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Abstract:

• Suppose that a random sample of size ni is drawn from a gamma distribution with
known shape parameter νi > 0 and unknown scale parameter βi > 0, i= 1, 2, satis-
fying 0 < β1 ≤ β2. In estimation of β1 and β2 under the entropy loss function, we
consider the class of mixed estimators of β1 and β2. It is shown that a subclass of
mixed estimators of βi beats the usual estimators Xi/νi, i= 1, 2, and the inadmissible
estimators in the class of mixed estimators are derived. Also the asymptotic efficiency
of mixed estimators relative to the usual estimators are obtained. Finally the results
are extended to a subclass of the scale parameter exponential family and the family
of transformed chi-square distributions.
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1. INTRODUCTION

When an ordering among parameters is known in advance, the problem

of estimating the smallest or the largest parameters arises in various practical

problems. For example, in estimating the mean lives of two components in which

one is produced by a standard factory and the other is produced by a local factory,

it is quite natural to assume an ordering among mean lives of the components

that produced by two factory.

Estimating the ordered parameters has been considered by several research-

ers. For a classified and extensively reviewed work in this area, see van Eeden

(2006). Suppose that an estimator is admissible when no information on the

ordering of parameters is given. Then a natural question of interest is: Does this

estimator remain admissible when it is assumed that the parameters are ordered?

A few researchers address this question for some well known distributions

under the Squared Error Loss (SEL) and scale-invariant SEL function. For ex-

ample, Katz (1963) introduced mixed estimators for simultaneous estimation of

two ordered binomial parameters and showed that they are better than the un-

restricted Maximum Likelihood Estimators (MLEs). Kumar and Sharma (1988)

considered mixed estimators for two ordered normal means and discussed the

minimaxity and inadmissibility of them. In estimating the ordered scale parame-

ters of two exponential distributions Kaur and Singh (1991), Vijaysree and Singh

(1991,1993), Kumar and Kumar (1993,1995), and Misra and Singh (1994) con-

sidered componentwise or simultaneous estimation of the ordered means of two

exponential distributions and discussed the admissibility and inadmissibility of

mixed estimators based on the sample means and the restricted MLEs. In es-

timating the ordered scale parameters of two gamma distributions, Misra et al.

(2002) derived a smooth estimator that improves upon the best scale equivariant

estimators, Chang and Shinozaki (2002) considered estimation of linear functions

of the ordered scale parameters and Meghnatisi and Nematollahi (2009) consid-

ered admissibility and inadmissibility of mixed estimators of the ordered scale

parameters when the shape parameters are arbitrary and known, see also Self

and Liang (1987).

Suppose that Xij , j = 1, 2, ..., ni, i = 1, 2, be two independent random

samples from gamma distribution with known shape parameter νi > 0 and

unknown scale parameter βi > 0, i = 1, 2, with probability density function (pdf)

fXij
(x) =

1

βνi

i Γ(νi)
xνi−1e−x/βi , x > 0, νi > 0, βi > 0 ,(1.1)

j = 1, ..., ni, i = 1, 2 .

We assume that 0 < β1 ≤ β2, and want to estimate β1 and β2 component-wise.
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It is interesting to note that in the literature, estimating the ordered param-

eters are often considered under the SEL and scale-invariant SEL function which

are symmetric about the parameter value and convex in estimator δ. In some es-

timation problems, over-estimation may be more serious than under-estimation.

For example, in estimating the average life of the components of an aircraft,

over-estimation is usually more serious than under-estimation. In such cases, the

usual methods of estimation, which are based on symmetric loss function may be

inappropriate. In this regard, Misra et al. (2004) used asymmetric LINEX loss

function to estimate the ordered parameters of two normal populations. As an

alternative to scale-invariant SEL, which is appropriate for estimating the scale

parameters β1 and β2, consider the entropy loss function given by

L(βi, δi) =
δi
βi

− ln
δi
βi

− 1 , i = 1, 2 ,(1.2)

which is also known as Stein’s loss. This loss is convex in δi and not symmetric,

also it penalizes heavily under-estimation. In estimating the ordered parameters

under the entropy loss function, Parsian and Nematollahi (1995) discussed the

admissibility of usual estimators of the ordered Poisson parameters and Chang

and Shinozaki (2008) compared the linear function of maximum likelihood and

unbiased estimators of ordered gamma scale parameters and its reciprocals. For a

review of the literature in using entropy loss, see Parsian and Nematollahi (1996)

and references cited therein. Under the loss (1.2), the best scale invariant and

admissible estimator of βi under the model (1.1) is δi =
∑ni

j=1Xij/niνi = Xi/νi,

i = 1, 2 (see Dey et al., 1987 and Nematollahi, 1995), and it is also the MLE of βi,

i = 1, 2.

In this paper we consider the class of mixed estimators of β1 and β2 under

the model (1.1) with the restriction 0 < β1 ≤ β2, and discuss the admissibility

and inadmissibility of the usual and mixed estimators of β1 and β2 under the

entropy loss (1.2). To this end, in Section 2, a subclass of mixed estimators of βi
that beats the usual estimators δi = Xi/νi, i = 1, 2, is obtained and the inad-

missible estimators in the class of mixed estimators are identified. In Section 3,

the admissible estimators in the class of mixed estimators are considered. The

asymptotic efficiency of mixed estimators relative to the usual estimators are

given in Section 4. In Section 5, the results are extended to a subclass of the

scale parameter exponential family and also the family of transformed chi-square

distributions introduced by Rahman and Gupta (1993).

2. INADMISSIBILITY RESULTS

Let Xi1, Xi2, ..., Xini
, i = 1, 2, be two independent random samples from

Gamma (νi, βi)-distribution, i = 1, 2, with pdf (1.1) where 0 < β1 ≤ β2 are un-

known and ν1, ν2 are known positive real valued shape parameters. Let γi = niνi
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and δi =
ni
∑

j=1
Xij/γi = Xi/νi, i = 1, 2. Then δ1 and δ2 are the ML, best scale

equivariant and admissible estimators of β1 and β2, respectively, when β1 and β2

are unrestricted. Consider the mixed estimators

δ1α = min
(

δ1, αδ1 +(1−α)δ2
)

, 0 ≤ α < 1 ,(2.1)

and

δ2α = max
(

δ2, αδ2 +(1−α)δ1
)

, 0 ≤ α < 1 ,(2.2)

of β1 and β2, respectively. When α = α1 = γ1
γ1+γ2

, then δ1α is the MLE of β1 and

if α = α2 = γ2
γ1+γ2

, then δ2α is the MLE of β2 when β1 ≤ β2, see Robertson et al.

(1988) and Chang and Shinozaki (2002) for more details.

In this section, we identify the values of α such that δiα is inadmissible

among the class of mixed estimators of βi and δiα dominates the usual estimator δi
of βi, i = 1, 2. Let R(β, δiα) = E

[

δiα
βi

− ln δiα
βi

−1
]

and R(β, δi) = E
[

δi
βi
− ln δi

βi
−1
]

be the risk functions of δiα and δi, i = 1, 2, respectively. Also, let y1 = β2/β1,

y2 = β1/β2 and z = γ1y1/(γ1y1+γ2). Since 0<β1 ≤ β2, we have y1 ≥ 1, 0<y2 ≤1

and 0< z < 1.

Theorem 2.1. With α1 = γ1
γ1+γ2

, under the entropy loss function (1.2),

for α ∈ (α1, 1), γ1 > 1 and 0 < β1 ≤ β2,

R(β, δ1α1
) < R(β, δ1α) < R(β, δ1) .

Proof: Let T1 = γ2δ2
γ1y1δ1+γ2δ2

and T2 = γ1δ1
β1

+ γ2δ2
β2

. Then δ1 = β1T2(1−T1)
γ1

,

δ2 = β2 T1T2

γ2
and T1 and T2 are statistically independent with T1 ∼ Beta(γ2, γ1)

and T2 ∼ Gamma(γ1 + γ2, 1). Let ∆1 = R(β, δ1) −R(β, δ1α), then

∆1 = E

[

{

δ1
β1

− ln
δ1
β1

− αδ1 + (1− α)δ2
β1

+ ln
αδ1 + (1− α)δ2

β1

}

I[0,∞)(δ1− δ2)

]

= E

[

{

(1− α)(δ1− δ2)

β1
+ ln

(

α+ (1− α)
δ2
δ1

)}

I[0,∞)(δ1− δ2)

]

= E

[

{

1− α

γ1γ2

(

γ2 − (γ1y1 + γ2)T1

)

T2

+ ln

(

α+ (1− α)
γ1y1T1

γ2(1− T1)

)}

I0,1−z](T1)

]

= E
[

f1α(T1) I[0,1−z](T1)
]

,

(2.3)
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where

f1α(x) =
(1− α) (γ1 + γ2)

γ1γ2

(

γ2 − (γ1y1 + γ2)x
)

+ ln

(

αγ2(1− x) + (1− α)γ1y1x

γ2(1− x)

)

.

(2.4)

From (2.4) and the distribution of T1, the expectation (2.3) exist whenever γ1 > 1.

Now using the fact that lnx ≥ 1 − 1
x for x > 0, we have

f1α(x) ≥
(1− α)

(

γ2 − (γ1y1 + γ2)x
)

γ1γ2

(

αγ2 (1− x) + (1− α)γ1y1x
)

×
[

x(γ1 + γ2)
(

(1− α)γ1y1− αγ2

)

+ αγ2(γ1 + γ2) − γ1γ2

]

=
1− α

γ1γ2

[

αγ2(1− x) + (1− α)γ1y1x
] g1α(x) ,

(2.5)

where

g1α(x) = A1(y1, α)x2 +B1(y1, α)x+ C1(y1, α) ,(2.6)

and

A1(y1, α) = (γ1 + γ2) (γ1y1 + γ2)
(

αγ2 − (1− α)γ1y1

)

,

B1(y1, α) = γ2

[

(γ1y1 + γ2)
(

γ1− α(γ1 + γ2)
)

+ (γ1 + γ2)
(

(1− α)γ1y1− αγ2

)

]

,

C1(y1, α) = γ2
2

[

α(γ1 + γ2) − γ1

]

.

(2.7)

Note that C1(y1, α) > 0 for all y1 ≥ 1 and α > α1. When A1(y1, α) 6= 0, the

quadratic form (2.6) has the roots

x1 = 1 − z and x2 = 1 − z +
γ1γ

2
2 (y1−1)

A1(y1, α)
.

If A1(y1, α) > 0, then x1 = 1 − z is the smaller positive root and if A1(y1, α)< 0

then x1 =1−z is the only positive root when α∈ (α1,1). For the case A1(y1,α) = 0,

x1 = 1−z is the only root. So, from (2.5), f1α(x) > 0 for x ∈ [0, 1 − z], and

hence ∆1 > 0 for all 0 < β1 ≤ β2 when α ∈ (α1, 1), i.e., R(β, δ1α) < R(β, δ1) for

all α ∈ (α1, 1) when γ1 > 1.
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Now from (2.3) and (2.4), when γ1 > 1 we have

∂R(β, δ1α)

∂α
= −∂∆1

∂α

= E

[

{

γ1 + γ2

γ1γ2

(

γ2 − (γ1y1 + γ2)T1

)

− γ2(1− T1) − γ1y1T1

αγ2(1− T1) + (1− α)γ1y1T1

}

× I[0,1−z](T1)

]

= E





g1α(T1)

γ1γ2

{

αγ2(1− T1) + (1− α)γ1y1T1

} I[0,1−z](T1)



 ,

(2.8)

where g1α(x) is given by (2.6). For α ∈ (α1, 1) the above expectation is exist,

and using a similar argument after relation (2.7), we conclude that g1α(x) > 0 for

all α ∈ (α1, 1) and x ∈ [0, 1− z]. Therefore, from (2.8), R(β, δ1α) is an increasing

function of α for α ∈ (α1, 1), i.e., R(β, δ1α1
) < R(β, δ1α) for all α ∈ (α1, 1) and

γ1 > 1, which completes the proof.

To compare the risks of δ1α1
, δ1α and δ1, we use a Monte Carlo simulation

study. First note that γiδi
βi

∼ Gamma(γi, 1), i = 1, 2, so the risk function of δi,

i = 1, 2, under the entropy loss function (1.2) is given by

R(βi, δi) = E

[

δi
βi

− ln
δi
βi

− 1

]

= 1 − E

[

ln
γiδi
βi

]

+ ln γi − 1

= −Γ′(γi)

Γ(γi)
+ ln γi = ln γi − ψ(γi) , i = 1, 2 ,

(2.9)

where ψ(γi) = Γ′(γi)
Γ(γi)

is the digamma function. Using similar argument as in proof

of Theorem 2.1, we have

R(β, δ1α) = E

[

δ1α
β1

− ln
δ1α
β1

− 1

]

= E

[

(

αδ1 + (1− α)δ2
β1

− ln
αδ1 + (1− α)δ2

β1
− 1

)

I[0,∞)(δ1− δ2)

+

(

δ1
β1

− ln
δ1
β1

− 1

)

I(0,∞)(δ2 − δ1)

]

= E

[(

δ1− (1− α) (δ1− δ2)

β1
− ln

(

δ1− (1− α) (δ1− δ2)

β1

)

− 1

)

× I[0,∞)(δ1− δ2) +

(

δ1
β1

− ln
δ1
β1

− 1

)

I(0,∞)(δ2 − δ1)

]

= E

[{

[

T2(1− T1)

γ1
− 1− α

γ1γ2

(

γ2 −
(γ1

y2
+ γ2

)

T1

)

T2

]

− ln

[

T2(1−T1)

γ1
− 1−α
γ1γ2

(

γ2−
(γ1

y2
+ γ2

)

T1

)

T2

]

−1

}

I(0,1−z](T1)

+

{

T2(1− T1)

γ1
− ln

(

T2(1− T1)

γ1

)

− 1

}

I(1−z,1)(T1)

]

.

(2.10)
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Similarly R(β, δ1α1
) is obtained with replacing α by α1 in (2.10). To calculate

R(β, δ1α) in (2.10), we generate a random sample of size m1 = 1000 from T1 ∼
Beta(γ2,γ1) and a random sample of size m2 = 1000 from T2 ∼Gamma(γ1+γ2,1)

for some values of γ1 and γ2. Then by using Monte Carlo integration, the esti-

mated risk of (2.10) is computed for α and α1. Tables 1 and 2 show the risk of δ1
and estimated risks of δ1α1

and δ1α for some values of γ1, γ2 and α. From these

tables we observe that R(β, δ1α1
) < R(β, δ1α) < R(β, δ1) for α ∈ (α1, 1), which is

proved analytically in Theorem 2.1.

Table 1: Estimated risks of δ1α1
and δ1α when γ1 = 1 in comparison of

R(β, δ1) = 0.5772.

γ2 = 1, α = 0.6 γ2 = 2, α = 0.5 γ2 = 3, α = 0.4
y2

R(β, δ1α1
) R(β, δ1α) R(β, δ1α1

) R(β, δ1α) R(β, δ1α1
) R(β, δ1α)

0.1 0.5481 0.5502 0.5474 0.5496 0.5256 0.5263
0.2 0.5419 0.5459 0.5209 0.5285 0.5273 0.5310
0.3 0.5515 0.5559 0.5261 0.5341 0.5012 0.5096
0.4 0.5643 0.5688 0.5087 0.5202 0.5103 0.5181
0.5 0.5080 0.5137 0.5306 0.5405 0.5050 0.5149
0.6 0.5192 0.5236 0.5100 0.5222 0.4724 0.4839
0.7 0.5051 0.5111 0.5424 0.5535 0.4652 0.4762
0.8 0.5430 0.5474 0.5258 0.5347 0.4743 0.4841
0.9 0.5341 0.5382 0.4586 0.4675 0.4603 0.4699
1.0 0.5123 0.5161 0.4914 0.4990 0.4581 0.4656

Table 2: Estimated risks of δ1α1
and δ1α when γ1 = 2 in comparison of

R(β, δ1) = 0.2704.

γ2 = 2, α = 0.7 γ2 = 3, α = 0.6 γ2 = 4, α = 0.5
y2

R(β, δ1α1
) R(β, δ1α) R(β, δ1α1

) R(β, δ1α) R(β, δ1α1
) R(β, δ1α)

0.1 0.2674 0.2685 0.2582 0.2589 0.2666 0.2668
0.2 0.2596 0.2619 0.2578 0.2602 0.2498 0.2514
0.3 0.2497 0.2542 0.2633 0.2674 0.2502 0.2538
0.4 0.2297 0.2369 0.2629 0.2685 0.2637 0.2679
0.5 0.2358 0.2433 0.2410 0.2485 0.2431 0.2500
0.6 0.2391 0.2468 0.2103 0.2194 0.2254 0.2317
0.7 0.2358 0.2451 0.2389 0.2481 0.2288 0.2371
0.8 0.2510 0.2589 0.2243 0.2338 0.2093 0.2155
0.9 0.2531 0.2618 0.2284 0.2352 0.2344 0.2392
1.0 0.2332 0.2395 0.2262 0.2338 0.2369 0.2412
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Theorem 2.2. With α2 = γ2
γ1+γ2

= 1−α1, under the entropy loss function

(1.2), for α ∈ (α2, 1), γ2 > 1 and 0 < β1 ≤ β2,

R(β, δ2α2
) < R(β, δ2α) < R(β, δ2) .

Proof: Let ∆2 = R(β, δ2) − R(β, δ2α), then using similar argument as in

the proof of Theorem 2.1, we have

∆2 = E

[

{

(1− α)(δ2 − δ1)

β2
+ ln

(

α+ (1− α)
δ1
δ2

)}

I[0,∞)(δ1 − δ2)

]

= E

[

{

1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

+ ln

(

α+ (1− α)
γ2y2(1 − T1)

γ1T1

)}

I[0,1−z](T1)

]

= E
[

f2α(T1) I[0,1−z](T1)
]

,

(2.11)

where

f2α(x) =
(1− α)(γ1 + γ2)

γ1γ2

(

(γ1 + γ2y2)x− γ2y2

)

+ ln

(

αγ1x+ (1− α) γ2y2(1− x)

γ1x

)

.

(2.12)

From (2.12) and the distribution of T1, the expectation (2.11) exists whenever

γ2 > 1. Now from (2.12) and the inequality ln(x) ≥ 1 − 1
x for x > 0, we have

f2α(x) ≥ 1− α

γ1γ2

[

αγ1x+ (1− α) γ2y2(1− x)
] g2α(x) ,(2.13)

where

g2α(x) = A2(y2, α)x2 +B2(y2, α)x+ C2(y2, α) ,(2.14)

and

A2(y2, α) = (γ1 + γ2) (γ1 + γ2y2)
(

αγ1 − (1− α)γ2y2

)

,

B2(y2, α) = γ2

[

(γ1 + γ2y2)
(

(1− α) (γ1 + γ2)y2 − γ1

)

− (γ1 + γ2) y2

(

αγ1 − (1− α)γ2y2

)

]

,

C2(y2, α) = γ2
2 y2

[

γ1 − (1− α) (γ1 + γ2) y2

]

.

(2.15)
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Note that C2(y2, α)> 0 and A2(y2, α)> 0 for all y2 ≤ 1 and α>α2. The quadratic

form (2.14) has the roots

x1 = 1 − z and x2 = 1 − z +
γ2

1γ2(1 − y2)

A2(y2, α)
,

and hence x1 = 1−z is the smallest positive root. Hence, from (2.13), f2α(x) > 0

for x ∈ [0, 1 − z], and ∆2 > 0 for all 0 < β1 ≤ β2 when α ∈ (α2, 1), which is

shown that R(β, δ2α) < R(β, δ2) for all α ∈ (α2, 1) when γ2 > 1.

Now, similar to the proof of Theorem 2.1, it is easy to show that for γ2 > 1,

∂R(β, δ2α)

∂α
= −∂∆2

∂α

= E

[

{

γ1 + γ2

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

− γ1T1 − γ2y2(1 − T1)

αγ1T1 + (1− α) γ2y2(1 − T1)

}

× I[0,1−z](T1)

]

= E





g2α(T1)

γ1γ2

{

αγ1T1 + (1− α) γ2y2(1 − T1)
} I[0,1−z](T1)



 ,

(2.16)

where g2α(x) is given by (2.14). Since g2α(x) > 0 for all x ∈ [0, 1 − z] and α ∈
(α2, 1), so from (2.16) R(β, δ2α) is an increasing function of α for α ∈ (α2, 1),

i.e., R(β, δ2α2
) < R(β, δ2α) for all α ∈ (α2, 1) and γ2 > 1, which completes the

proof.

Now we compare the risks of δ2α2
, δ2α and δ2. Similar to (2.10), we can

show that

R(β, δ2α) = E

[

δ2α
β2

− ln
δ2α
β2

− 1

]

= E

[{

[

T1T2

γ2
− 1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

]

− ln

[

T1T2

γ2
− 1− α

γ1γ2

(

(γ1 + γ2y2)T1 − γ2y2

)

T2

]

− 1

}

× I(0,1−z](T1) +

{

T1T2

γ2
− ln

(

T1T2

γ2

)

− 1

}

I(1−z,1)(T1)

]

.

(2.17)

To calculate R(β, δ2α) in (2.17), we use a Monte Carlo simulation study similar

to the one used for computing (2.10). Tables 3 and 4 show the risk of δ2 and

estimated risks of δ2α2
and δ2α for some values of γ1, γ2 and α. From these tables

we see that R(β, δ2α2
) < R(β, δ2α) < R(β, δ2) for α ∈ (α2, 1), which is proved

analytically in Theorem 2.2.
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Table 3: Estimated risks of δ2α2
and δ2α when γ2 = 2 in comparison of

R(β, δ2) = 0.2704.

γ1 = 1, α = 0.8 γ1 = 2, α = 0.7 γ1 = 3, α = 0.6
y2

R(β, δ2α2
) R(β, δ2α) R(β, δ2α2

) R(β, δ2α) R(β, δ2α2
) R(β, δ2α)

0.1 0.2452 0.2469 0.2610 0.2634 0.2531 0.2538
0.2 0.2551 0.2629 0.2454 0.2499 0.2544 0.2610
0.3 0.2468 0.2557 0.2256 0.2354 0.2273 0.2377
0.4 0.2248 0.2378 0.2062 0.2204 0.2039 0.2184
0.5 0.2189 0.2303 0.1947 0.2126 0.1985 0.2141
0.6 0.2045 0.2185 0.1838 0.2025 0.1787 0.1962
0.7 0.2151 0.2281 0.1846 0.2009 0.1644 0.1796
0.8 0.2149 0.2272 0.1784 0.1938 0.1569 0.1718
0.9 0.1912 0.2017 0.1849 0.1968 0.1568 0.1672
1.0 0.1942 0.2002 0.1607 0.1723 0.1444 0.1539

Table 4: Estimated risks of δ2α2
and δ2α when γ2 = 3 in comparison of

R(β, δ2) = 0.1758.

γ1 = 2, α = 0.7 γ1 = 3, α = 0.6 γ1 = 4, α = 0.5
y2

R(β, δ2α2
) R(β, δ2α) R(β, δ2α2

) R(β, δ2α) R(β, δ2α2
) R(β, δ2α)

0.1 0.1706 0.1711 0.1655 0.1658 0.1689 0.1692
0.2 0.1719 0.1735 0.1644 0.1656 0.1610 0.1618
0.3 0.1567 0.1595 0.1628 0.1649 0.1623 0.1638
0.4 0.1568 0.1608 0.1458 0.1494 0.1527 0.1552
0.5 0.1419 0.1474 0.1325 0.1370 0.1362 0.1392
0.6 0.1340 0.1402 0.1371 0.1415 0.1276 0.1309
0.7 0.1359 0.1419 0.1174 0.1226 0.1155 0.1188
0.8 0.1281 0.1335 0.1208 0.1252 0.1031 0.1065
0.9 0.1194 0.1242 0.1159 0.1184 0.1024 0.1041
1.0 0.1220 0.1242 0.1035 0.1055 0.1007 0.1015

Remark 2.1. Theorem 2.1 shows that for α ∈ (α1, 1) the mixed estima-

tors (2.1) are inadmissible and are beaten by the MLE δ1α1
of β1 when γ1 > 1.

Also Theorem 2.2 show that for α ∈ (α2, 1) the mixed estimators (2.2) are in-

admissible and are beaten by the MLE δ2α2
of β2 when γ2 > 1. If γ1 = γ2 = γ,

i.e., n1ν1 = n2ν2, then α1 = α2 = 1
2 and the mixed estimators δ1α and δ2α are

inadmissible for α ∈ (1
2 , 1) when γ > 1. Note that this is the case when n1 = n2

and ν1 = ν2.
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3. ADMISSIBILITY RESULTS

In this section, for the case γ1 = γ2 = γ and γ > 1, we discuss the admis-

sibility of δ1α and δ2α for β1 and β2 in the class of mixed estimators (2.1) and

(2.2), respectively. As noted in Remark 2.1, these estimators are inadmissible

when α ∈ (1
2 , 1). So, we discuss their admissibility for α ∈ [0, 1

2 ] in the sequel.

(i) Admissibility of δ2α

For deriving admissible estimators in the class of mixed estimators (2.2),

we find values of α that minimizes the risk function R(β, δ2α). From (2.16) with

γ1 = γ2 = γ and γ > 1, we have

∂R(β, δ2α)

∂α
= E

[

{

2
(

(1+ y2)T1 − y2

)

− (1+ y2)T1 − y2

α
{

(1+ y2)T1 − y2

}

+ y2(1− T1)

}

I[0, y2
1+y2

](T1)

](3.1)

which is a strictly increasing function of α, i.e., R(β, δ2α) for fixed β is a strictly

convex function of α. Therefore for α > 0, γ > 1 and fixed β, R(β, δ2α) will be

minimized at the point α given by ∂R(β,δ2α)
∂α = 0 which reduces to

E

[

{

2

y1
− 1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)

}

×
{

(1+ y1)T1 − 1
}

I[0, 1

1+y1
](T1)

]

= 0 .

(3.2)

For y1 = 1, (3.2) reduces to

(

2α2 (1, γ) − 1
)

E

[

(2T1 − 1)2

α2(1, γ) {2T1 − 1} + (1 − T1)
I[0, 1

2
](T1)

]

= 0 .(3.3)

Since the expectation in (3.3) is finite for α2(1, γ) > 0 and γ > 1, so (3.3) has the

root α2(1, γ) = 1
2 . From (3.2), α2(y1, γ) is a continuous function of y1 ≥ 1 but the

behavior of α2(y1, γ) can not be determined analytically. The graph of α2(y1, γ)

as a function of y1 ≥ 1 for different values of γ > 1 are shown in Figure 1. From

this figure we observe that α2(y1, γ) decreases as y1 or γ or both increases, and

for fixed γ, α2(y1, γ) → −∞ as y1 → ∞. Therefore for each α ∈ [0, 1
2 ] there is

a y1 for which R(β, δ2α) is minimum, which implies that for α ∈ [0, 1
2 ], δ2α is

admissible in the class of mixed estimators. So, we have the following conjecture.
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Figure 1: Graph of α2(y1, γ) for different values of γ.

Conjecture 3.1. For γ1 = γ2 = γ and γ > 1, under the entropy loss func-

tion (1.2), the estimator δ2α in the class of mixed estimators (2.2) is admissible

if and only if α ∈ [0, 1
2 ].

Remark 3.1. From (3.1) we have

∂R(β, δ2α)

∂α
= E

[{

2

y1
− 1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)

}

×
{

(1+ y1)T1 − 1
}

I[0, 1

1+y1
](T1)

]

,

and for y1 > 2,

2

y1
< 1 <

1

1 − T1
<

1

α2(y1, γ)
{

(1+ y1)T1 − 1
}

+ (1 − T1)
,

so, ∂R(β,δ2α)
∂α > 0 when y1 > 2. Therefore the minimum value α2(y1, γ) of R(β, δ2α)

is attained when 1 ≤ y1 < 2, so we only need the graph of α2(y1, γ) for 1 ≤ y1 < 2

(see Figure 1).
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(ii) Admissibility of δ1α

Similarly, From (2.8) with γ1 = γ2 = γ and γ > 1, we have

∂R(β, δ1α)

∂α
= E

[

{

2
(

1−(1+y1)T1

)

− 1 − (1+ y1)T1

α
{

1 − (1+ y1)T1

}

+ y1T1

}

I[0, 1

1+y1
](T1)

]

,

which is a strictly increasing function of α, i.e., R(β, δ1α) for fixed β is a strictly

convex function of α. Therefore, for α > 0, γ > 1 and fixed β, R(β, δ1α) will be

minimized at the point α given by ∂R(β,δ1α)
∂α = 0 which reduces to

E

[

{

2 − 1

α1(y1, γ)
{

1 − (1+ y1)T1

}

+ y1T1

}

×
{

1 − (1+ y1)T1

}

I[0, 1

1+y1
](T1)

]

= 0 .

(3.4)

Similar to part (i), for y1 = 1, (3.4) has the root α1(1, γ) = 1
2 . From (3.4),

α1(y1, γ) is a continuous function of y1 ≥ 1 but the behavior of α1(y1, γ) can

not be determined analytically. The graph of α1(y1, γ) as a function of y1 ≥ 1

for different values of γ > 1 are shown in Figure 2. From this figure we can

not determine the minimum value of α for each γ > 1. So, the admissibility or

inadmissibility of δ1α for α ∈ [0, 1
2) remain unsolved.

Figure 2: Graph of α1(y1, γ) for different values of γ.
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Remark 3.2. The above argument shows that for y1 = 1, R(β, δ1α) and

R(β, δ2α) minimized at α1(1, γ) = 1
2 and α2(1, γ) = 1

2 , respectively. So, for γ1 =

γ2 = γ and γ > 1, the MLEs δ1, 1
2

, δ2, 1
2

are admissible for β1 and β2 among the

class of mixed estimators (2.1) and (2.2), respectively.

4. EFFICIENCY OF MIXED ESTIMATORS

Let e(δiα, δi) = R(β, δi)/R(β, δiα) denote the efficiency of δiα relative to δi,

i = 1, 2. In Section 2, we derived conditions for which δiα, i = 1, 2, is more efficient

than δi, i = 1, 2. Since R(β, δi) and R(β, δiα) are positive, so e(δiα, δi) > 0 for

i = 1, 2. In this section, we compare the asymptotic efficiency of these mixed

estimators relative to usual estimators.

From (2.9), we have R(β, δi) = ln γi−ψ(γi), i = 1, 2. Note that for γi > 0,
1

2γi
< ln γi − ψ(γi) <

1
γi

, i = 1, 2.

Theorem 4.1. Let γ1 = γ2 = γ and γ > 1, then for 0 ≤ α < 1 and for

i = 1, 2,

(a) lim
y1→∞

e(δiα, δi) = 1 for all γ > 1.

(b) lim
γ→∞

e(δiα, δi) = 1 for all 0 < β1 < β2.

Proof: (a) For i = 1, from (2.3) and (2.9) with γ1 = γ2 = γ and γ > 1

we have
∣

∣

∣

∣

1− R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

=
1

ln γ−ψ(γ)

∣

∣

∣
E[f1α(T1)] I[0, 1

1+y1
](T1)

∣

∣

∣
≤ A(γ, y1)

∫ z1

0
|f1α(x)| dx

where A(γ, y1) = Γ(2γ) (z1(1−z1))γ−1

Γ2(γ) [ln γ−ψ(γ)]
, z1 = 1

1+y1
and f1α(x) is given by (2.4). Notice

that

|f1α(x)| =

∣

∣

∣

∣

2(1− α)
(

1 − (1+ y1)x
)

+ ln
α(1− x) + (1− α)y1x

1− x

∣

∣

∣

∣

≤ 2(1− α)
[

1 − (1+ y1)x
]

− ln
α(1− x) + (1− α)y1x

1− x
.

Now, if α = 0 then |f1α(x)| ≤ 2[1 − (1+ y1)x] − ln x
1−x − ln y1 and

∣

∣

∣

∣

1 − R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

≤ A(γ, y1)

{

−
[

1 − (1+ y1)x
]2

1+ y1
− x lnx

− (1− x) ln(1− x) − x ln y1

∣

∣

∣

1

1+y1

0

}

= A(γ, y1)B1(y1) ,

(4.1)
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where

B1(y1) =
1

1+ y1
+ ln

(

1+ y1

y1

)

.(4.2)

If 0 < α < 1, then using the fact lnx ≥ 1 − 1
x , x > 0, we have

|f1α(x)| ≤ 2(1− α)
[

1− x(1+ y1)
]

+
(1− α)

[

1 − (1+ y1)x
]

α(1− x) + (1− α)y1x
,

and

∣

∣

∣

∣

1 − R(β, δ1α)

R(β, δ1)

∣

∣

∣

∣

= A(γ, y1)

{

−(1− α)
[

1 − (1+ y1)x
]

1+ y1
−
[

(1− α) (1+ y1)

y1− α(1+ y1)

]

×
[

x− α ln
(

α(1− x) + (1− α)y1x
)

y1− α(1+ y1)

− ln
(

α(1− x) + (1− α)y1x
)

1+ y1

]

} ∣

∣

∣

∣

∣

1

1+y1

0

= A(γ, y1)B2(α, y1) ,

(4.3)

where

B2(α, y1) = (1− α)

[

1

1+ y1
− 1

y1− α(1+ y1)

×
{

1 − y1

y1− α(1+ y1)
ln

(

y1

α(1+ y1)

)}

]

.

(4.4)

It is easy to verify that when α∈ (0, 1), B1(y1)→ 0 and B2(α, y1)→ 0 as y1→∞.

Also 0≤A(γ, y1)≤ Γ(2γ) ( 1

4
)γ

Γ2(γ) [ln γ−ψ(γ)]
. So from (4.1) and (4.3), lim

y1→∞

∣

∣

∣
1− R(β,δ1α)

R(β,δ1)

∣

∣

∣
= 0

for all α ∈ [0, 1), i.e., lim
y1→∞

e(δ1α, δ1) = 1 for all α ∈ [0, 1) and γ > 1, which com-

pletes the proof for i = 1. For i = 2, the proof is similar.

(b) For 0 < β1 < β2 (i.e., 0 < z1 < 1) we have

0 ≤ A(γ, y1) ≤ 2 γ Γ(2γ)

Γ2(γ)

(

y1

(1+ y1)2

)γ−1

=
γ2 Γ(2γ + 1)

Γ2(γ + 1)

(

z1(1 − z1)
)γ−1

.

Using Stirling’s approximation formula
(

Γ(γ + 1) ≃ γγ+
1

2 e−γ
√

2π
)

, we have

0 ≤ A(γ, y1) ≤ 4√
2π

γ
3

2

(

4z1(1 − z1)
)γ−1

which tends to zero as γ → ∞. Now from (4.1)–(4.4), lim
γ→∞

∣

∣

∣
1 − R(β,δ1α)

R(β,δ1)

∣

∣

∣
= 0,

i.e., lim
γ→∞

e(δiα, δi) = 1 for all 0 < β1 < β2 and α ∈ [0, 1), which completes the

proof for i = 1. For i = 2, the proof is similar.
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5. EXTENSION TO A SUBCLASS OF EXPONENTIAL FAMILY

Let Xi = (Xi1, Xi2, ..., Xini
), i = 1, 2, has the joint probability density func-

tion

f(xi, θi) = C(xi, ni) θ
−mi

i e−Ti(xi)/θi , i = 1, 2 ,(5.1)

where xi = (xi1, ..., xini
), C(xi, ni) is a function of xi and ni, θi = τ ri for some

r > 0, mi is a function of ni and Ti(xi) is a complete sufficient statistic for θi
with Gamma(mi, θi)-distribution. For example, Exponential(βi) with θi = βi,

Gamma(νi, βi) with θi = βi and known vi, Inverse Gaussian(∞, λi) with θi = 1
λi

,

Normal(0,σ2
i ) with θi=σ

2
i , Weibull(ηi,βi) with θi= ηβi

i and known βi, Rayleigh(βi)

with θi = β2
i , Generalized Gamma(αi, λi, pi) with θi = λpi

i and known pi and αi,

Generalized Laplace(λi, ki) with θi = λki

i and known ki belong to the family of

distributions (5.1). An admissible linear estimator of θi = τ ri in this family under

the entropy loss function can be found in Parsian and Nematollahi (1996).

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(mi, θi)-distribution, therefore we

can extend the results of Sections 2–4 to the subclass of exponential family (5.1)

by replacing γi = niνi, βi and
ni
∑

j=1
Xij = γiδi by mi, θi and Ti(Xi), respectively.

The results of Sections 2–4 can be extended to some other families of distri-

butions which do not necessarily belong to a scale families, such as Pareto or beta

distributions. A family of distributions that includes these distributions as spe-

cial cases, is the family of transformed chi-square distributions which is originally

introduced by Rahman and Gupta (1993). They considered the one parameter

exponential family

f(xi, ηi) = eai(xi)b(ηi)+c(ηi)+h(xi) , i = 1, 2 ,(5.2)

and showed that −2 ai(Xi)b(ηi) has a Gamma
(

ki

2 , 2
)

-distribution if and only if

2 c′(ηi)b(ηi)

b′(ηi)
= ki .(5.3)

When ki is an integer, −2 ai(Xi)b(ηi) follow a chi-square distribution with

ki degrees of freedom. They called the one parameter exponential family (5.2)

which satisfies (5.3), the family of transformed chi-square distributions. For ex-

ample, beta, Pareto, exponential, lognormal and some other distributions belong

to this family of distributions (see Table 1 of Rahman and Gupta,1993).

Now it is easy to show that if condition (5.3) holds then the one parameter

exponential family (5.2) is in the form of the scale parameter exponential family

(5.1) with mi = ki

2 , Ti(Xi) = ai(Xi) and θi = −1/b(ηi) (see Jafari Jozani et al.,

2002). Hence with these substitutions, we can extend the results of Sections 2–4

to the family of transformed chi-square distributions.



244 N. Nematollahi and Z. Meghnatisi

ACKNOWLEDGMENTS

The authors are grateful to the editor, anonymous referees, Professor Ah-

mad Parsian of University of Tehran and Dr. Mehran Naghizadeh of Mazandran

University for making helpful comments and suggestions on an earlier version of

this paper. The research of the first author was supported by the research coun-

cil of Allameh Tabataba’i University and the research of the second author was

supported by the research council of Islamic Azad University-Karaj Branch.

REFERENCES

[1] Chang, Y.T. and Shinozaki, N. (2002). A comparison of restricted and unre-
stricted estimators in estimating linear functions of ordered scale parameters of
two gamma distributions, Annals of the Institute of Statistical Mathematics, 54,
848–860.

[2] Chang, Y.T. and Shinozaki, N. (2008). Estimation of linear functions of or-
dered scale parameters of two gamma distributions under entropy loss, Journal
of the Japan Statistical Society, 2, 335–347.

[3] Dey, D.K.; Ghosh, M. and Srinivasan, C. (1987). Simultaneous estimation
of parameters under entropy loss, Journal of Statistical Planning and Inference,
15, 347–363.

[4] Jafari Jozani, M.; Nematollahi, N. and Shafiee, K. (2002). An admissible
minimax estimator of a bounded scale-parameter in a subclass of the exponential
family under scale-invariant squared-error loss, Statistics and Probability Letters,
60, 437–444.

[5] Katz, M.W. (1963). Estimating ordered probabilities, Annals of Mathematical
Statistics, 34, 967–972.

[6] Kaur, A. and Singh, H. (1991). On the estimation of ordered means of two
exponential populations, Annals of the Institute of Statistical Mathematics, 43,
347–356.

[7] Kumar, S. and Kumar, A. (1993). Estimating ordered means of two negative
exponential populations, Proc. First. Ann. Conf. Ind. Soc. Indust. & Appl. Math.
Univ. of Roorkee, 358–362.

[8] Kumar, S. and Kumar, A. (1995). Estimation of ordered locations of two ex-
ponential populations, Proc. First. Ann. Conf. Ind. Soc. III International Sym-
posium on Optimization & Statistics, Aligarh Univ., 130–135.

[9] Kumar, S. and Sharma, D. (1988). Simultaneous estimation of ordered pa-
rameters, Communications in Statistics: Theory and Methods, 17, 4315–4336.

[10] Meghnatisi, Z. and Nematollahi, N. (2009). Mixed estimators of ordered
scale parameters of two gamma distributions with arbitrary known shape param-
eters, Journal of the Iranian Statistical Society, 8, 15–34.



On the Admissibility of Estimators of Two Ordered Gamma Scale Parameters 245

[11] Misra, N.; Choudhary, P.K.; Dhariyal, I.D. and Kundu, D. (2002).
Smooth estimators for estimating ordered restricted scale parameters of two
gamma distributions, Metrika, 56, 143–161.

[12] Misra, N.; Iyer, S.K. and Singh, H. (2004). The LINEX risk of maximum
likelihood estimators of parameters of normal populations having order restricted
means, Sankhya, 66, 652–677.

[13] Misra, N. and Singh, H. (1994). Estimation of ordered location parameters the
exponential distribution, Statistics, 25, 239–249.

[14] Nematollahi, N. (1995). Estimation under entropy loss function, PhD Thesis,
Shiraz University, Iran.

[15] Parsian, A. and Nematollahi, N. (1995). On the admissibility of estimators of
two ordered Poisson parameter under the entropy loss function, Communications
in Statistics: Theory and Methods, 24, 2451–2467.

[16] Parsian, A. and Nematollahi, N. (1996). Estimation of scale parameter under
entropy loss function, Journal of Statistical Planning and Inference, 52, 77–91.

[17] Rahman, M.S. and Gupta, R.P. (1993). Family of transformed chi-square
distributions, Communications in Statistics: Theory and Methods, 22, 135–146.

[18] Robertson, T.; Wright, F.T. and Dykstra, R.L. (1988). Order restricted
Statistical inference, Wiley, New York.

[19] Self, S.G. and Liang, K.Y. (1987). Asymptotic properties of maximum likeli-
hood estimators and likelihood ratio tests under nonstandard conditions, Journal
of the American Statistical Association, 82, 605–610.

[20] van Eeden, C. (2006). Restricted parameter space, estimation problems, ad-
missibility and minimaxity properties, Lecture Notes in Statistics, 188, Springer,
New York.

[21] Vijayasree, G. and Singh, H. (1991). Simultaneous estimation of two ordered
exponential parameters, Communications in Statistics: Theory and Methods, 20,
2559–2576.

[22] Vijayasree, G. and Singh, H. (1993). Mixed estimators of two ordered expo-
nential means, Journal of Statistical Planning and Inference, 35, 47–53.


