines the common graphical diagnostics for threshold choice:

• Mean residual life (or mean excess) plot;

• Threshold stability plot(s);

• A suite of the usual distribution fit diagnostics (e.g., probability plots,

quantile plots, return level plots, empirical and fitted density compari-

son).
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The mean residual life (MRL) plot introduced by Davison & Smith (1990) uses the

expectation of the GPD excesses, E(X− u | X > u) = σu/(1 − ξ), as a diagnostic,

defined for ξ < 1 to ensure the mean exists. For any higher v > u the expectation

becomes

E
(

X− v | X > v
)

=
σu + ξv

(1 − ξ)

which is linear in v with gradient ξ/(1− ξ) and intercept σu/(1− ξ). Examples of

the behaviour of the MRL function for various distributions are given by Beirlant

et al. (2004). Empirical estimates of the sample mean excesses are typically

plotted against a range of thresholds, along with Wald type interval estimates,

though bootstrap or similar estimates would generally be more appropriate for

small tail samples. The threshold is chosen to be the lowest level where all the

higher threshold based sample mean excesses are consistent with a straight line,

once the sample uncertainty is accounted for. Coles (2001) acknowledges that

the interpretation of such plots can be challenging.

Figure 1 gives an example of a MRL plot for the Fort Collins total daily

precipitation data from the extRemes package in R (Gilleland et al., 2010).
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Figure 1: Mean residual life plot for the Fort Collins precipitation data. Solid
jagged line is empirical MRL with approximate pointwise Wald 95%
confidence intervals as dashed lines. The MRL implied by maximum
likelihood (ML) parameter estimates for thresholds u = 0.395, 0.85 and
1.2 inches are the upper, middle and lower straight lines respectively.
Vertical dashed lines mark these thresholds.
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A simplistic analysis of the marginal distribution is considered here, ignoring the

obvious seasonality and dependence structure, as we just want to demonstrate

the diagnostic plots. The ML estimates of the parameters for three threshold

choices provide three fitted MRL straight lines. The increasing variance of the

MRL for high thresholds leads to wide confidence intervals, which must be taken

into account when assessing the threshold choice.

The threshold of u = 0.395 inches suggested by Katz et al. (2002) gives

over 1000 exceedances, and is justified by the empirical MRL becoming close to

linear above this level, and below this level a curved MRL is observed indicating

a bias due to the GPD asymptotics breaking down. However, above 1.2 inches

strong deviations from the fitted MRL, shown by the upper straight line, are

observed with higher thresholds exhibiting a lighter tail. The upper straight

line is also close to the pointwise upper interval limit around 1.7 inches (where

there is still a reasonable amount of data), and above 2.7 inches the line lies

outside the intervals (although the sample sizes here are small so the interval

estimates are less reliable). A very different picture arises when considering the

highest threshold of u = 1.2, with 138 exceedances, which could be justified on

the same grounds: above this threshold the MRL is consistent with a straight line

(in fact a horizontal line indicating ξ ≈ 0) and before this level the MRL could be

considered to exhibit bias-related curvature. Both these thresholds are consistent

with the general guidelines for threshold choice using the MRL plot, but they

provide very different tail extrapolations (ξ = 0.21 and 0.003 respectively).

The threshold stability plots shown in Figure 2 also do not provide firm

conclusions. At a threshold of u = 0.395 the shape parameter appears to reach a

plateau, compared to lower thresholds which exhibit the bias-related curvature.

However, as with the MRL plot, inconsistencies are observed between the esti-

mated shape parameter at this level and higher thresholds around u = 1.2 and

2.3–2.4. The shape parameter reaches another plateau around 0.85–1.8 inches

(above which the sample variation is too large to make useful inferences), and

the shape parameter for the threshold u = 0.85 is essentially contained within all

the confidence intervals for higher thresholds. The plateau above a threshold of

u = 1.2 is also strongly indicated by the shape parameter threshold stability plot,

despite the confidence interval being much wider at this level. The corresponding

modified scale threshold stability plot exhibits some similar features, due to the

negative dependence with the shape parameter, but is rather more challenging to

interpret for high thresholds due to the large sample variability.

This example demonstrates the substantial subjectivity in interpreting these

diagnostic plots, and the resulting uncertainty. Similar challenges are seen with

the River Nidd data, shown in Tancredi et al. (2006), and many other exam-

ples in the literature. These examples suggests that a more ‘objective’ thresh-

old estimation approach is needed and that uncertainty must be accounted for.



40 C. Scarrott and A. MacDonald

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
1
.0

−
0
.5

0
.0

0
.5

Thresholds (0.01 inch increments)

M
a
x
im

u
m

 L
ik

e
lih

o
o
d
 S

h
a
p
e
 E

s
ti
m

a
te

s
 (

9
5
%

 C
I)

1
0

0
0

0

1
0

0
0

5
0

0

3
0

0

2
0

0

1
5

0

1
0

0

5
0

2
5

1
0

−
0
.7

5
−

0
.2

5
0
.2

5
0
.7

5

Number of Exceedances

u=1.2

xi=0.003(0.09)

u=0.85

xi=0.13(0.07)

u=0.395

xi=0.21(0.04)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Thresholds (0.01 inch increments)

M
a
x
im

u
m

 L
ik

e
lih

o
o
d
 M

o
d
if
ie

d
 S

c
a
le

 E
s
ti
m

a
te

s
 (

9
5
%

 C
I)

1
0

0
0

0

1
0

0
0

5
0

0

3
0

0

2
0

0

1
5

0

1
0

0

5
0

2
5

1
0

Number of Exceedances

u=1.2

sc=0.64(0.08)

u=0.85

sc=0.35(0.04)

u=0.395

sc=0.24(0.02)

Figure 2: Threshold stability plots for (upper) shape and (lower) modified scale
parameters respectively for the Fort Collins precipitation data. Circles
are maximum likelihood estimates with vertical lines as approximate
pointwise Wald 95% confidence intervals. Three thresholds u = 0.395,
0.85 and 1.2 inches are shown by vertical dashed lines with corresponding
ML parameter estimates as horizontal lines.

In particular, multiple possible thresholds are indicated in both these examples,

so our inference should take this into account. Of course, if the inferences are

insensitive to the threshold choice then there is little value to be added from

more sophisticated analysis, but in all other cases pre-fixing a single threshold in

advance seems inappropriate.
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There is a plethora of other diagnostic plots in the literature assessing other

features of the model fit at different thresholds, e.g., assessing PPP assumptions

or general model goodness of fit statistics considered by Davison & Smith (1990).

Under the assumption of Pareto type tails (ξ > 0), Hill plots and their many

variants, are commonly used, and are discussed in §4.

3. RULES OF THUMB

Leadbetter et al. (1983) showed that the threshold sequence (for different

sample sizes n), for a population in the domain of attraction of a GPD, is a func-

tion of the properties of that distribution. So for a known distribution function F

a closed form, or approximation, to the threshold sequence can be derived.

For example, a unit exponential population has threshold sequence un = log(n).

In the more relevant case of an unknown F there is no general form for the

threshold sequence, although some properties of the sequence are known (e.g.,

order statistic convergence mentioned in §1). Many of the following results follow

from fairly general classes of population distributions, such as the Hall (1982)

class, which have certain specific tail properties.

Given the general order statistic convergence properties, various rules of

thumb have been derived in the literature. Simple fixed quantile rules, like the

upper 10% rule of DuMouchel (1983), are inappropriate from a theoretical view-

point, though frequently used in practice. Ferreira et al. (2003), amongst others,

use the square root rule k =
√

n in their simulation study to deterministically

specify the tail fraction, which satisfies the intermediate order statistic conver-

gence property in §1, but the source of a formal derivation of this rule is unknown

to us. Ho & Wan (2002) and Omran & McKenzie (1999) use the empirically driven

rule k = n2/3/log[log(n)] proposed by Loretan & Philips (1994).

Reiss & Thomas (2007) heuristically justify choosing the lowest upper order

statistic k to minimize

1

k

k
∑

i=1

iβ
∣

∣

∣
ξ̂i − median(ξ̂1, ..., ξ̂k)

∣

∣

∣
(3.1)

where ξ̂i is an shape parameter estimator for the tail fraction above upper order

statistic i and the tuning parameter satisfies 0≤ β ≤ 0.5. Minimising (3.1) searches

for the tail fraction where the distribution of these estimated shape parameters

stabilises (downweighting the small tail fractions when β 6= 0) and k is chosen

as an estimate of the location of the distribution. In practice, automated imple-

mentation is this approach is unreliable for small k (despite the weighting by iβ),
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so a minimum value of k is usually used. Further, best practice would validate the

selection using a graphical summary of (3.1), similar to the threshold stability plot

above, in combination with other diagnostics. Reiss & Thomas (2007) point out

there are many sensible extensions using alternative distance metrics or weighting

schemes and potentially using smoothers when there is limited data. Neves &

Alves (2004) investigated refinements to the choice of β.

4. PROBABILISTIC RESULTS

The Hill (1975) estimator is a classic tail index estimator for the Pareto

type distribution (ξ > 0), which has a power law form with regularly varying

tails,

1 − F (x) ≈ x−αL(x) , α > 0 ,(4.1)

where L(x) is a slowly varying function, i.e.,

lim
x→∞

L(tx)

L(x)
= 1 , t > 0 ,

which allows flexibility in the lower tail but that ensures the power law behavior

dominates the upper tail. Clearly, this model does not have such flexible upper tail

behaviour as the GPD, but it is an important special case in many applications

and since a wide range of techniques has been developed for both tail index and

tail fraction estimation, it is worthy of a brief review. Let X(1), ..., X(n) represent

the data in ascending order, where we assume that heavy-tailed but negative data

are transformed to be positive. The Hill estimator for the tail index ξ = α−1 based

on the k + 1 upper order statistics,

Hk =
1

k

k
∑

i=1

log X(n−i+1) − log X(n−k) ,

is the ML estimator for relative excesses from a strict Pareto tail, i.e., with a

constant for the slowly varying function in (4.1). Beirlant et al. (2004, §4.2)

outline alternative derivations of Hk.

The results from the Hill estimator are critically dependent on the tail

fraction chosen. The Hill plot, explored by Drees et al. (2000), is another graph-

ical diagnostic for prior determination of the tail fraction, which plots the Hill

estimator for a range of values of k against either k, the tail fraction, or the cor-

responding threshold. The value of k is chosen as the largest value (i.e., lowest

threshold) such that the Hill estimator has stabilised. Despite its rather different

formulation, the Hill plot is essentially the MRL plot of the log-transformed data,
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so suffers from many of the same benefits and drawbacks, and has been referred

to as the Hill horror plot by Resnick (1997). The Hill estimator can exhibit sub-

stantial bias if the slowly varying component decays slowly in the limit (Beirlant

et al., 2004). The Hill estimator is not shift invariant, although invariant estima-

tors have been proposed by Fraga Alves (2001), Drees (1995, 1998) and Pereira

(1994). The latter two issues are not of concern here, as we focus on threshold

estimation.

The Hill plot for the Fort Collins data shown in Figure 3 provides a rather

different picture of threshold choices than do Figures 1 and 2. The low threshold

of u = 0.395 inches is suggested to be inappropriate due to the Hill function not

having stabilised. The Hill function is rather more stable around the mid-range

threshold of u = 0.85, but is unstable around the high threshold of u = 1.2 inches.

So again, the Hill plot gives a different interpretation, thus redemonstrating the

expertise required in using these diagnostic plots; see also Drees et al. (2000)

and references therein. Drees et al. (2000) show that the ‘altplot’ of Resnick &

Starica (1997), which is a simple modification to the Hill plot, by essentially using

a log-scale on the k-axis, is beneficial for cases where the slowly varying function

is non-constant but also state this is not a panacea for threshold determination.
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44 C. Scarrott and A. MacDonald

Hill (1975) also suggested using the fact that the log spacings between

the order statistics should be exponentially distributed under the Pareto tail

assumption in choosing the tail fraction, by choosing the minimum k such that
{

log
(

X(n−i+1)

)

−log
(

X(n−k)

)

: i =1, ..., k
}

does not fail a exponentiality test (e.g.,

a Kolmogorov–Smirnov or similar test). However, in their work to find an optimal

tail fraction Hall & Welsh (1985) showed that this tends to overestimate the tail

fraction in large samples. Guillou & Hall (2001) extend the idea of Hill (1975)

to derive a plug-in estimator by applying the hypothesis test on an accumulation

of the log spacings. Goegebeur et al. (2008) further considered a kernel based

goodness of fit statistic of the tail fit in the Pareto type tail case, extending

Hill (1975), but taking advantage of the relationship between the specific kernel

statistics and bias in the asymptotic mean square error of the Hill estimator.

Pickands (1975) suggested choosing the tail fraction for the more general GPD

case by minimising the distance between empirical and GPD distribution function

estimators, with the latter using the Pickands’ estimator of the parameters. This

idea was extended by Gonzalo & Olmo (2004) using a weighted distance measure,

which includes the Pickands’ measure and the Kolmogorov–Smirnov statistic as

special cases.

Various authors have investigated automated approaches to determining

the tail fraction by, for example, minimising the mean square error of estima-

tors of properties of the tail distribution, such as the tail index (Beirlant et al.,

1999), the quantiles (Ferreira et al., 2003), or the tail probabilities (Hall & Weiss-

man, 1997), for which optimal asymptotic results typically require second order

assumptions in addition to (4.1), see Beirlant et al. (2004, §4.7). For example,

the plug-in estimator for the tail fraction of Hall (1982) requires prior knowledge

of the parameters of the restricted Hall class of tail behaviours. Dekkers (1993)

considered an extension of the Hall (1982) estimator to the GPD case using an

additional moment-based estimator incorporating the usual Hill estimator, al-

lowing ξ ≤ 0. Under assumed constraints on these parameters, Hall & Welsh

(1985) were able to find a simple adaptive plug-in estimator for the tail fraction,

but, the parameters are rather difficult to estimate. The approach of Feuerverger

& Hall (1999) suffers similarly from the prescriptive form of the second order

characteristics.

Even if the assumptions underlying these approaches are appropriate, their

major drawback is that they do not account for the threshold uncertainty on

subsequent inferences. Moreover the finite sample properties of such estimators

are not well understood. The need to estimate parameters of the unknown popu-

lation distribution F prior to determination of the optimal tail fraction (e.g., tail

index or second order characteristics) has led to the development of bootstrap

approaches or algorithmic estimators. As noted by Drees et al. (2000), both re-

place the problem of threshold determination with that of other characteristics

— bootstrap sample sizes or stopping rules, respectively.
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5. COMPUTATIONAL APPROACHES

Hall (1990) first proposed a resampling based method for estimation of

the (asymptotically) optimal tail fraction, by minimising the mean square error

(MSE) of the Hill estimator. This approach was applied to the Hall class of

Pareto type tails, with a further restriction on the power law parameter of the

slowly varying component. A sub-sampling approach is used for overcoming the

substantial bias observed when using a standard bootstrap, but it requires an

initial estimate of the bias. Gomes & Oliveira (2001) showed the entire procedure

is rather sensitive to this estimate. The bias correction uses the relationship

between the bootstrap on the full and sub-sample to quantify the bias.

Danielsson et al. (2001) overcome much of the restrictiveness of the plug-

in estimator of Hall (1990) using a two stage bootstrap procedure for tail index

estimation, by minimisation of the asymptotic MSE criterion, which includes au-

tomated sample fraction estimation. They avoid the need to know the second

order parameter, which is consistently estimated as a consequence of their boot-

strap procedure. Two bootstrap estimates of the tail fraction to minimise the

MSE of an auxiliary statistic based on the Hill estimator are estimated using

two different sample sizes of a particular form. These two estimates are then

combined in a closed form to determine the asymptotically optimal tail fraction,

and consequently the tail index. The only tuning parameters are the first stage

bootstrap resample size and the number of bootstrap samples, the latter being

essentially determined by computational capacity. The choice of tuning param-

eter for the bootstrap sample size at the first stage is in some sense automated

by minimisation of a diagnostic criterion over a grid of suitable values. Further,

Gomes & Oliveira (2001) have shown that the estimates are robust to the choice

of resample size. As this approach is based around the Hill estimator it is re-

stricted to positive shape parameter (ξ > 0), though Draisma et al. (1990) have

considered extension to the GPD case.

Ferreira et al. (2003) developed a bootstrap procedure extending that of

Danielsson et al. (2001), towards optimal estimation of high quantiles (or the

upper end-point) by minimisation of the asymptotic MSE. Unlike the similar

bootstrap procedure by Hall & Weissman (1997), which is designed for tail prob-

ability estimation, they do not require knowledge of the parameters or of second

order properties of the distribution for appropriate choice of the bootstrap tuning

parameters. They note that its performance is not satisfactory for sample sizes

below 2000.

Beirlant et al. (1996) consider choosing the tail fraction to provide an opti-

mal linear fit to the Pareto quantile plot (Beirlant et al., 2004, §4.2), which uses

the fact that the log transformed Pareto variables are exponential distributed.
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They suggest using optimal weights in the regression which require knowledge

of the second order parameter, but, estimation of these can be combined in an

iterative procedure. However, as with all these approaches, after selection of the

appropriate threshold there is no formal assessment of the uncertainty associated

with the threshold choice, though some progress has been made by Caers & Dyck

(1999) in extending the Hall (1990) approach to account for the tail fraction

uncertainty in Pareto power law parameter.

Drees & Kaufmann (1998) provide a hierarchical algorithm to determine

the optimal tail fraction for the Hall class. However, this procedure requires

prior knowledge of the tail index and second order characteristics (power law of

slowly varying function), for which they provide heuristically defined suggestions

as part of their simulation study. Beirlant et al. (2004, §4.7) reviews compara-

tive studies between this algorithmic, bootstrap based and adaptive Hill based

estimators of the tail fraction. In general the restrictive assumptions underlying

these approaches hinder their wide applicability.

6. MIXTURE MODELS

The main drawback of most of the aforementioned threshold estimation

approaches is that they do not account for the uncertainty associated with the

threshold choice. In the last decade, extreme value mixture models have been

proposed which encapsulate the usual threshold model in combination with a

component intended to capture (some or) all of the non-extreme distribution

(henceforth called the ‘bulk distribution’). The motivation for ignoring the non-

extremal data in early statistical developments in extreme value modelling was

mainly that:

1. Extreme and non-extreme events are often physically caused by differ-

ent underlying processes, which implies there is little information in the

bulk distribution for describing the tail behaviour;

2. The GPD is a flexible asymptotically justifiable model for the tail ex-

cesses, but classical probability models which combine flexible tail and

bulk behaviours are hard to come by and are often application specific;

3. The information content in the sample is typically spread between the

high density ‘low information’ bulk distribution and the low density but

‘highly informative’ tail observations. The balance between these in

terms of influence on the parameters (or related quantities like return

levels) is strongly dependent on the model and estimation method.

Therefore, when including non-extreme data one has to be careful that

the model/estimator provide sufficient relative importance to the tail

versus the bulk fit.
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The general principle with the mixture models is to combine the flexible thresh-

old model (e.g., GPD), with a suitably flexible and/or application appropriate

model of the bulk distribution. The threshold is either implicitly or explicitly

defined as a parameter to be automatically estimated, and in most cases the un-

certainty associated with the threshold choice can be accounted for naturally in

the inferences. In this way, appropriate tail fits can be achieved whilst allow-

ing automated threshold estimation and, provided the bulk distribution model is

sufficiently flexible, the bulk and tail fit should not strongly influence each other.

The major drawback of such models is their ad-hoc heuristic definitions, the

asymptotic properties of which are still little understood. They have also not had

time to be well used in practice and currently there is no readily available soft-

ware implementation to allow practitioners to gain wider experience. Arguably,

the biggest danger with using these models is ensuring that the bulk and tail

fits are fairly robust to each other. They cannot be fully disjoint, as they share

information, at least about the threshold location, thus ruling out simple applica-

tion of the EM algorithm. However, robustness of the tail fit to that of the bulk

distribution is clearly of major concern. Some discussion of their robustness in

this regard will be given, with some intuition, though a fuller comparative study

is needed. Another concern with these models is their behaviour at the threshold

(e.g., is the fitted density continuous?) and whether attempts to resolve such

issues have been successful or have created other problems.

The available mixture models have been broadly classified by the type of

bulk distribution models: fully parametric, semiparametric and nonparametric.

A general description of the model and estimation approaches as proposed in

their original papers will be given, followed by discussion and comparison of their

properties and areas for future developments. Many of the common features of

the mixture models are summarised in §6.1.

6.1. Parametric bulk models

One of the simplest extreme value mixture models is the spliced distribution

consisting of two parametric components:

• A parametric model for the bulk distribution below the threshold —

gamma in Behrens et al. (2004) and normal in Carreau & Bengio (2009a);

• A threshold tail model (GPD in these proposals) above the threshold.

These components are spliced together at the threshold, which is treated as a

parameter to be estimated. Behrens et al. (2004) also mooted inclusion of other

parametric, semiparametric and nonparametric possibilities below the threshold,

but these were not developed further.
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The normal spliced with GPD tail developed by Carreau & Bengio (2009a)

shown in Figure 4.3, named the ‘hybrid Pareto’ model, was further developed

to include constraints on the parameters to ensure continuity up to the first

derivative of the density. However, due to its poor performance in practice, this

model was extended to a mixture of hybrid Pareto distributions, and is discussed

in §6.2.

Gamma

Distribution
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Threshold

GPD

Weibull 

Distribution

Transition Function - 

Cauchy CDF

Mixture

1. Behrens et al. (2004) 2. Frigessi et al. (2003)
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Threshold

Low  
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GPD

3. Carreau & Bengio (2009a) 4. Tancredi et al. (2006)
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u
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5. MacDonald et al. (2011a)

Figure 4: Schematic representations of some mixture models in the literature.
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Figure 4.1 illustrates the Behrens et al. (2004) model. The discontinuity at

the threshold highlights the lack of continuity constraint. This model was specifi-

cally designed and evaluated for distributions with a notable discontinuity at the

threshold, the relevance of which for applications is debatable. They also explic-

itly mention that in the case of a smooth transition at the threshold this type of

model (and more importantly the estimation procedure) struggles. Some evalua-

tion of performance in the latter situation was reported by Behrens et al. (2002).

In the case of a strong discontinuity this would lead to a discernible kink in mean

excess function at the threshold, so it would be easy to choose a threshold (with

little uncertainty) using traditional graphical diagnostics. In the more realistic

case of a smooth transition, the traditional diagnostics would also be harder to

interpret.

Bayesian inference was used by Behrens et al. (2004) with sensible prior

forms for the bulk, tail and threshold parameters. However, posterior sampling

for their approach is rather inefficient, as they have not accounted for the GPD

scale dependence on the threshold. Further, they treat the threshold and tail pa-

rameters as independent in the prior. These problems could be easily overcome

by suitable transformation of the GPD scale parameter or use of the PPP repre-

sentation of Smith (1989). The lack of independence of the threshold and GPD

scale parameters also makes comprehension of posterior statistics challenging.

Orthogonalisation of the GPD scale and shape parameters, or an adaptive poste-

rior sampling scheme (Roberts & Rosenthal, 2009), may help with convergence.

Cabras & Castellanos (2010) carried out a comparative study of this simple mix-

ture model and a semiparametric alternative, discussed below.

The major benefits and drawbacks of this parametric approach compared

to the semi- and nonparametric alternatives in §§6.2, 6.3, are common to other

modelling situations, so are not discussed in detail. In short, if the parametric

model is ‘correct’ then the parametric approach will usually provide the most

efficient inferences, but it will suffer when the model is misspecified. There are

currently no published results on the performance under model misspecification,

and in particular the robustness of the tail fit. In general, the coarse split of

information from the bulk and tail data will afford some robustness. However, if

the bulk fit is poor, then this will influence the location of the threshold, which

will impact the tail fit.

The most beneficial property of this mixture model approach is to provide

an objective estimate of a suitable threshold, that provides the best fit to the data

(according to the fitting metric used). However, the lack of a continuity (or higher

order) constraint at the threshold causes a specific issue with this type of model

and for similar approaches described below. The threshold adds an extra degree

of freedom, which has a strong localised effect on the fitted distribution function;

see Figure 6 of MacDonald et al. (2011a). Therefore, if the upper tail of the sample

density has spurious peaks or troughs, due to natural sample variability, then
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the threshold will often be drawn to those locations. This feature is frequently

seen in the posterior threshold samples (e.g., modes where sharp changes in the

sample density are observed) for this model and others below. However, this

type of feature also causes kinks in the MRL and deviations in the threshold

stability/Hill plots, so is actually capturing what practitioners would interpret

from these traditional graphical diagnostics as well.

A further beneficial property of these mixture models when using Bayesian

inference, or sampling based frequentist approaches, is that the entire parameter

posterior distribution is available. It is frequently observed in real life applica-

tions from the traditional graphical diagnostics that multiple suitable thresholds

are plausible, which is naturally accounted for in the inference for these mixture

models. The multiple threshold choices show themselves as a bi- or multi-modal

posteriors for the threshold, and sometimes other tail parameters; see Scarrott

& MacDonald (2010), Figure 4 of Behrens et al. (2004) and Figure 2b of Tan-

credi et al. (2006) for example. Computational Bayesian inference approaches

are particularly beneficial in this situation to avoid the optimisation challenges

associated with likelihood inference when there are multiple modes.

Posterior predictive inference (PPI) is often appropriate in applications

where the return levels for future events are of interest; see Coles & Powell (1996).

For such mixture models, PPI has a secondary benefit. Even if the underlying

density model is potentially discontinuous at the threshold, the PPI will integrate

over all posterior threshold possibilities and often provides practically continuous

density estimates. See further discussion and examples in do Nascimento et al.

(2011) and MacDonald et al. (2011a).

The first approach in the literature which attempts to give a continuous

transition between the bulk and tail models, but unfortunately can fail in ap-

plications, is provided by Frigessi et al. (2003); see Figure 4.2. Their model is

appropriate when there is a lower bound on the support, if the upper tail is of

interest (or vice versa). Without loss of generality we assume a zero lower bound.

The GPD tail is defined over the whole range of support. The bulk distribution

is also defined over the whole range of support, but is presumed to have a light

upper tail (e.g., a Weibull tail). A dynamic weight function, such as the cumu-

lative distribution function (cdf) of some smooth unimodal distribution, is then

applied to these two components, with highest weight given to the bulk distri-

bution function at low ranges in the support and high weight given to the GPD

in the upper tail. A normalization constant ensures that the density has unit

integral. The weight function allows the bulk model to dominate the lower tail

and the GPD to dominate the upper tail (especially as the bulk model has a light

upper tail), but permits a smooth transition. There is no explicit threshold, but

the threshold could be estimated by the point at which the relative contribution

of the weighted bulk model is sufficiently small compared to the weighted GPD
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tail model. Frigessi et al. (2003) point out that if the transition function is the

Heaviside function, then this model includes the Behrens et al. (2004) mixture

model as a special case.

Frigessi et al. (2003) use the Weibull for the bulk model, the GPD for

tail and the location-scale Cauchy cdf for the transition function, thus giving a

six parameter model. ML estimation is used throughout. However, parameter

identifiability can be challenging due to multiple modes, which cause problems for

simple black box optimisation schemes. More sophisticated optimisation schemes

(e.g., allowing multiple starting points) would likely be beneficial, or alternatively

a Bayesian inference MCMC based sampling scheme would be easily implemented.

Vrac & Naveau (2007) apply this mixture model to rainfall-runoff modelling.

The idea of a smooth transition is sensible, but two problems occur in prac-

tice (MacDonald, 2012). Consider the Cauchy cdf, which has a single parameter

controlling the spread of the transition from the bulk to tail model. A quick but

smooth transition (approximating the Heaviside function in the previous model)

is achieved when the Cauchy scale is almost zero. Therefore, the supposed smooth

transition can be lost in application, as the ‘localised degree of freedom’ of the

threshold discussed on page 49 rears its ugly head again. Vrac & Naveau (2007)

also noted a fast transition in some applications.

Another problem is the lack of robustness of the tail fit to that of the

bulk. Although the weight function controls the relative contributions, because

all three components of the model are defined over the whole range of support

they all potentially contribute to the fit over entire range. In particular, the GPD

reaches its pole at zero, so even though the weight applied to the GPD may be

low close to the lower bound if it is non-zero then the relative contribution of the

GPD to the lower tail fit can be high compared to the bulk model. Thus, the

lower tail fit can impact on the upper tail fit, which is undesirable. Further, the

fit in the upper tail is also impacted by the GPD and bulk models as, although

at asymptotic levels the GPD will dominate, at sub-asymptotic levels of typically

of interest in applications both the Weibull and GPD may contribute to the

tail. Thus, the fit to the bulk can again affect the tail fit. This feature can be

particularly problematic when there is an exponential or short upper tail.

As this model includes the Behrens et al. (2004) model as a special case,

most of the benefits and drawbacks carry over. Of particular note is the threshold

and GPD scale dependence, which complicates the inference.

Zhao et al. (2010) and Mendes & Lopes (2004) introduce a variant on the

Behrens et al. (2004) mixture model. They propose a mixture with a normal

distribution (as an example) for the bulk, with both tails represented by separate

threshold models (a so called two-tail model). Neither consider the threshold

dependence of the GPD scale parameter.



52 C. Scarrott and A. MacDonald

Zhao et al. (2010) apply their model to financial applications where both

the gain and loss risks are of interest. The upper and lower thresholds are esti-

mated in tandem with the other parameters in a Bayesian framework. Thus their

approach, like that of Behrens et al. (2004), allows for automated threshold choice

and uncertainty quantification. Zhao et al. (2011) and Zhao (2010) consider the

testing of asymmetry of the gain and losses tails, by comparing the model fit be-

tween a general parameterisation of both tails and the two tails having a common

shape parameter.

Prior to application of their two tail model Mendes & Lopes (2004) ro-

bustly standardise the data to make ‘well defined’ tails, though it is unclear

what is meant by this phrase, as they apply the same linear rescaling to all the

observations, thus not providing any separation of the bulk and tail data. A ro-

bust nonlinear transformation which pushes out the tail data and shrinks in the

bulk observations would be needed to achieve this goal. After standardising the

data Mendes & Lopes (2004) propose a rather lengthy estimation procedure:

1. Select a grid of candidate tail fractions for both tails, and estimate the

corresponding empirical threshold (quantile) estimates);

2. Fit a standard normal or Student-t distribution to the robustified data

and use it to find robust estimates of the two tail fractions;

3. Use L-moment estimators to robustly fit the GPD to both tails;

4. Calculate the likelihood for the combined two-tail mixture model with

these robust estimates of the tail fractions, thresholds and GPD pa-

rameters;

5. The final selection of the tail fractions is that which maximises the

likelihood.

This procedure provides an objective automated threshold estimate, but the

threshold uncertainty is ignored and it is not obvious how to evaluate the overall

uncertainty.

6.2. Semiparametric bulk models

Carreau & Bengio (2009a) propose the hybrid Pareto model depicted in

Figure 4.3, which constrains the bulk and tail densities to have continuous zeroth

and first derivatives to ensure a smooth transition at the threshold. The five

parameters are thus reduced to three. Carreau & Bengio (2009a) chose to vary

the mean and location of the normal and the GPD shape parameter, from which

the threshold and GPD scale can be derived.

The fundamental idea underlying the hybrid Pareto to ensure smoothness

at the threshold is sensible. Unfortunately, the model performs poorly in practice,
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seemingly because these two constraints are rather strong, as noted by Carreau &

Bengio (2009a). Exploration of the single constraint of continuity would confirm

this. Carreau & Bengio (2009a) used a finite mixture of these hybrid Pareto densi-

ties as their final model to overcome this. This gives a distribution of thresholds

across the mixture components. Further, the tail is approximated by multiple

GPD’s. Asymptotically the mixture component with the heaviest tail behaviour

will dominate, but the sub-asymptotic behaviour is influenced by all the tail com-

ponents. Carreau & Bengio (2009a) suggest the threshold for the dominant tail

component could be used as a proxy for the threshold choice if this is of interest.

This model bypasses the threshold estimation problem, but it has been

included because the final estimates in some sense encapsulate the uncertainty

associated with the threshold estimation. Although Carreau & Bengio (2009a)

call their mixture of hybrid Pareto’s model a nonparametric model, it is cate-

gorised here as a semiparametric approach as the number of degrees of freedom

used in estimation will generally be small, growing slowly with the sample size,

compared to the nonparametric mixtures outlined below.

Maximum likelihood estimation is used throughout, including for the num-

ber of mixture components, although a neural network learning approach is im-

plemented by Carreau & Bengio (2009b) and Carreau et al. (2009) in an extension

to nonstationary and bivariate modelling situations. Carreau & Bengio (2009a)

point out the the interrelation between the parameters means that the standard

EM algorithm cannot be used, as also indicated by Behrens et al. (2004) and Mac-

Donald et al. (2011a) for related mixture models.

The performance of the mixture of hybrid Pareto models in situations where

the tail behaviour is exponential or short tailed needs exploration. In these cases,

the normal bulk model in each component of the mixture could adequately ap-

proximate the tail, so the implied threshold would be rather variable and it is

unclear how this would affect the inferences.

A major benefit of the mixture of hybrid Pareto’s model compared to the

other mixtures is the required continuity in the zeroth and first derivatives at the

threshold. This will reduce the local degree of freedom problem of the threshold

in the other mixtures mentioned above, but will introduce greater flexibility,

so it is not clear whether the uncertainty associated with this will be reduced,

particularly in the mixture of hybrid Paretos. A drawback with this mixture is

the parameter dependence, which means there may be a lack of robustness of the

tail fit to that of the bulk, as with the dynamically weighted mixture of Frigessi

et al. (2003). However, the flexibility may override this lack of robustness, as with

the fully nonparametric mixture models of Tancredi et al. (2006) and MacDonald

et al. (2011a) outlined below. It would be interesting to investigate both of these

issues in future research.
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Cabras & Castellanos (2010) consider another semiparametric bulk model

spliced with a GPD upper tail. The bulk distribution is approximated by an

equi-spaced binning of the data, followed by fitting a Poisson log-link GLM to

the counts, with a polynomial smoother for the mean parameter. A profile like-

lihood for all the observations is obtained by combining the GPD tail model for

observations above the threshold and Poisson GLM density estimator below the

threshold. However, the fitted density for the bulk distribution is assumed to

be fixed, so the likelihood is maximised with respect to only the threshold and

GPD parameters. Appropriate scalings are applied to ensure that the density

integrates to unity. Bayesian inference is used, but the threshold dependence of

the GPD scale parameter is ignored.

do Nascimento et al. (2011) extended the Behrens et al. (2004) model by

defining the bulk distribution as a weighted mixture of gamma densities. They

use Bayesian inference, conditional on a fixed number of the gamma components,

which is chosen using a BIC- or DIC-based statistic. This ensures that specific

parametric forms or constraints such as unimodality are not imposed, yielding

a flexible model for the bulk distribution. This mixture model is unlike that of

the hybrid model described by Carreau & Bengio (2009a), as it relies on a single

GPD for tail estimate and thus requires that only one threshold be estimated.

do Nascimento et al. (2011) also showed that the use of posterior predictive

inference practically eliminates any discontinuity at the threshold, even though

the individual posterior samples will likely exhibit a discontinuity.

The major benefit of these semiparametric mixtures over the parametric

ones is that they provide reasonably flexible models for the bulk without using up

as many degrees of freedom as the nonparametric alternatives discussed below.

Thus they combine some of the benefits of both these approaches. Of course,

it is not clear whether they provide sufficient flexibility to be robust to model

misspecification, particularly robustness of the tail fit to the bulk.

6.3. Nonparametric bulk models

Tancredi et al. (2006) were the first to propose an extreme value mixture

model combining a nonparametric estimator for the bulk distribution spliced with

an extreme value tail model. They were also the first to overcome the dependence

of the GPD scale parameter on the threshold by using the PP representation for

the tail excesses. Their bulk model is the mixture of uniforms density estima-

tor of Robert (1998) and Robert & Casella (2010), providing a piecewise linear

approximation to the cdf below the threshold; see Figure 4.4. The nonparamet-

ric mixture is defined between the upper threshold and a lower threshold that

is definitely too low (which could be the lower bound on the range of support).
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A benefit of this approach is that it fixes the sample size being included in the

inference, but potentially excludes data which is uninformative about the tail

behaviour.

Bayesian inference using MCMC is implemented. A hierarchy determines

whether the uniform widths should be the same or should be allowed to vary and

to what degree. However, as there is an unknown number of uniform densities, the

parameter space varies in dimension and a reversible jump algorithm is required

(Robert & Casella, 2010), whose implementation can be challenging.

MacDonald et al. (2011a) use a kernel density estimator for the bulk dis-

tribution, spliced at the threshold with a PPP tail model shown in Figure 4.5,

following a cruder version with a GPD tail model (Scarrott & MacDonald, 2010).

Nonparametric kernel density estimators using symmetric kernels work well with

populations with unbounded support, or at least a proper tail before the lower

boundary. For populations with bounded support, a boundary-corrected kernel

density estimator is used as an alternative by MacDonald et al. (2011b). The

kernel density estimator assumes a particular kernel such as the normal density,

which is centred at each datapoint, and is parameterised by a single bandwidth.

Such kernel density estimators can approximate most smooth densities (Silver-

man, 1986). If the lower tail is heavy then MacDonald et al. (2011a) also showed

that a mixture model, with both tails replaced by threshold models, can be used

to provide flexibility and robustness of the fits between the two tails and the bulk.

MacDonald et al. (2011a) utilise standard cross-validation likelihood to

choose the bandwidth, combined with the likelihood for PPP tail model, includ-

ing the threshold, to give a full likelihood for all the observations. The combined

likelihood is used in a Bayesian inference framework, with posterior predictive

inference used for all the key quantities of interest.

The major benefit of these nonparametric approaches as compared to the

parametric approaches is that the tail fit is robust to the bulk fit, as demonstrated

by simulation in Tancredi et al. (2006). MacDonald et al. (2011b) and MacDon-

ald (2012) use sensitivity curves to show the robustness of the tail fit to that of

the bulk and vice-versa. The main drawback with the mixture of uniforms for the

bulk distribution of Tancredi et al. (2006) is the computational complexity, noted

by Thompson et al. (2009), and in particular the difficulty of ensuring conver-

gence. The nonparametric kernel density estimator is computationally simpler,

but the cross-validation likelihood can be burdensome for large samples, and

the overall computing time can be reduced by other forms of subsampling or

by using an alternative penalty function. Further, both nonparametric mixture

models could be fit in two stages: (1) fit the nonparametric density estimator,

followed by (2) put this in a combined likelihood with the tail model and carry out

the tail inferences ignoring the uncertainty associated with the bulk parameter

estimation, as in the profile likelihood approach of Cabras & Castellanos (2010).
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The lack of sensitivity of the bulk parameter estimation to the tail parameters

would mean that little would be lost while substantially reducing the computa-

tional burden.

7. OTHER APPROACHES

Dupuis (2000) proposed a robust procedure for GPD fitting, including

statistics to guide threshold choice. The optimal bias robust estimation (OBRE)

procedure weights each observation between 0 and 1 depending on how consistent

they are with the GPD model, with high weights indicating a good fit. A test

statistic (or p-value) for the weights under the null hypothesis that the GPD is

the correct model is also provided, along with average weights from simulations

under the fitted models for further guidance. She suggests trying out a sensible

set of thresholds and choose the lowest threshold such that the weights are all

‘sufficiently close to one’.

This procedure essentially replaces the threshold selection problem with

that of selecting the tuning parameter which controls the cut-off of closeness

to unity. Dupuis (2000) suggested that this new threshold choice is easier to

automate. The OBRE also requires specification of the bound on the influence

function, which balances efficiency and robustness of the estimator (too high a

bound leads to a lack of robustness but higher efficiency as more information is

utilised, and vice versa). Some guidance is required to provide a suitable choice

for this bound, but this adds to concerns whether this this approach can be fully

automated. The principle drawback with this approach is that after choosing the

threshold, the OBRE procedure reduces to a fixed threshold approach.

Thompson et al. (2009) recently developed an automated procedure for

threshold estimation and uncertainty quantification. They set a uniformly spaced

grid of possible threshold values (between the median and 98% empirical quan-

tile). For each potential threshold the GPD is fitted (using ML estimation) and

the differences in the modified scale parameters for neighbouring thresholds is

calculated. They assume asymptotic normality of these scale differences, and

use the fact that they are centred around mean zero if the GPD is the correct

model. They pool these differences and treat them as a sample of normal random

variables. A forward selection procedure (increasing the threshold increment by

increment) is then applied, until the Pearson χ2 test under the assumption of

normality and mean zero is not rejected. At this point the threshold is said to

be consistent with a GPD. A simple bootstrap approach is used to quantify the

threshold uncertainty on the final inferences.
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de Zea Bermudez et al. (2001) use a Bayesian hierarchical model for tail

estimation, essentially averaging over all possible values of tail fraction. The

GPD is used to describe the tail excesses conditional on the tail fraction, with

the prior distribution defined at the next level of the hierarchy. The tail fraction

‘parameter’ k at the next level in the hierarchy is described by a doubly truncated

Poisson distribution with parameters for the mean and truncation points chosen

to be relatively uninformative, but still ensuring a suitable tail fraction. The next

hierarchy level describes the priors for the three tail fraction parameters, followed

by their hyperparameters at the final level. They consider only the Gumbel case

(exponential upper tail). In order to avoid the specification of the bulk model, as

used in the extreme value mixture models outlined in §6, they use an approximate

posterior, assuming that the contribution to the likelihood from the lower order

statistics can be safely ignored and only the conditional contributions for the

upper tail fraction contribute. Therefore, for each random effect for the tail

fraction k in the hierarchy, there is a differing amount of data contributing to

the approximate likelihood (and therefore posterior). The properties of such an

estimator (e.g., asymptotics, relative weighting of data points) are unclear.

Cabras & Morales (2007) propose using a sequential outlier detection method

to identify points above (below) some upper (lower) threshold which appear to

differ in character from the tail(s) of some assumed known parametric model for

the population distribution. The partial posterior predictive distribution is used

to sequentially estimate the likelihood of observing the pairs of the most outlying

(upper and lower) order statistics under the assumed population model, ignor-

ing those that have already been dropped. This procedure continues until the

probability of observing both in the pair is sufficiently high. The thresholds are

then defined by the last upper and lower order statistics that were dropped. Of

course, this requires specification of the outlyingness tolerance, which the user

must specify a priori, though the authors claim this will be straightforward to

elicit. In some ways this approach is related to the two-tail models considered

by Zhao et al. (2010) and Mendes & Lopes (2004) discussed above. No threshold

uncertainty quantification is applied.
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